文档库 最新最全的文档下载
当前位置:文档库 › 离散数学屈婉玲版课后习题

离散数学屈婉玲版课后习题

离散数学屈婉玲版课后习题
离散数学屈婉玲版课后习题

第一章部分课后习题参考答案

16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)?0∨(0∧1) ?0

(2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0.

(3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0

(4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1

17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。”

答:p: π是无理数 1

q: 3是无理数0

r: 2是无理数 1

s:6能被2整除 1

t: 6能被4整除0

命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:

(4)(p→q) →(?q→?p)

(5)(p∧r) ?(?p∧?q)

(6)((p→q) ∧(q→r)) →(p→r)

答:(4)

p q p→q ?q ?p ?q→?p (p→q)→(?q→?p)

0 0 1 1 1 1 1

0 1 1 0 1 1 1

1 0 0 1 0 0 1

1 1 1 0 0 1 1

所以公式类型为永真式

(5)公式类型为可满足式(方法如上例)

(6)公式类型为永真式(方法如上例)

第二章部分课后习题参考答案

3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q)

(2)(p→(p∨q))∨(p→r)

(3)(p∨q)→(p∧r)

答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1

所以公式类型为永真式

(3) P q r p∨q p∧r (p∨q)→(p∧r)

0 0 0 0 0 1

0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1

所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p →q)∧(p →r)?(p →(q ∧r))

(4)(p ∧?q)∨(?p ∧q)?(p ∨q) ∧?(p ∧q) 证明(2)(p →q)∧(p →r)

? (?p ∨q)∧(?p ∨r) ??p ∨(q ∧r))

?p →(q ∧r)

(4)(p ∧?q)∨(?p ∧q)?(p ∨(?p ∧q)) ∧(?q ∨(?p ∧q)

?(p ∨?p)∧(p ∨q)∧(?q ∨?p) ∧(?q ∨q) ?1∧(p ∨q)∧?(p ∧q)∧1 ?(p ∨q)∧?(p ∧q)

5.求下列公式的主析取范式与主合取范式,并求成真赋值

(1)(?p →q)→(?q ∨p) (2)?(p →q)∧q ∧r (3)(p ∨(q ∧r))→(p ∨q ∨r) 解:

(1)主析取范式

(?p →q)→(?q ∨p)

??(p ∨q)∨(?q ∨p)

?(?p ∧?q)∨(?q ∨p)

? (?p ∧?q)∨(?q ∧p)∨(?q ∧?p)∨(p ∧q)∨(p ∧?q) ? (?p ∧?q)∨(p ∧?q)∨(p ∧q)

?320m m m ∨∨

?∑(0,2,3)

主合取范式:

(?p →q)→(?q ∨p)

??(p ∨q)∨(?q ∨p) ?(?p ∧?q)∨(?q ∨p)

?(?p∨(?q∨p))∧(?q∨(?q∨p))

?1∧(p∨?q)

?(p∨?q) ? M

1

?∏(1)

(2) 主合取范式为:

?(p→q)∧q∧r??(?p∨q)∧q∧r

?(p∧?q)∧q∧r?0

所以该式为矛盾式.

主合取范式为∏(0,1,2,3,4,5,6,7)

矛盾式的主析取范式为 0

(3)主合取范式为:

(p∨(q∧r))→(p∨q∨r)

??(p∨(q∧r))→(p∨q∨r)

?(?p∧(?q∨?r))∨(p∨q∨r)

?(?p∨(p∨q∨r))∧((?q∨?r))∨(p∨q∨r))

?1∧1

?1

所以该式为永真式.

永真式的主合取范式为 1

主析取范式为∑(0,1,2,3,4,5,6,7)

第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:

(2)前提:p→q,?(q∧r),r

结论:?p

(4)前提:q→p,q?s,s?t,t∧r

结论:p∧q

证明:(2)

①?(q∧r) 前提引入

②?q∨?r ①置换

③q→?r ②蕴含等值式

④r 前提引入

⑤?q ③④拒取式

⑥p→q 前提引入

⑦¬p(3)⑤⑥拒取式

证明(4):

