文档库 最新最全的文档下载
当前位置:文档库 › 20070914140710943大豆纤维的Sumifix HF活性染色工艺

20070914140710943大豆纤维的Sumifix HF活性染色工艺

20070914140710943大豆纤维的Sumifix HF活性染色工艺
20070914140710943大豆纤维的Sumifix HF活性染色工艺

大豆纤维的Su m ifix HF活性染色工艺

贾维妮1,徐永键2

(1.南通大学化学化工学院,江苏南通226007;2.富群科技染整有限公司,江苏常熟215557)

摘 要:采用Su m ifix HF活性染料对大豆纤维进行染色。通过单因素试验,分别讨论温度、盐用量、碱用量

等工艺参数,对大豆蛋白纤维的上染率和固色率的影响;通过正交试验确定合适的工艺条件。结果表明,盐

用量为35g/L,碱用量为15g/L,温度为60℃,浴比为1∶30时,染色效果较好。

关键词:染色;活性染料;大豆蛋白质

中图分类号:TS1931632 文献标识码:B 文章编号:1000-4017(2006)20-0025-02

Soybean prote i n f i ber dye i n g w ith Su m i f i x HF reacti ve dye

J I A W ei2ni1,XU Yong2jian2

1.Che m ical Engineering College,N an tong U niversity,N antong226007,China;

2.Fujing Technology D yeing and F inishing Co m pany,Changshu215557,China

Abstract:The Sum i fi x HF reac ti ve dye stuff a re u sed i n dye i ng o f so ybean p r o te i n fab ri c.I nfl ue nce o f tem p e ra tu re,do sage o f sa lt and a l ka li o n the ra te o f dye i ng and fi xa ti o n yi e l d w a s d iscu s sed.The op ti m a l dye i ng co nd iti o n is o b ta i ned th r o ugh o rtho go2 na l e xp e ri m e n ts.The re su lts show tha t the su itab l e dye i ng co nd iti o n is sa lt35g/L,a l ka li15g/L,tem p e ra tu re60℃and li quo r ra ti o1∶30.

Key words:dye i ng;re ac ti ve dye;so ybean p r o te i n fi be r

大豆蛋白纤维中含有羟基、氨基等极性基团,可以用活性染料、酸性染料和直接染料进行染色。目前使用较多的是活性染料和酸性染料等[1,2]。本试验采用活性染料染色方法,通过单因素分析,找出染色可行性方案和工艺条件,然后进行正交试验,通过极差分析以确定最佳工艺条件。

1 试验材料与方法[3,4]

1.1 试验材料

大豆蛋白纤维(常熟市江河天绒丝有限公司) 1.2 试验仪器

JA2003电子天平(上海精制天平厂),HH2S恒温水浴槽(浙江省余姚市检测仪表厂),Spectru m723分光光度计(上海光谱仪器有限公司),CE23100计算机测配色系统(理宝科技有限公司)。

1.3 染化试剂

Sum ifix HF蓝2R、Su m ifix HF黄3R、Su m ifix HF红2B(工业品,住友化学),无水Na2S O4(化学纯,广东汕头市西陇化工厂),无水Na

2

CO3(分析纯,上海化学试剂有限公司)。

1.4 染色处方/(g/L)

收稿日期:2006-07-10

作者简介:贾维妮(1977-),女,陕西韩城人,南通大学教师,主要从事染整新技术、新工艺以及染整助剂的研究和开发。

染料/(owf) 2

Na2S O410~40

pH值(初染)7

Na2CO310~25

温度/℃50~80

染色工艺

上染→固色→水洗→皂煮→水洗→烘干

1.5 测试方法

1.5.1 K/S值

采用CE23100计算机测配色系统,测定染色后纤维的K/S值。

1.5.2 上染百分率

用分光光度计测定染色前后染液的吸光度。

上染百分率(%)=(1-nA

1

/mA0)×100%

式中:m/n———染色前/后的染液稀释倍数;

A0/A1———染色前/后染液稀释m/n倍后吸光度。

1.5.3 固色率的测定

通过测试皂洗前后纤维的K/S值,计算固色率。

固色率/%=[(K/S)

皂煮后

/(K/S)皂煮前]×100

2 结果与讨论

2.1 染料的最大吸收波长

用作图法确定出三种染料的最大吸收波长,活性

红λ

max

=515nm,活性黄λmax=440nm,活性蓝λmax= 605nm。

52

 大豆纤维的Su m i f i x HF活性染色工艺印 染(2006No.20)

2.2Na2CO3用量对大豆蛋白纤维上染效果的影响

分别测出大豆蛋白纤维的上染率,及染色样品在皂洗前后的K/S值,计算固色率,结果如表1。

表1 Na

2

CO3用量对大豆蛋白纤维上染效果的影响Na2CO3/(g/L)10152025

上染率/%活性红71.0074.4581.4081.90活性黄82.0087.1590.3091.15活性蓝78.0083.2485.8088.60

固色率/%活性红90.1890.5589.4989.81活性黄61.3778.6878.9265.08活性蓝58.3469.9669.8060.55

注:Na

2

S O4用量40g/L,温度60℃,浴比1∶30。

从表1可以看出,上染率和固色率均随着碱浓度的增加而增加,当碱浓达到25g/L时,上染率增幅趋缓,同时固色率下降,说明碱浓度过大,染料部分水解。此外,大豆蛋白纤维对碱的稳定性不好,碱浓度过高会引起大豆蛋白纤维的损伤,所以碱用量不宜过大。