①t∧r 前提引入

②t ①化简律

③q?s 前提引入

④s?t 前提引入

⑤q?t ③④等价三段论

⑥(q→t)∧(t→q) ⑤置换

⑦(q→t)⑥化简

⑧q ②⑥假言推理

⑨q→p 前提引入

⑩p ⑧⑨假言推理

(11)p∧q ⑧⑩合取

15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q

结论:s→r

证明

①s 附加前提引入

②s→p 前提引入

③p ①②假言推理

④p→(q→r) 前提引入

⑤q→r ③④假言推理

⑥q 前提引入

⑦r ⑤⑥假言推理

16在自然推理系统P中用归谬法证明下面各推理:

(1)前提:p→?q,?r∨q,r∧?s

结论:?p

证明:

①p 结论的否定引入

②p→﹁q 前提引入

③﹁q ①②假言推理

④¬r ∨q 前提引入 ⑤¬r ④化简律 ⑥r ∧¬s 前提引入 ⑦r ⑥化简律 ⑧r ∧﹁r ⑤⑦ 合取

由于最后一步r ∧﹁r 是矛盾式,所以推理正确.

第四章部分课后习题参考答案

3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有2=(x+

)(x

).

(2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解:

F(x):

2=(x+

)(x

). G(x): x+5=9.

(1)在两个个体域中都解释为)(x xF ?,在(a )中为假命题,在(b)中为真命题。 (2)在两个个体域中都解释为)(x xG ?,在(a )(b)中均为真命题。

4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解:

(1)F(x): x 能表示成分数 H(x): x 是有理数

命题符号化为: ))()((x H x F x ∧??? (2)F(x): x 是北京卖菜的人 H(x): x 是外地人

命题符号化为: ))()((x H x F x →?? 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快.

(3) 不存在比所有火车都快的汽车. 解:

(1)F(x): x 是火车; G(x): x 是轮船; H(x,y): x 比y 快 命题符号化为: )),())()(((y x H y G x F y x →∧??

(2) (1)F(x): x 是火车; G(x): x 是汽车; H(x,y): x 比y 快 命题符号化为: ))),()(()((y x H x F x y G y →?∧?? 9.给定解释I 如下:

(a) 个体域D 为实数集合R. (b) D 中特定元素=0.

(c) 特定函数(x,y)=x y,x,y D ∈.

(d) 特定谓词(x,y):x=y,(x,y):x

答:(1) 对于任意两个实数x,y,如果x

(2) 对于任意两个实数x,y,如果x-y=0, 那么x

(a ) 个体域D=N(N 为自然数集合). (b ) D 中特定元素=2. (c ) D 上函数

=x+y,(x,y)=xy.

(d ) D 上谓词(x,y):x=y.

说明下列各式在I 下的含义,并讨论其真值. (1) xF(g(x,a),x)

(2) x y(F(f(x,a),y)→F(f(y,a),x) 答:(1) 对于任意自然数x, 都有2x=x, 真值0.

(2) 对于任意两个自然数x,y,使得如果x+2=y, 那么y+2=x. 真值0. 11. 判断下列各式的类型:

(1)

(3)

yF(x,y).

解:(1)因为 1)()(?∨?∨??→→p q p p q p 为永真式;

所以

为永真式;

(3)取解释I 个体域为全体实数 F(x,y):x+y=5

所以,前件为任意实数x 存在实数y 使x+y=5,前件真; 后件为存在实数x 对任意实数y 都有x+y=5,后件假,] 此时为假命题

再取解释I 个体域为自然数N , F(x,y)::x+y=5

所以,前件为任意自然数x 存在自然数y 使x+y=5,前件假。此时为假命题。

此公式为非永真式的可满足式。 13. 给定下列各公式一个成真的解释,一个成假的解释。

(1)

(F(x)

(2) x(F(x)G(x)H(x)) 解:(1)个体域:本班同学

F(x):x 会吃饭, G(x):x 会睡觉.成真解释

F(x):x 是泰安人,G(x):x 是济南人.(2)成假解释 (2)个体域:泰山学院的学生

F(x):x 出生在山东,G(x):x 出生在北京,H(x):x 出生在江苏,成假解释. F(x):x 会吃饭,G(x):x 会睡觉,H(x):x 会呼吸. 成真解释.