2.3 Na2S O4用量对大豆蛋白纤维上染效果的影响

表2 Na

2

S O4对大豆蛋白纤维上染效果的影响Na2S O4/(g/L)10203040

上染率/%活性红63.5668.6372.2776.34活性黄79.5885.0391.1591.52活性蓝68.2875.6181.7285.54

固色率/%活性红80.8180.9382.4781.99活性黄74.0076.1780.6176.56活性蓝60.6360.7565.6361.28

注:Na

2

C O320g/L,温度60℃,浴比1∶30。

从表2可以看出,随着Na

2

S O4用量的增大,染料的上染率逐渐上升,说明盐对染料的上染起促染作用。

当Na

2

S O4用量从30g/L到40g/L后,上染率增大的趋势趋于缓慢,固色率下降。可能是由于盐用量过高,染料盐析沉积在纤维表面,在皂煮、水洗时被洗去而影响固色率。

2.4 温度对大豆蛋白纤维上染效果的影响

表3 温度对大豆蛋白纤维上染效果的影响

温度/℃50607080

上染率/%活性红82.0085.4785.0083.50活性黄91.4094.4893.9192.40活性蓝91.4093.2592.7090.90

固色率/%活性红77.6987.3290.5990.66活性黄76.6487.6590.4590.53活性蓝40.2854.6850.9050.47

注:Na

2

S O430g/L,Na2C O320g/L,浴比1∶30。

从表3看出,随着温度升高,染料的上染率先升高后降低。60℃时,染料对大豆蛋白纤维的上染率最高。若再升高温度,上染率有所下降。

活性染料在大豆蛋白纤维上的固色率随着温度的升高而升高,且其值可达到90%左右。2.5 正交试验

根据以上因素对大豆蛋白纤维上染情况的影响,进行正交试验(表4),以确定合适的染色条件。

表4 活性染料染大豆蛋白纤维正交试验表

工艺参数上染率/%

T/℃盐/(g/L)碱/(g/L)活性红活性黄活性蓝150251077.6688.0091.73

250301574.8490.6192.82

350352079.1295.0995.45

460251586.0596.0691.15

560302078.8396.1895.51

660351081.3096.2495.51

770252080.1693.0391.79

870301076.4590.7994.94

970351581.1996.6796.47

表5 结果分析表

K1K2K3k1k2k3R j

活性红231.62246.18237.877.2082.0679.27 4.14

活性黄273.7288.48280.4991.2396.1693.50 4.93

活性蓝280.0282.17283.293.3394.1694.40 1.07

活性红243.87230.12241.6181.2976.7180.54 4.58

活性黄277.09277.58288.092.3692.5396.0 3.47

活性蓝274.67283.27287.4391.5694.4295.81 4.25

活性红235.41242.08238.1178.4780.6979.37 2.22

活性黄275.03283.34284.391.6894.4594.77 3.09

活性蓝282.18280.44282.7994.0693.4894.260.78 从表5正交试验结果可以看出,对于活性红和活性蓝:盐用量对染色的影响最大,所以染色过程中要严格控制盐的用量;温度次之;碱用量对上染率的影响最小。对于活性黄:温度对染色的影响最大,试验中要严格控制温度;盐用量次之;碱用量对上染率的影响最小。综合分析,活性染料染大豆蛋白纤维较为适合的染色工艺为:温度60℃,盐用量35g/L,碱用量15g/L。

3 结论

(1)Sum ifix HF活性染料染大豆蛋白纤维时,上染率比一般活性染料高,固色率也可达到90%左右,从而减轻了污水处理的压力,降低了成本。

(2)用Sum ifix HF活性染料对大豆蛋白纤维进行染色,合适的工艺条件为:温度60℃,初染pH值7,盐用量35g/L,碱用量15g/L。

(3)Su m ifix HF活性染料虽是一种棉用活性染料,但对大豆蛋白纤维的上染率也很高,所以可以作为大豆蛋白纤维和棉纤维混纺织物的染料。

参考文献:

[1] 唐人成,梅士英,等.大豆蛋白纤维性能及织物练漂工艺初探[J].

印染,2001,27(5):5-9.

[2] 蔡再生.纤维物理和化学[M].北京:中国纺织出版社,2004.

[3] 何瑾馨.染料化学[M].北京:中国纺织出版社,2004.

[4] 赵 涛.染整工艺原理(二)[M].北京:中国纺织出版社,2005.

62

印 染(2006No.20) www.cdfn.co https://www.wendangku.net/doc/f56532843.html,

新式纤维被和老棉被对比调查

近日有消费者抱怨,冬被市场几乎都被丝棉被、羽绒被、羊毛被以及各色各样的“概念被”充斥,纯棉被仅个别品牌有售且价格不菲。与此同时,长沙街头巷尾的棉被加工坊和网络上的棉被定制均生意红火。显然,价廉物美的老棉被被家纺厂商弃用,却依然广受消费者青睐。 调查 近20个家纺品牌仅两家卖纯棉被 12月16日-18日,先后踩点长沙各大商场和超市卖场,发现纯棉被确实难觅踪影,其他材质的“概念被”大行其道。 在各商家的家纺区,聚酯纤维材质的冬被占了多数,羊毛被、驼毛被、羽绒被也不少,还有大豆蛋白复合纤维等特殊材质的被子,唯独不见纯棉被的身影。 面对前来咨询的顾客,商场和超市的家纺专柜销售员大多热情地介绍起牛奶纤维被、大豆纤维被、竹炭清雅被、芦荟亲肤被等销售“新星”,价格从五六百到数千元不等。“竹炭纤维被抗菌、促进新陈代谢;芦荟亲肤可以养颜。”推销起这些“概念被”,销售员说得头头是道。但一提传统棉被,他们却摇起了头:“老棉被时间一长容易结板,纤维被轻巧、睡觉不压人。” 记者累计走访了近20家家纺品牌店,只在深圳品牌富安娜和湖南本土品牌梦洁找到了两款纯棉材质的棉被。一款原价1680元,折后价为798元;另一款2米长、8斤左右的新疆长绒棉棉被,折后价为1088元。 现象 加工小店和网络定制能做老棉被 虽然市场上老棉被难寻,但不少消费者仍然对其情有独钟。在长沙市内一些街道小巷里,棉被加工店的生意十分红火。 在附近一家棉被加工店内看到,陆续有市民前来光顾。顾客胡女士说,商场超市买的那些被子盖起来轻飘飘的,也不知道里面到底用的什么被芯,不如自己买棉花做被子来得实在,便宜又暖和。 这里的棉花是20元/斤,顾客可以自由选择棉花斤数做成不同重量和规格的被子。如果做一床2米长的10斤棉被,加上加工费一共是300元左右。店老板告诉记者,加工一床棉被大

活性炭纤维

活性炭纤维是一种新型、高效、多功能吸附材料,产品为黑色、毡状织物,具有比表面积大,孔径分布窄,在液相、气相中对有机物和阴、阳离子吸附效率高,吸、脱附速度快,可再生循环使用,同时耐酸、碱,耐高温,适应性强,且可加工成任何形状,该产品在防止环境污染、食品加工、医疗卫生、劳动保护及国防等领域,具有广泛的应用前景,如饮用水净化、工业污水处理、空气净化、脱臭、防毒、液体脱色、溶剂回收等。 二.活性炭纤维毡(布)系列主要指标: 比表面积(m2/g):700-1500 碘吸附(mg/g):700-1500 苯吸附(%):25-50 亚甲蓝脱色(mg/g):100-200 其它数据 原料:聚丙稀晴基,粘胶基,复合型 规格: 长度:0.5-30m 宽度:0.6-1.2m 厚度:1-5mm 包装:10KG/纸箱 体积:1200mm 活性炭纤维毡(ACF FELT) 活性炭纤维毡采用天然纤维或人造纤维无纺毡经炭化、活化等系列工艺制成。性能:极大的比表面积:900-220m2/g,吸附容量大。微孔直径:5-100A。,吸附速度快,是颗粒活性碳的10-100倍。脱附方便,且脱附以后活性炭纤维吸附能力基本不变。良好的导电性,耐酸、碱,成型性好。用途:溶剂回收,空气净化,水净化防毒、防化,医用,除味,除臭,耐高温及保温电极材料。 粘胶基活性炭纤维毡是以粘胶纤维毡为原料制得的活性炭纤维,用途①溶剂回收:对苯类、酮类、酯类、石油类均能吸附回收; ②空气净化:能吸附过滤空气中的恶臭、体臭、烟气、毒气、O3、SO2等。 ③水净化:能去除水中的重金属离子、致癌物质、臭味、霉味、细菌及脱色等;可用于自来水、食品工业用水及工业用纯水等处理;

大豆蛋白纤维

大豆纤维的探究及应用 院系:外语系 学号:201313060124 姓名:司淼

目录 大豆纤维 大豆纤维释义 大豆纤维简介 大豆蛋白纤维 大豆纤维纱线 大豆纤维的面料 大豆纤维染整 大豆纤维服饰 大豆纤维衣服正确洗涤方法

大豆纤维释义 1. Soy Fiber 属于膳食纤维,在减肥过程中可以产生饱足感,而减少食物的摄取,但它们会干扰其他营养素的吸收,因此不建议单独食用。 2. SB=soybean SB=soybean 大豆纤维 3. soybean fibers soybean fibers大豆纤维 大豆纤维简介 大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成. 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 经过工业化规模生产,大豆纤维从纺纱到织造到染整的相关生产技术均已相对成熟,其价格已从初期的每吨7万多元,降至3.5万元左右,已被下游应用企业所认可,产业链结构也逐步形成. 大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。 在成为纤维之前,要从大豆中提取蛋白质与高聚物为原料,采用生物工程等高新技术处理,经湿法纺丝而成。这种单丝,细度细、比重轻、强伸度高、耐酸耐碱性强、吸湿导湿性好。有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 以50%以上的大豆纤维与羊绒混纺成高支纱,用于生产春、秋、冬季的薄型绒衫,其效果与纯羊绒一样滑糯、轻盈、柔软,能保留精纺面料的光泽和细腻感,增加滑糯手感,也是生产轻薄柔软型高级西装和大衣的理想面料。 用大豆纤维与真丝交织或与绢丝混纺制成的面料,既能保持丝绸亮泽、飘逸的特点,又能改善其悬垂性,消除产生汗渍及吸湿后贴肤的特点,是制作睡衣、衬衫、晚礼服等高档服装的理想面料。 此外,大豆纤维与亚麻等麻纤维混纺,是制作功能性内衣及夏季服装的理想面料;与棉混纺的高支纱,是制造高档衬衫、高级寝卧具的理想材料;或者加入少量氨纶,手感柔软舒适,用于制作T恤、内衣、沙滩装、休闲服、运动服、时尚女装等,极具休闲风格。 大豆蛋白纤维是由华康集团董事长李官奇先生历经十年研究开发成功,获得世界发明专利金奖,李官奇先生的这项发明为纺织业带来了一场新的革命,在纤维材料发展史上和人造

2019李官奇在国内首次发明大豆蛋白纤维语文

李官奇在国内首次发明大豆蛋白纤维 我国河南濮阳华康生物化学工程联合集团公司总经理 李官奇潜心研究了10年,投资7000多万元,经历了艰难的研究历程,终于把再生植物纤维——大豆蛋白纤维试纺成功,并首次进行了工业化生产。大豆蛋白纤维的研制成功并投入生产,无论在新世纪人类衣着消费领域,还是对农业产品结构调整现代化进程方面都具有重大的现实意义。这项科研成果向深层次推进和产业化开发,必将成为中国世界纤维史上又一重大贡献。何谓大豆蛋白纤维?大豆蛋白纤维是一种再生植物蛋白纤维。再生蛋白纤维一种是从天然动物牛乳中提炼出的蛋白质,一种是从天然植物(如花生、玉米、大豆等)中提炼出的蛋白质溶解液经纺丝而成。再生蛋白纤维的研究历史较早,大约在19世纪末和20世纪初国外就开始了研究。1935年,意大利科学家、1938年,英国ICI公司、1939年,CornProductRefining公司分别探讨从牛乳、花生提炼蛋白质,从玉米大豆粕中提炼蛋白质再进行纺丝。20世纪40年代初,美国、日本研制了酪素纤维,1945年,美国、英国研究了大豆蛋白纤维,1948年,美国通用汽车公司从豆粕中提取了大豆纤维,但大多因为纤维性能差,无法进行纺织加工而中断研究。1969年,日本东洋纺公司开发牛奶蛋白纤维,实行了工业化生产,由于100公斤牛奶只能提

取2公斤蛋白质,使得制造成本过高,至今无法大量推广使用。而我国的大豆蛋白质纤维制造技术不仅成本低,而且纤维性能优良,具有很高的经济价值。据有关数据分析,1公斤大豆可以榨出0.17公斤的大豆油。榨油后,剩下的0.83公斤的大豆粕中含有40%的有效蛋白质。以往大豆粕主要用于牲畜的饲料,而现在,从大豆粕中提取蛋白质与高聚物共混制成纺丝原液后,再纺成大豆蛋白纤维,还剩余40%的大豆饼粕仍可用于饲料。从价格分析,1吨大豆粕市场售价2500元,经提炼蛋白质400公斤,加入600公斤的高聚物可制成1吨大豆蛋白纤维,其成本价为2.5万元左右,市场销售价为6—8万元左右。也就是说,1吨大豆粕可提高40%的新使用价值,可带来4万元的经济效益。这就意味着目前全国大豆总产量1350万吨可带来巨大的经济效益。不仅如此,农业作物结构也将发生重大调整。从1990年起,李官奇开始湿法小试,搞了一年半,包括自制设备,干法纺丝实验也搞了二年半,这其中也包括自制设备;干喷湿纺法又进行了一年。最后,根据3种小试工艺数据结果确定了湿法的中试工艺、路线。他还根据中试工艺要求设计制造了中试设备,安装了1条生产线,进行了3年的中试。在这3年当中,他大小实验做了200多次。实验的重点是对动物蛋白质、植物蛋白质,特别是大豆蛋白纤维物理性能和指标进行创新。他通过各种牵伸倍数,

活性炭纤维及其在水处理中的应用

活性炭纤维及其在水处理中的应用活性炭纤维(ACF) 是继粉状活性炭( PAC) 和颗粒活性炭( GAC) 之后的第三代活性炭产品,是20世纪70 年代后期发展起来的一种高效活性吸附材料和环保工程材料。ACF 的前驱体是炭纤维,是由有机纤维原料经炭化、活化而成。根据生产中前驱体的不同,目前实现工业化生产的活性炭纤维产品主要分为粘胶基ACF、酚醛基ACF、聚丙烯腈基ACF、沥青基ACF等。由于前驱体的差异,不同的ACF 产品具有不同的功能。实际工作中应根据需要选取相应的ACF。 1、ACF的特点及性能 ACF有丰富的微孔结构和巨大的比表面积,它有多种形式的制成品, 与粉末状和颗粒状吸附材料相比,吸附和脱附速率更快,而且使用更灵活方便。另外, ACF在震动下不产生装填松动和过分密实的现象,克服了在操作过程中形成沟槽和沉降的问题。与AC相比, ACF的优势极其明显。首先, ACF的细孔结构不同于AC, ACF的微孔结构丰富且孔径分布集中(1-2nm), 微孔体积占总孔体积的90%左右, 没有过渡10 %左右; ACF的比表面积较大, 一般都在1000m2/g以上, 甚至可达3000m2 / g , 从而具有更大的吸附容量;ACF的微孔直接分布于纤维的表面,因而吸附质扩散的路径短、时间短,其吸附和再生的速率快,可在较温和条件下再; AC的细孔由大孔(控制扩散速率)、中孔和微孔组成,吸附质扩散要相继经过大孔、中孔和微孔,其扩散路径长、时间长,吸附和再生的速率慢, 因而ACF具有比AC大的吸附动力系数,吸附速

率较AC高2 -3个数量级, 再生容易且再生率高, 可重复使用上千次, 使用寿命达数年之久。其次, ACF的化学组成与AC有差别。不同原料或相同原料但不同方法制得的ACF, 其表面有不同的官能团,如胺基、亚胺基及磺酸基等,它们对某些吸附质具有特殊的吸附能力和氧化还原及催化特性。因为ACF具有电性能, 可利用ACF的导电性,将其作为电极,通过电杀菌作用解决细菌繁殖问题。 2、活性炭纤维在水处理中的应用 1)废水处理 ACF用于水的净化处理具有吸附容量大、吸附速度快、脱附速度快、灰分少、处理量大且使用时间长的优点。将ACF用于环保工程中, 其操作安全, 由于体积密度小和吸脱层薄, 不会造成蓄热和过热现象,也不易发生事故, 且节能和经济, 可用于大型上水、净水处理,不仅净化效率高, 而且处理量大,装置紧凑, 占地面积小, 设备投资小和效益高。ACF适用于各种有机废水的处理。可对含氯废水、制药厂废水、有机染料废水、造纸黑液、苯酚废水、四苯废水、己内酰胺废水、二甲基乙酰胺和异丁醇废水进行处理。其吸附能力比粉状活性炭的吸附能力高得多, 尤其适用于高平衡浓度时, 每克ACF的吸附量约为粉状活性炭的3倍。其吸附能力随温度升高而提高。 用剑麻基ACF 可有效去除水中的各种有机染料, 如亚甲基兰、结晶紫、铬兰黑R等,去除率高达100 %; 沥青基ACF可有效地吸附酸性染料, 如酸性蓝74、酸性橙10等, 也用于直接染料如直接蓝19、直