第六章部分课后习题参考答案

5.确定下列命题是否为真:

(1)??? 真 (2)?∈? 假 (3)}{??? 真 (4)}{?∈? 真 (5){a,b }?{a,b,c,{a,b,c }} 真 (6){a,b }∈{a,b,c,{a,b }} 真 (7){a,b }?{a,b,{{a,b }}} 真 (8){a,b }∈{a,b,{{a,b }}} 假

6.设a,b,c 各不相同,判断下述等式中哪个等式为真: (1){{a,b },c,?} ={{a,b },c } 假 (2){a ,b,a }={a,b } 真 (3){{a },{b}}={{a,b }} 假 (4){?,{?},a,b }={{?,{?}},a,b } 假 8.求下列集合的幂集:

(1){a,b,c } P(A)={ ?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} (2){1,{2,3}} P(A)={ ?, {1}, {{2,3}}, {1,{2,3}} } (3){?} P(A)={ ?, {?} }

(4){?,{?}} P(A)={ ?, {1}, {{2,3}}, {1,{2,3}} }

14.化简下列集合表达式:

(1)(A B) B )-(A B)

(2)((A B C)-(B C)) A

解:

(1)(A B) B )-(A B)=(A B) B ) ~(A B)

=(A B) ~(A B)) B=? B=?

(2)((A B C)-(B C)) A=((A B C) ~(B C)) A

=(A ~(B C)) ((B C ) ~(B C)) A

=(A ~(B C)) ? A=(A ~(B C)) A=A

18.某班有25个学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。已知6个会打网球的人都会打篮球或

排球。求不会打球的人数。

解: 阿A={会打篮球的人},B={会打排球的人},C={会打网球的人}

|A|=14, |B|=12, |A B|=6,|A C|=5,| A B C|=2,

|C|=6,C?A B

如图所示。

25-(5+4+2+3)-5-1=25-14-5-1=5

不会打球的人共5人

21.设集合A={{1,2},{2,3},{1,3},{?}},计算下列表达式:

(1) A

(2) A

(3) A

(4) A

解:

(1) A={1,2} {2,3} {1,3} {?}={1,2,3,?}

(2) A={1,2} {2,3} {1,3} {?}=?

(3) A=1 2 3 ?=?

(4) A=?

27、设A,B,C是任意集合,证明

(1)(A-B)-C=A- B?C

(2)(A-B)-C=(A-C)-(B-C)

证明

(1) (A-B)-C=(A ~B) ~C= A ( ~B ~C)= A ~(B?C) =A- B?C

(2) (A-C)-(B-C)=(A ~C) ~(B ~C)= (A ~C) (~B C)

=(A ~C ~B) (A ~C C)= (A ~C ~B) ? = A ~(B ?C ) =A- B ?C 由(1)得证。

第七章部分课后习题参考答案

7.列出集合A={2,3,4}上的恒等关系I A ,全域关系E A ,小于或等于关系L A ,整除关系D A . 解:I A ={<2,2>,<3,3>,<4,4>}

E A ={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}

L A ={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>} D A ={<2,4>}

13.设A={<1,2>,<2,4>,<3,3>} B={<1,3>,<2,4>,<4,2>}

求A ?B,A ?B, domA, domB, dom(A ?B), ranA, ranB, ran(A ?B ), fld(A-B). 解:A ?B={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>} A ?B={<2,4>}

domA={1,2,3} domB={1,2,4} dom(A ∨B)={1,2,3,4}

ranA={2,3,4} ranB={2,3,4} ran(A ?B)={4}

A-B={<1,2>,<3,3>},fld(A-B)={1,2,3} 14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}

求R R, R -1, R ↑{0,1,}, R[{1,2}] 解:R R={<0,2>,<0,3>,<1,3>}

R -1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}

R ↑{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>} R[{1,2}]=ran(R|{1,2})={2,3}

16.设A={a,b,c,d},1

R ,

2R 为A 上的关系,其中

1

R =

{

},,,,,a a a b b d

{2,,,,,,,R a d b c b d c b

=

求23

122112,,,R R R R R R 。

解: R 1 R 2={,,} R 2 R 1={}

R 12

=R 1 R 1={,,}

R 22

=R 2 R 2={,,}

R 23

=R 2 R 22

={,,}

36.设A={1,2,3,4},在A ?A 上定义二元关系R ,

?,∈A ?A ,〈u,v> R ?u + y = x + v. (1) 证明R 是A ?A 上的等价关系. (2)确定由R 引起的对A ?A 的划分. (1)证明:∵R ?u+y=x-y

R?u-v=x-y

?∈A ?A

∵u-v=u-v ∴R ∴R 是自反的

任意的,∈A ×A 如果R ,那么u-v=x-y ∴x-y=u-v ∴R ∴R 是对称的

任意的,,∈A ×A 若R,R 则u-v=x-y,x-y=a-b ∴u-v=a-b ∴R ∴R 是传递的 ∴R 是A ×A 上的等价关系

(2) ∏={{<1,1>,<2,2>,<3,3>,<4,4>}, {<2,1>,<3,2>,<4,3>}, {<3,1>,<4,2>}, {<4,1>}, {<1,2>,<2,3>,<3,4>}, {<1,3>,<2,4>}, {<1,4>} }

41.设A={1,2,3,4},R 为A ?A 上的二元关系, ?〈a ,b 〉,〈c ,d 〉∈ A ?A , 〈a ,b 〉R 〈c ,d 〉?a + b = c + d

(1) 证明R 为等价关系. (2) 求R 导出的划分.

(1)证明:?

a+b=a+b ∴R ∴R 是自反的

任意的,∈A ×A 设R,则a+b=c+d ∴c+d=a+b ∴R ∴R 是对称的

任意的,,∈A ×A 若R,R 则a+b=c+d,c+d=x+y ∴a+b=x+y ∴R ∴R 是传递的

∴R 是 A ×A 上的等价关系

(2)∏={{<1,1>}, {<1,2>,<2,1>}, {<1,3>,<2,2>,<3,1>}, {<1,4>,<4,1>,<2,3>,<3,2>}, {<2,4>,<4,2>,<3,3>}, {<3,4>,<4,3>}, {<4,4>}}

43. 对于下列集合与整除关系画出哈斯图:

(1) {1,2,3,4,6,8,12,24}

(2) {1,2,3,4,5,6,7,8,9,10,11,12} 解

:

2

3

468

1

11

(1) (2) 45.下图是两个偏序集

>的哈斯图.分别写出集合A 和偏序关系R

的集合表达式.

d g

a

b

f g

(a) (b) 解: (a)A={a,b,c,d,e,f,g}

R ={,,,,,,,,,}A I ?

(b) A={a,b,c,d,e,f,g} R ={,,,,,,}A I ?

46.分别画出下列各偏序集的哈斯图,并找出A 的极大元`极小元`最大元和最小元.

(1)A={a,b,c,d,e} R

={,,,,,,}?I A .

(2)A={a,b,c,d,e}, R ={}?IA.

解:

a

b d

e

a

b

c

d

e

(1) (2) 项目 (1) (2) 极大元: e a,b,d,e 极小元: a a,b,c,e 最大元: e 无 最小元: a 无 第八章部分课后习题参考答案

1. 设f :N →N,且

f (x)=12x x x ??

???

,若为奇数若为偶数,

求f (0), f ({0}), f (1), f ({1}), f ({0,2,4,6,…}),f ({4,6,8}), f -1({3,5,7}).

解:f (0)=0, f ({0})={0}, f (1)=1, f ({1})={1},

f ({0,2,4,6,…})=N ,f ({4,6,8})={2,3,4}, f -1 ({3,5,7})={6,10,14}. 4. 判断下列函数中哪些是满射的?哪些是单射的?哪些是双射的? (1) f:N →N, f(x)=x 2+2 不是满射,不是单射

(2) f:N →N,f(x)=(x)mod 3,x 除以3的余数 不是满射,不是单射 (3) f:N →N,f(x)=10x x ???,若为奇数,若为偶数

不是满射,不是单射

(4) f:N →{0,1},f(x)=01x x ???

,若为奇数

,若为偶数 是满射,不是单射

(5) f:N-{0}→R,f(x)=lgx 不是满射,是单射 (6) f:R →R,f(x)=x 2-2x-15 不是满射,不是单射

5. 设X={a,b,c,d},Y={1,2,3},f={,,,}判断以下命题的真假: (1)f 是从X 到Y 的二元关系,但不是从X 到Y 的函数; 对 (2)f 是从X 到Y 的函数,但不是满射,也不是单射的; 错 (3)f 是从X 到Y 的满射,但不是单射; 错 (4)f 是从X 到Y 的双射. 错

第十四章部分课后习题参考答案

5、设无向图G 有10条边,3度与4度顶点各2个,其余顶点的度数均小于3,问G 至少有多少个顶点?在最少顶点的情况下,写出度数列、)()(G G δ、?。 解:由握手定理图G 的度数之和为:20102=?