大豆蛋白纤维染色研究要点

大豆蛋白纤维应用资料常熟市江河天绒丝纤维有限责任公司 大豆纤维散纤染色注意点 (2007-3-12) 一、填棉(装笼): 国内厂家采用的散纤染色设备以国产常温常压开口设备为主,也有部分采用高温高压缸。填棉均匀性直接影响到前处理和染色的均匀性。最好采用自动填棉、温水加湿、一次压实的工艺,若人工填棉,不能大块装笼,边温水冲浸边填棉,四周均匀压实,包布包好,(包布可采用涤纶网眼布,如蚊帐布)确保笼体与笼盖之间无间隙,避免漂液短路和渗透不匀。 若人工填棉,纤维在热水浸洗或精练后,应开盖检查纤维缩水情况,及时补加纤维,或将笼盖贴紧纤维层,并盖好包布,防止喷笼。 二、前处理 1.主要进行精练,或精练加漂白,即加入精练剂、纯碱、分散剂后升温至90℃保温30分钟,然后三次水洗,温度递减,避免急剧降温使纤维收缩,残存在沟槽与微孔中的油剂、杂质不易被清除,会干扰染色。 2.浴比1:7-15;用水总硬度<50ppm,水质硬度、碱度高时加入适量分散剂。 3.染中深色时,对本色纤维只需进行精练去油去杂,染浅色、深色(黑色)时,对本色纤维需进行精练+漂白。 4.前处理工艺: (1)本色纤维精练: 还原剂3%owf(二氧化硫脲) 纯碱 3.6%owf(PH=10~10.5) 精练剂0.72%owf 分散剂(水质硬度、碱度高时酌情加入) 90℃×30~45min 升温速度:1.5℃/min

(2)本色纤维精练+漂白 精练同上 三次水洗(逐渐降温、充分水洗) 漂白: 27.5%H 2O 2 36%owf 水玻璃(泡化碱) 7.2%owf 纯碱 2.4%owf(PH=10~10.5) 95℃×60min 升温1.5℃/min 三次水洗(逐渐降温、充分水洗) 5.由于大豆纤维本身湿模量低,遇热水夯实变得紧密,纤维层密度在0.4左右,比棉/羊毛等要大将近一倍,使染液渗透较困难,在还原、氧化漂时也可以加入渗透剂,改善漂液的渗透性。 三、染色 大豆纤维上含有-NH2,-COOH,-OH,可用活性染料、酸性染料、中性染料、阳离子染料、直接染料、还原染料、分散染料、硫化染料染色,从实验结果看,阳离子染料、分散染料和直接染料对大豆纤维的染色牢度较差,生产上很少使用,还原和硫化染料因为染色条件的强碱性会损伤蛋白质,不适用。 酸性染料和直接染料可染,但湿摩擦牢度、水洗牢度较差,目前,主要选择使用双活性基团的棉用活性染料,干湿磨擦牢度4级。 (1)活性染料染大豆纤维,主要是与蛋白质上的氨基、羧基反应,同时与PV A 上部分极性基团反应,上色速率快(比粘胶还快),染色时须缓慢升温,如<1℃/min(一般控制在0.5℃/min); (2)染色温度60-70℃时得色量最高; (3)双组分材质比单一组分的纤维在吃色均匀性上更难掌握,因此,须通过小试,确定盐/碱投放量和频率。元明粉(盐)、纯碱的用量根据颜色深、浅来确定(以下为参考值):

大豆纤维的前处理工艺模板

大豆纤维的前处理工艺 一、前言 大豆蛋白纤维又简称大豆蛋白或大豆纤维, 这种纤维实质上是一种多组分复合纤维。其中大豆蛋白质实采用化学和生物方法处理大豆渣提取球状蛋白, 再和其它高分子物( 例如PV A) 及添加剂, 经湿法纺丝而成的复合纤维, 是国内研究并己首次商品化生产的新型纤维, 市场前景十分广阔。该纤维具有蛋白质纤维的特性, 织物光泽柔和, 产品有类似蚕丝绸的手感、柔软性, 又具有麻棉的吸湿性和透气性, 故此纤维织物穿着舒适, 深受客户青睐。可是它的前处理和染色到当前还不是很成熟, 特别是它的漂白, 大家都知道大豆纤维漂不白, 因此染色时染鲜艳的浅色有一定的困难, 限制了它的发展。在此我们就大豆纤维的漂白和染色加以研究。 二、前处理大豆纤维是短纤维, 纤维截面是不规则的哑铃状, 纵向不光滑, 有凹槽, 其中蛋白质含量为23%-25%, 其余主要是PV A, 蛋白质主要呈不连续的块状分散在连续的PV A介质中。这种组成和结构使它具有较好的吸湿性和导湿透气性。它耐酸性较好, 耐碱性差, 其中的蛋白质易水解, PV A也易溶胀。因此在前处理时要特别注意湿热碱液处理, 不能采用强碱退浆。大豆蛋白纤维的前处理比较简单, 主要去除纤维制造加工中添加的上油剂、抗静电剂、润滑剂、色素等杂质, 主要经过精炼漂白工序即可获得纯净、渗透性好。有一定白度的半制品要求。再生大豆蛋白纤维呈现米黄色, 类似于柞蚕丝的色泽。由于大豆本身呈黄色, 而纤维中的有色成份及

形成原因尚未搞清, 采用常规的漂白方式很难达到理想的白度要求。漂白后的大豆蛋白纤维还呈现淡黄色泽, 需要时进行增白整理。资料表明, 采用传统的氧漂工艺漂白效果差, 一般采取氧漂-还原漂复合法, 大豆蛋白纤维白度较好。 大豆蛋白散纤维精练漂白生产试验工艺和结果如下: 1.工艺流程: 纤维准备→氧漂→水洗→还原漂→水洗→( 增白) →柔软处理→脱水→开松→烘干 2.精练漂白工艺: 氧漂: 双氧水( 30%) 10-35g/L 纯碱1-2g/L( 调pH值在10-10.5) 稳定剂( 泡化碱) 2-4g/L 精练剂1-2g/L 渗透齐1-2g/L 浴比1∶10左右 保温温度和时间90-95℃×60-90分钟 还原复漂: 还原剂2-6g/L 纯碱1-4g/L 精练剂l-2g/L 渗透剂l2g/L 浴比1∶10左右 温度和时间90℃×30-40分钟 3.增白由于大豆蛋白纤维中色素在漂白精练过程中难以净除, 前面已讨论了经过氧漂——还原漂后的大豆蛋白纤维还略带微黄色光,

活性炭纤维的制备及在核生化防护服中的应用

国防技术基础 2008年5月 第5期 活性炭纤维的制备及在核生化防护服中的应用  摘 要:介绍了活性炭纤维的孔隙分布、特性、制备方法及活性炭纤维在核生化防护服上的应用;介绍了国内核生化防护服用活性炭纤维复合织物的研究进展。 关键词:活性炭纤维 核生化 防护服 复合织物 刘恩文 (总装备部防化军事代表局驻宜昌地区军事代表室) 活性炭纤维(Activated Carbon Fiber,ACF)是指炭纤维(Carbon Fiber,CF)及可炭化纤维(Carbonizable Fiber)经过物理活化、化学活化或两者兼有的活化反应所制得的具有丰富和发达孔隙结构的功能性炭纤维。基于ACF比一般活性炭(ActivatedCarbon,AC)有着更为优越的孔隙结构和形态,可用作功能材料,在国防、环境保护、化工、卫生、电子、电化学等领域得以广泛应用。 1.活性炭纤维的孔隙结构、分布及其特性活性炭和活性炭纤维均属多孔碳材料,活性炭纤维与粒状活性炭(GAC)的孔隙结构和细孔直径分布见图1,从图中可以看出,ACF的孔型开口在其表面,孔形为狭缝形,其细孔直径为单峰型分布;GAC的孔型为树枝状,有大孔、中孔和微孔,分布较宽,细孔直径为多峰型分布。两者结构不同,使其在吸、脱附速度及吸附量有很大差异;与活性炭比较具有以下特点[1] : (1)单丝直径细,约8~20μm,活性炭为1~3mm,表面积大,约比粒状活性炭大两位数,吸附面积大; (2)有效吸附孔分布窄,属于单分散型,活性炭属于多分散型孔分布; (3)没有或很少有大孔,且为径向开孔扩散阻力小,吸附、脱附的行程短,吸、脱附速度快 (约为活性炭的10~100倍) ; (4)外表面积(0.2~2.0m2/g),较活性炭(0.001m2/g)大得多,吸附位多,吸附容量大; (5)体密度小,漏损小,处理速度快,可实现设备小型化、高效化和自动化; (6)杂质少,纯度高,不会污染吸附的气体或液体; (7)强度高,粉尘少,不会造成二次污染;(8)形态多,后加工性好,适应性强,有纤维、布、毡、纸以及蜂窝状、波纹状和各种定型制品; (9)易再生,失活少,使用寿命长;(10)导电,导热,蓄热量小,操作、维修方便,使用安全。 图 1 活性炭纤维与粒状活性炭的细孔直径分布

大豆皮纤维与大豆膳食纤维的异同

大豆膳食纤维与豆皮膳食纤维的异同 一、豆渣、豆皮基本成分分析 豆渣、豆皮是生产豆制品和大豆油的副产物,其中均含有丰富的粗纤维、蛋白质等,下表1列出了其各含量的不同。 表1 豆渣、豆皮基本成分分析(%,干基) 二、豆渣、豆皮各种膳食纤维的化学成分分析 三、豆渣、豆皮各种膳食纤维水解后得到的单糖的相对含量 由表3可以看出,在豆渣、豆皮各种膳食纤维样品的单糖组成中,主要包括木糖、阿拉伯糖、果糖、甘露糖、葡萄糖和半乳糖。但其中的单糖相对含量存在的差异非常明显。豆渣膳食纤维中木糖、阿拉伯糖、半乳糖占很大比例,其它单糖含量相对较小;而在豆皮膳食纤维中,木糖和果糖的含量相对较小,其它四种单糖所占比例较大。另外,从表中可以得知,豆渣膳食纤维的单糖组成中,半乳糖相对含量

在50%左右,可知豆渣类膳食纤维所含的果胶类多糖的支链较少,其所含的葡萄糖含量也相对较低,从豆渣膳食纤维样品的成分中可以看出,其所含的淀粉较少,而葡萄糖主要来自淀粉和纤维素的水解,由此可知它主要来自纤维素的水解。而豆皮膳食纤维单糖组成中葡萄糖含量相对较高,而原料中淀粉含量很低,可见其也为纤维素的降解产物。另外其木糖、阿拉伯糖、果糖、甘露糖的比例与豆渣膳食纤维也有很大的差别,根据果胶主链、侧链上的主要单糖分布可以得出,在豆皮膳食纤维中,果胶类多糖多以高支链果胶多糖为主。 四、豆渣、豆皮各种膳食纤维持水力、膨胀力、吸油能力 表4 豆渣、豆皮三个性质的测定结果 从表4可以得到,各种豆渣、豆皮膳食纤维的持水能力、膨胀能力以及吸油能力是不一样的,但其在这三个性质上的优劣顺序是一致的,即SDF 优于IDF。可能是由于样品在挤压剪切的过程中,纤维高聚物断裂生成SDF等聚合度较低吸水性较强的成分。 另外,我们从图中可以得到,豆渣膳食纤维在持水能力、膨胀能力和吸油能力方面都优于豆皮对应的各种膳食纤维,但其作用机理待进一步研究分析。 五、豆渣、豆皮各种膳食纤维在pH不同时吸附胆固醇的能力

化学纤维的发展历史

化学纤维的发展历史 一.世界化学纤维发展简史 自古以来,人类的生活就与纤维密切相关。5-10万年前,随着体毛的退化,人类开始用兽皮、树皮和草叶等天然衣料遮体保温。以后,人类掌握了将植物纤维进行分离精制的技术。1万年前,人类已能直接使用羊的绒毛。在中国、埃及和南非的早期文化中,都有一些关于用天然纤维纺纱织布的记载,这可以追溯至公元前3000年。例如,亚麻早在新石器时代就已在中欧使用。棉在印度的历史之久犹如欧洲使用亚麻。蚕丝公元前2640年就已在我国被发现,商朝的出土文物证明,当时高度发达的织造技术中已经使用了多种真丝。羊毛也已在新石器时代末在中亚细亚开始使用。因此可以说,现在作为天然纤维广泛使用的麻、棉、丝、毛等,在公元前就已在世界范围内得到了应用。 与天然纤维悠久的历史相比,化学纤维的历史还很短。尽管Hook在1664年于“Micrographia”一书中已经就提出化学纤维的构思,但由于当时科学家无法了解纤维的基本结构,因此在开发化学纤维时显得茫然无措,这导致这一美好的设想在200多年后才成为现实。 1846年,德国人F.Sch?nbein通过用硝酸处理木纤维素制成硝酸纤维素。1855年,G.Audemars获得了世界化学纤维发展史上的第一个专利。他提出用硝酸处理桑树枝的韧皮纤维,溶解于醚和酒精混合物后通过钢喷嘴进行抽丝。1862年,法国人M.Ozanam提出了使用喷丝头纺丝的设想。1883年,英国人J.W.Swan 1