3度与4度顶点各2个,这4个顶点的度数之和为14度。 其余顶点的度数共有6度。

其余顶点的度数均小于3,欲使G 的顶点最少,其余顶点的度数应都取2, 所以,G 至少有7个顶点, 出度数列为3,3,4,4,2,2,2,2)(,4)(==?G G δ.

7、设有向图D 的度数列为2,3,2,3,出度列为1,2,1,1,求D 的入度列,并求)(),(D D δ?,

)(),(D D ++?δ,)(),(D D --?δ.

解:D 的度数列为2,3,2,3,出度列为1,2,1,1,D 的入度列为1,1,1,2.

2)(,3)(==?D D δ,1)(,2)(==?++D D δ,1)(,2)(==?--D D δ

8、设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点?

解:由握手定理图G 的度数之和为:1262=?

设2度点x 个,则1221513=+?+?x ,2=x ,该图有4个顶点.

14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出3种非同构的无向图,其中至少有两个时简单图。

(1) 2,2,3,3,4,4,5 (2) 2,2,2,2,3,3,4,4 解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化; (2) 2+2+2+2+3+3+4+4=16, 是偶数,可图化;

18、设有3个4阶4条边的无向简单图G 1、G 2、G 3,证明它们至少有两个是同构的。

证明:4阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列为2,2,2,2;3,2,2,1;3,3,1,1。但3,3,1,1对应的图不是简单图。所以从同构的观点看,4阶4条边的无向简单图只有两个:

所以,G 1、G 2、G 3至少有两个是同构的。

20、已知n 阶无向简单图G 有m 条边,试求G 的补图G 的边数m '。

解:m n n m --=

'2

)

1( 21、无向图G 如下图

(1)求G 的全部点割集与边割集,指出其中的割点和桥; (2) 求G 的点连通度)(G k 与边连通度)(G λ。

c

解:点割集: {a,b},(d)

边割集{e2,e3},{e3,e4},{e1,e2},{e1,e4}{e1,e3},{e2,e4},{e5}

)(G k =)(G λ=1

23、求G 的点连通度)(G k 、边连通度)(G λ与最小度数)(G δ。

解:2)(=G k 、3)(=G λ 、4)(=G δ

28、设n 阶无向简单图为3-正则图,且边数m 与n 满足2n-3=m 问这样的无向图有几种非同构的情况?

解:??

?=-=m

n m

n 3223 得

n=6,m=9.

31、设图G 和它的部图G 的边数分别为m 和m ,试确定G 的阶数。

解:2)

1(+=

+n n m m 得2

)(811m m n +++-= 45、有向图D 如图

(1)求2v 到5v 长度为1,2,3,4的通路数;

(2)求5v 到5v 长度为1,2,3,4的回路数; (3)求D 中长度为4的通路数; (4)求D 中长度小于或等于4的回路数; (5)写出D 的可达矩阵。

v3v4

解:有向图D 的邻接矩阵为:

???????? ??=010100010110000

0010110000

A ,????????

??=002022000

00101

020*******

02A ???

???

?

?

??=400000202

00020

2020200020

23A

???????? ??=040400040440000

00404400004A ???

???

?

?

??=+++452522252

45121

2225255121

0432A A A A

(1)2v 到5v 长度为1,2,3,4的通路数为0,2,0,0; (2)5v 到5v 长度为1,2,3,4的回路数为0,0,4,0; (3)D 中长度为4的通路数为32; (4)D 中长度小于或等于4的回路数10;

(4)出D 的可达矩阵???

???

?

?

??=111111*********

11111

11111

P

第十六章部分课后习题参考答案

1、画出所有5阶和7阶非同构的无向树

.

2、一棵无向树T 有5片树叶,3个2度分支点,其余的分支点都是3度顶点,问T 有几个顶点? 解:设3度分支点x 个,则

)135(232315-++?=+?+?x x ,解得3=x

T 有11个顶点

3、无向树T 有8个树叶,2个3度分支点,其余的分支点都是4度顶点,问T 有几个4度分支点?根据T 的度数列,请至少画出4棵非同构的无向树。

解:设4度分支点x 个,则

)128(243218-++?=+?+?x x ,解得2=x

度数列111111113344

4、棵无向树T 有i n (i=2,3,…,k )个i 度分支点,其余顶点都是树叶,问T 应该有几片树叶? 解:设树叶x 片,则

)1(21-+?=?+?x n x i n i i ,解得2)2(+-=i n i x 评论:2,3,4题都是用了两个结论,一是握手定理,二是1-=n m 5、n(n≥3)阶无向树T 的最大度至少为几?最多为几?