取得了用硝化纤维素的醋酸溶液纺丝、随后进行炭化生产白炽灯丝的专利。他还认为这种丝可用于纺织,而把它称为“人造丝”。同年,法国人Chardonnet 获得了用硝酸纤维素制造化学纤维的最著名的专利,并于1891年在Besancon以工业规模生产硝酯纤维(硝酸纤维素纤维),这标志着世界化学纤维的工业化开始。随后,各种形式的人造纤维素纤维(包括铜氨纤维、粘胶纤维和醋酯纤维)相继问世。而硝酯纤维由于纺织用性能不如粘胶纤维而发展缓慢。 1857年德国人Schweizer发明了制备铜氨纤维素的方法。1890年Despassie 提出了由铜氨溶液制备纤维素纤维的方法。德国在Aachen附近的Oberbruch首先用铜氨法生产纤维素纤维,并且于1899年成立了Enka公司的前身Glanzstoff公司,实现了铜氨纤维的工业化。以后Bemberg公司进一步发展了铜氨法。铜氨纤维由于要以价格较高的铜氨作溶剂,在成本上无法与比粘胶纤维竞争,因此只用作少数纺织品和人工肾。 1891年,三个英国人C.F.Cross、E.J.Bevan和C.Beadle发明了把纤维素溶解成溶液的新方法——粘胶法,并于1892年在英国和德国取得专利。德国H.V.Donnersmarck公司取得了在中欧地区使用此专利的许可,于1901年建厂,但直到1910年仍不能正常生产。英国Courtaulds公司购买了这一权利,于1904年首先实现了工业化,成为世界第一个大规模生产的化学纤维品种。在第一次世界大战将结束时,人们就用切断粘胶长丝的方法生产短纤维。1921年,德国Premnitz工厂生产出了可用于纺织的粘胶短纤维。在此期间,还开发了工业用的高强力粘胶长丝。 与此同时,1869年,德国人P.Schützenberger以实验室规模研究成功使用醋 2

大豆蛋白纤维项目

2万吨/年大豆蛋白纤维项目 一、简述 大豆蛋白纤维是一种可以替代化学纤维、天然纤维(如棉、麻、毛、蚕丝等)并能与各种纤维混纺的新型纺织品原料。属于再生植物蛋白纤维类,它主要原料来自于自然界的大豆粕,原料丰富且具有可再生性,不会对资源造成掠夺性开发。在大豆蛋白纤维生产过程中,由于所使用的辅料、助剂均无毒,且大部分助剂和半成品纤维均可回收重新使用。提取蛋白后留下的残渣还可以作为饲料,其生产过程不会对环境造成污染,被专家誉为“21世纪健康舒适型纤维”。大豆蛋白纤维的性能优越,具有天然纤维和化学纤维的众多优点,不仅具有单丝细度细,比重轻,强伸度高,耐酸耐碱性好,光泽好,吸湿性好等特点,还具有羊绒般柔软的手感,蚕丝般柔和的光泽,棉纤维的吸湿和导湿性,羊毛的保暖性等优良服用性能,可部分替代羊绒和真丝,是生产各种高档纺织品的理想材料。 1、大豆蛋白纤维的种类 2、大豆蛋白纤维的纤维结构 不光滑,表面沟槽导湿。截面呈不规则哑铃型,海岛结构,

有细微孔隙,透气导湿。 3、大豆蛋白纤维物理指标 4、大豆蛋白质纤维与其它纺织纤维性能比较

5、大豆纤维耐酸碱性能和耐虫蛀,耐霉菌性能比较 6、产品特点 这种特制的面料柔软滑爽、透气爽身、悬垂飘逸,具有独特的润

肌养肤、抗菌消炎穿着功能。采用这种纤维生产的织物具有以下4个特点。 ①外观华贵。服装面料在外观上给人们的感觉体现在光泽、悬垂性和织纹细腻程度3个方面。大豆蛋白纤维面料具有真丝般的光泽,非常怡人;其悬垂性也极佳,给人以飘逸脱俗的感觉;用高支纱织成的织物,表面纹路细洁、清晰,是高档的衬衣面料。 ②舒适性好。大豆蛋白纤维面料不但有优异的视觉效果,而且在穿着舒适性方面更有着不凡的特性。以大豆蛋白纤维为原料的针织面料手感柔软、滑爽,质地轻薄,具有真丝与山羊绒混纺的感觉,其吸湿性与棉相当,而导湿透气性远优于棉,保证了穿着的舒适与卫生。由于它属于天然织物,又含有丰富蛋白质,因此其吸水性、透气性较一般针织品优越,与人体接触不会发生不良反应,更不会像一些化学纤维织物使穿着者有发痒等过敏现象。 ③物理机械性能好。这种纤维的单纤断裂强度在 3.0cN/dtex以上,比羊毛、棉、蚕丝的强度都高,仅次于涤纶等高强度纤维,而纤度已可达到0.9 dtex。目前,利用1.27 dtex的棉型纤维在棉纺设备上已纺出6 dtex的高品质纱,可开发高档的高支高密面料。大豆蛋白纤维的初始模量偏高,沸水收缩率低。在常规洗涤下不必担心织物的收缩,抗皱性也非常出色,且易洗、快干。 ④保健功能性。大豆蛋白纤维与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工

活性炭纤维废气吸附回收装置

活性炭纤维废气吸附回收装置 设备特点: 1). 吸附率高,活性炭纤维用量少,造价低。 活性炭纤维吸附、脱附速度快,每一次循环的吸附时间短,装填量小,设备精巧,投资低。 2﹚. 回收溶剂品质高 吸附和解吸的时间短,温度相对不高,不促使有机物分解,因此回收溶剂可直接回用生产。 3﹚. 运行能耗低、费用低。 活性炭纤维的脱附、再生能耗低,缠绕芯的气流阻力小、风机功率小,设备耗能低。 4﹚. 全自动控制、无人值守运行。 采用可编程控制器中央控制,集成电磁阀、气缸执行动作,可靠性高。按照工艺流程设计的模拟盘显示,有故障检测及指示功能,一目了然。也可以配合客户DCS系统做配套设计。 5﹚. 低成本实现大风量处理。 根据多年实践经验总结进化的先进运行工艺专利技术,能够配置最少的吸附器个数而达到最大的废气处理能力,从而降低了造价、减少了用户的占地面积。6﹚. 安全可靠、适用于有爆炸危险场所。 采用防爆风机、防爆泵。控制柜、气动柜采用正压防爆技术,外部信号通过安全栅连接,系统接地,确保了装置的安全性。 7﹚. 不仅可以治理污染,而且回收的物品会产生经济效益,短期内即可收回投资。 活性炭纤维有机废气净化回收装置可吸附回收的有机物种类: 烃类:苯、甲苯、二甲苯、n-乙烷、石脑油、护膜挥发油、环己烷、稀薄剂等。 卤烃:三氯乙烯、全氯乙烯、三氯乙烷、二氯甲烷、三氯苯、三氯甲烷、四氯化碳、氟利昂类等。 酮类:丙酮、MEK、MIBK、环己酮等。 酯类:乙酸乙酯、乙酸丁酯、甲基环己烷等。 乙醚类:油酸乙酯、二氧杂环己烷、THF、糠醛、甲基溶纤剂等。 醇类:甲醇、乙醇、异丙醇、丁醇等。 聚合用单分子物体:氯乙烯、丙烯酸、丙烯酸酯、苯乙烯、醋酸乙烯等。 其它有机物能否吸附需进行试验认证。 有机废气治理的经济效益及社会效益 社会效益控制了工业废气超标排放,治理了环境污染,改善了职工生产、生活环境,增强了人民群众的身体健康。 经济效益回收了废气中的有机物,这些有机物质可以重新利用,其经济效益也是非常可观的。 吸附法治理工业有机废气的基本原理: 由于固体表面上存在着未平衡和未饱和的分子引力或化学键力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,此现象称为吸附。利用固体表面的吸附能力,使废气与大表面的多孔性固体物质相接触,废气中的污染物被吸附在固体表面上,使其与气体混合物分离,达到净化目的。 根据气体分子与固体表面分子作用力的不同,吸附可分为物理吸附和化学吸附,前者是分子间力作用的结果,后者是分子间形成化学键的结果,我们采用的是物理吸附。 活性炭纤维(ACF)具有以下优异特性: a)比表面积大,有效吸附容量高。 b﹚吸附、脱附过程短,速度快;脱附、再生能耗低。c﹚强度高、不脱粉、寿命长、不会造成二次污染。

活性炭纤维的应用

活性炭纤维的制备与应用进展 摘要:活性炭纤维(ACF)是20世纪60年代发展起来的一种性能优于粉末活性炭和粒状活性炭的新型吸附材料。该材料的特性有:孔径分布窄、微孔丰富、具有大的比表面积、独特的表面化学性质和吸附脱附速度快等。正是由于这些特性,近年来活性炭纤维得到了迅速的发展,广泛应用于各个领域。本文主要介绍了活性炭纤维的制备工艺、结构与性能及其实际应用。 关键词:活性炭纤维(ACF);制备;性能;应用。 1引言 活性炭纤维(Activated Carbon Fiber,简称ACF)是继粉状活性炭(PAC)和颗粒活性炭(GAC)以后的第三代产品,是在20世纪60年代逐渐发展起来的新型活性炭。ACF主要分为粘胶基ACF、酚醛基ACF、聚丙烯腈基ACF、沥青基ACF等。ACF与以往的活性炭相比,比表面积大,含量丰富的微孔占总体积的90%左右,孔径分布狭窄且均匀,微孔孔径大多在1nm左右,没有大孔和过渡孔,吸附、脱附速度快、可塑性和再生性强。ACF表面有各种官能团,对于金属离子、某些有机物及某些气体有很好的选择性吸附功能,是一种新型的高效吸附剂。 2活性炭纤维的制备 活性炭在工程中应用会在吸附层中出现松动和沟槽,有时会出现吸附层过分密实,导致流体阻力增加从而影响正常操作。为了提高吸附效果人们尝试将粉状活性炭或细粒活性炭粘附在有机纤维上或灌入空心的有机纤维中,制成纤维状活性炭,但效果不理想,于是人们后来开始探索用有机纤维为原料制备活性炭。

2.1活性炭纤维的原料来源 目前用于制造ACF纤维的原料除了沥青纤维、聚丙烯睛纤维、粘胶纤维(再生纤维素)、酚醛纤维外,还出现了如苯乙烯/烯烃共聚物,聚偏二氯乙烯,聚酸亚氨纤维、木质纤维和一些天然纤维等。前四种已经实现大规模生产并付诸工业化。 不同的原料纤维有不同的生产工艺,制成的ACF的性能也有所不同。不同原料生产的ACF的主要优缺点如表2-1所示[1-3] 表2-1 不同原料生产的ACF的主要优缺点 种类主要优缺点 沥青基原料低廉,产品收率高,但杂质含量高,不易制得,连续长丝,深加工困难,强度低 聚丙烯腈基结构中含有S、N化合物,有催化剂作用,吸附性能好,工艺简单成熟,但比表面积较小,成木高 粘胶基原料低廉.制成品比表面积大.吸附性能好,但产品收率低,强度低,生产工艺复杂 酚醛基原料低廉.耐热,不需要进行预处理,产品收率高,比表面积大,工艺简单 2.2活性炭纤维的预处理与制备方法 生产活性炭纤维的工艺根据前驱体材料的不同有所不同,但所有的前驱体材料都要经过预处理、碳化、活化而成,原材料首先经预处理成为可碳化纤维,再进一步经碳化和活化成为活性炭纤维制品[4]。 预处理:即稳定化处理,主要目的是使纤维不融化,在碳化和活化的高温过程中保持纤维原形。主要有盐浸渍和预氧化两种方式[3,5,6]。盐浸渍是将原料纤维充分浸渍在盐(磷酸盐、碳酸盐、硫酸盐等)溶液中,然后使其干燥。该法用在粘胶基ACF生产中,与直接进行炭化或活化的相比,既可提高收率,同时其纤维力学和吸附性能也得到改善,预氧化处理一般采用空气预氧化的方法,原料纤维在一定的温度范围内,缓慢预氧化一定时间,或者按照一定升温程序升温预氧化。 碳化:碳化是生产活性炭纤维的重要环节。炭化是在惰性气体(如氮气或氩气等)环境下于800~1000℃对纤维进行热处理,排除大部分非碳成分,形成具有类似石墨微晶结构的炭化纤维。活化是在高温下用氧化性气体刻蚀炭化纤维,使所得ACF具有理想的微

大豆蛋白纤维

大豆蛋白纤维调查报告 沈慧 扬州职业大学纺织服装系 09现纺 摘要 目前生产的大豆蛋白质纤维是短纤维,纤维截面是不规则的哑铃状,纵向不光滑、有凹槽,其中蛋白质含量为23%~25%,其余主要为PVA,蛋白质主要呈不连续的团块状分散在连续的PVA介质中。这种组成和结构使它具有较 好的吸湿性和导湿透气性,由于大豆蛋白质本 身易泛黄,纤维呈米黄色,较难漂白。耐干热性 较好,但耐湿性较差,在100t以上水浴中收缩较大,这和聚乙烯醇纤维类似,耐酸性较好、耐碱稍差,其中的蛋白质容易水解,PVA也是易溶胀。因此,在染色时要注意湿热碱液处理。 大豆蛋白纤维分子的化学结构 大豆蛋白纤维是由聚乙烯醇和大豆蛋白双组分构成。聚乙烯醇属于碳链高聚物,大分子呈碳一碳链连接,其分子链上含有大量的羟基,平均一个大分子有1 400—1 800个。由于羟基的极性作用,使得碳分子链的柔曲性降低,属刚性偏强的大分子。大豆蛋白属于天然杂链高聚物,大分子由酰胺键相互连接,链段长度较小,属于柔性链。由于大豆蛋白大分子具有体积较大的支链,因此大分子的构象呈 一螺旋形。 理化性能 大豆蛋白复合纤维单纤断裂强度比羊毛、棉、蚕

丝的强度都高,仅次于涤纶等高强度纤维,纤维纤度小DPf达到0.9dtex,织物手感柔软,悬垂性好。因大豆蛋白纤维的初始模量偏高,沸水收缩率低,故织物尺寸稳定性好,而且吸湿透气,具有优良的舒适性,并能抑菌抗菌,防紫外线、远红外和负氧离子发射四种保健功能一种良好的纺织用纤维。 在合成纤维的基础上开发的一种超天然的纤维一大豆蛋白纤维的主要原料来自于自然界的大豆粕,原料丰富且具有可再生性,不会对资源造成掠夺性开发。在大豆蛋白纤维生产过程中,由于所使用的辅料、助剂均无毒,且大部分助剂和半成品纤维均可回收重新使用。提取蛋白后留下的残渣还可以作为饲料,生产过程不会对环境造成污染。大豆蛋白纤维是以榨过油的大豆豆粕为原料,利用工程技术,提取出豆粕中的球蛋白,制成一定浓度的蛋白质纺丝液,再通过添加功能性助剂,改变蛋白质空间结构,经湿法纺丝而成。成。大豆蛋白质纤维通常是先将大豆脱脂成豆粕并粉碎成脱脂豆粕粉,然后用碱提酸沉等方法分离出大豆蛋白,再将分离蛋白溶解纺丝,具体生产过程分如下几个环节: 大豆蛋白纤维操作过程 (1)脱脂 大豆脱脂方法分为压榨法和浸出法两种,通常在油脂下进行。压榨法又分为普通压榨和螺旋压榨两种。 (2)分离 所谓分离大豆蛋白从制品角度讲就是一种高纯度的大豆制品。分离大豆蛋白质含量高达90%以上。国内外生产分离大豆蛋白

大豆纤维

大豆纤维 大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成. 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 大豆纤维释义 1. Soy Fiber 属于膳食纤维,在减肥过程中可以产生饱足感,而减少食物的摄取,但它们会干扰其他营养素的吸收,因此不建议单独食用。 2. SB=soybean SB=soybean 大豆纤维 3. soybean fibers soybean fibers大豆纤维 大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。 在成为纤维之前,要从大豆中提取蛋白质与高聚物为原料,采用生物工程等高新技术处理,经湿法纺丝而成。这种单丝,细度细、比重轻、强伸度高、耐酸耐碱性强、吸湿导湿性好。有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 以50%以上的大豆纤维与羊绒混纺成高支纱,用于生产春、秋、冬季的薄型绒衫,其效果与纯羊绒一样滑糯、轻盈、柔软,能保留精纺面料的光泽和细腻感,增加滑糯手感,也是生产轻薄柔软型高级西装和大衣的理想面料。 用大豆纤维与真丝交织或与绢丝混纺制成的面料,既能保持丝绸亮泽、飘逸的特点,又能改善其悬垂性,消除产生汗渍及吸湿后贴肤的特点,是制作睡衣、衬衫、晚礼服等高档服装的理想面料。 此外,大豆纤维与亚麻等麻纤维混纺,是制作功能性内衣及夏季服装的理想面料;与棉混纺的高支纱,是制造高档衬衫、高级寝卧具的理想材料;或者加入少量氨纶,手感柔软舒适,用于制作T恤、内衣、沙滩装、休闲服、运动服、时尚女装等,极具休闲风格。 大豆蛋白纤维是由华康集团董事长李官奇先生历经十年研究开发成功,获得世界发明专利金奖,李官奇先生的这项发明为纺织业带来了一场新的革命,在纤维材料发展史上和人造纤维发明史上开创了四个第一。其一是,第一次研究成功了人造植物蛋白纤维,并实现了产业化开发,在此之前,从上世纪开始,发达国家就开始了这方面的研究,美国、日本等国于上世纪中期进行大豆蛋白纤维的研究,美国还为他们的大豆纤维取了商品名,但均因达不到纺织所需要的技术指标而宣告失败;其二,在中国的人造纤维发明史上是第一人,大豆纤维号称世界第八大人造纤维,前七种涤纶、锦纶、氨纶、腈纶、粘胶、丙纶、维纶均为外国发明,李官奇为中国人在人造纤维发明史上第一次突破零的记录;其三,作为非职业发明人,第一次站在了世界金奖颁奖台上;其四是作为农民发明家,第一次登上了国家级大奖的领奖台。 另外,大豆蛋白纤维也为一般做素肉的主要原材料。制造大豆蛋白纤维首先将低温脱脂大豆加水或稀碱液经搅拌而取其溶液。该溶液再加稀酸﹐使大豆蛋白质

大豆蛋白纤维

大豆纤维 大豆纤维释义 大豆纤维简介 大豆蛋白纤维 大豆纤维纱线 大豆纤维的面料 大豆纤维染整 大豆纤维服饰 大豆纤维衣服正确洗涤方法如下: 大豆纤维释义 1. Soy Fiber?属于膳食纤维,在减肥过程中可以产生饱足感,而减少食物的摄取,但它们会干扰其他营养素的吸收,因此不建议单独食用。?2. SB=soybean? SB=soyb ean 大豆纤维 3. soybean fibers soybean fibers大豆纤维 大豆纤维简介 大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成.? 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 经过工业化规模生产,大豆纤维从纺纱到织造到染整的相关生产技术均已相对成熟,其价格已从初期的每吨7万多元,降至3.5万元左右,已被下游应用企业所认可,产业链结构也逐步形成. 大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。 在成为纤维之前,要从大豆中提取蛋白质与高聚物为原料,采用生物工程等高新技术处理,经湿法纺丝而成。这种单丝,细度细、比重轻、强伸度高、耐酸耐碱性强、吸湿导湿性好。有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 以50%以上的大豆纤维与羊绒混纺成高支纱,用于生产春、秋、冬季的薄型绒衫,其效果与纯羊绒一样滑糯、轻盈、柔软,能保留精纺面料的光泽和细腻感,增加滑糯手感,也是生产轻薄柔软型高级西装和大衣的理想面料。?用大豆纤维与真丝交织或与绢丝混纺制成的面料,既能保持丝绸亮泽、飘逸的特点,又能改善其悬垂性,消除产生汗渍及吸湿后贴肤的特点,是制作睡衣、衬衫、晚礼服等高档服装的理想面料。?此外,大豆纤维与亚麻等麻纤维混纺,是制作功能性内衣及夏季服装的理想面料;与棉混纺的高支纱,是制造高档衬衫、

大豆蛋白纤维简介

大豆蛋白纤维产品简介 大豆蛋白纤维是主要成分与羊绒和真丝类似,是一种再生植物蛋白纤维,它是从大豆粕中提取蛋白高聚物,配制成一定浓度的蛋白纺丝液。熟成后,用湿法纺丝工艺纺成单纤0.9~3.0 dtex的丝束,经醛化稳定纤维的性能后,再经过卷曲、热定形、切断,即可生产出各种长度规格的纺织用高档纤维。 大豆蛋白质纤维单丝细度细、比重小、强伸度较高、耐酸耐碱性好,用它纺织成的面料,具有羊绒般的手感、蚕丝般的柔和光泽,兼有羊毛的保暖性、棉纤维的吸湿和导湿性,穿着十分舒适,而且能使成本下降30%~40%。大豆蛋白纤维既具有天然蚕丝的优良特性,又具有合成纤维的机械性能,它的出现满足了人们对穿着舒适性、美观性的追求,符合服装免烫、洗可穿的潮流。 这种特制的面料柔软滑爽、透气爽身、悬垂飘逸,具有独特的润肌养肤、抗菌消炎穿着功能。采用些种纤维生产的织物具有以下4个特点。 1.外观华贵。服装面料在外观上给人们的感觉体现在光泽、悬垂性和织纹细腻程度3个方面。大豆蛋白纤维面料具有真丝般的光泽;其悬垂性也极佳,给人以飘逸脱俗的感觉;用高支纱织成的织物,表面纹路细洁、清晰,是高档的衬衣面料。 2.舒适性好。大豆蛋白纤维面料不但有优异的视觉效果,而且在穿着舒适性方面更有着不凡的特性。以大豆蛋白纤维为原料的针织面料手感柔软、滑爽,质地轻薄,具有真丝与山羊绒混纺的感觉,其吸湿性与棉相当,而导湿透气性远优于棉,保证了穿着的舒适与卫生。由于它属于天然织物,又含有丰富蛋白质,因此其吸水性、透气性较一般针织品优越,与人体接触不会发生不良反应,更不会像一些化学纤维织物使穿着者有发痒等过敏现象。 3.物理机械性能好。这种纤维的单纤断裂强度在3.0cN/dtex以上,比羊毛、棉、蚕丝的强度都高,仅次于涤纶等高强度纤维,而纤度已可达到0.9 dtex。目前,利用1.27 dtex的棉型纤维在棉纺设备上已纺出6dtex的高品质纱,可开发高档的高支高密面料。大豆蛋白纤维的初始模量偏高,沸水收缩率低。在常规洗涤下不必担心织物的收缩,抗皱性也非常出色,且易洗、快干。

相关文档