解:2,n-1

6、若n(n ≥3)阶无向树T 的最大度 =2,问T 中最长的路径长度为几? 解:n-1

7、证明:n(n ≥2) 阶无向树不是欧拉图. 证明:无向树没有回路,因而不是欧拉图。 8、证明:n(n ≥2) 阶无向树不是哈密顿图. 证明:无向树没有回路,因而不是哈密顿图。 9、证明:任何无向树T 都是二部图.

证明:无向树没有回路,因而不存在技术长度的圈,是二部图。 10、什么样的无向树T 既是欧拉图,又是哈密顿图? 解:一阶无向树

14、设e 为无向连通图G 中的一条边, e 在G 的任何生成树中,问e 应有什么性质?

解:e 是桥

15、设e 为无向连通图G 中的一条边, e 不在G 的任何生成树中, 问e 应有什么性质?

解:e 是环

23、已知n 阶m 条的无向图 G 是k(k ≥2)棵树组成的森林,证明:m = n-k.;

证明:数学归纳法。k=1时, m = n-1,结论成立;

设k=t-1(t-11≥)时,结论成立,当k=t 时, 无向图 G 是t 棵树组成的森林,任取两棵树,每棵树任取一个顶点,这两个顶点连线。则所得新图有t-1棵树,所以m = n-(k-1).

所以原图中m = n-k

得证。

24、在图16.6所示2图中,实边所示的生成子图T是该图的生成树.

(1)指出T的弦,及每条弦对应的基本回路和对应T的基本回路系统.

(2) 指出T的所有树枝,及每条树枝对应的基本割集和对应T的基本割集系统.

(a) (b)

图16.16

解:(a)T的弦:c,d,g,h

T的基本回路系统: S={{a,c,b},{a,b,f,d},{e,a,b,h},{e,a,b,f,g}}

T的所有树枝: e,a,b,f

T的基本割集系统: S={{e,g,h},{a,c,d,g,h},{b,c,d,g,h},{f,d,g}}

(b)有关问题仿照给出

25、求图16.17所示带权图中的最小生成树.

(a) (b)

图16.17

解:

注:答案不唯一。

37、画一棵权为3,4,5,6,7,8,9的最优2叉树,并计算出它的权.

38.下面给出的各符号串集合哪些是前缀码?

A1={0,10,110,1111} 是前缀码

A2={1,01,001,000} 是前缀码

A3={1,11,101,001,0011} 不是前缀码

A4={b,c,aa,ac,aba,abb,abc} 是前缀码

A5={ b,c,a,aa,ac,abc,abb,aba} 不是前缀码

41.设7个字母在通信中出现的频率如下:

a: 35% b: 20%

c: 15% d: 10%

e: 10% f: 5%

g: 5%

用Huffman算法求传输它们的前缀码.要求画出最优树,指出每个字母对应的编码.并指出传输10n(n≥2)个按上述频率出现的字母,需要多少个二进制数字.

解:

a:01 b:10 c:000 d:110 e:001 f:1111 g:1110

W(T)=5*4+5*4+10*3+10*3+15*3+20*2+35*2=255

传输10n(n≥2)个按上述频率出现的字母,需要255*10n-2个二进制数字.

屈婉玲版离散数学课后习题答案【3】

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有2=(x+)(x). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 2=(x+)(x). G(x): x+5=9. (1)在两个个体域中都解释为) ?,在(a)中为假命题,在(b)中为真命题。 (x xF (2)在两个个体域中都解释为) xG ?,在(a)(b)中均为真命题。 (x 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x能表示成分数 H(x): x是有理数 命题符号化为: )) F x∧ ?? x ? ( ) ( (x H (2)F(x): x是北京卖菜的人 H(x): x是外地人 命题符号化为: )) F ?? x x→ (x ( H ) ( 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快 命题符号化为: )) F y x G ? y ? ∧ x→ , ( )) ( H ) x ((y ( (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快

命题符号化为: ))),()(()((y x H x F x y G y →?∧?? 9.给定解释I 如下: (a) 个体域D 为实数集合R. (b) D 中特定元素=0. (c) 特定函数(x,y)=xy,x,y D ∈. (d) 特定谓词(x,y):x=y,(x,y):x

离散数学答案屈婉玲版第二版 高等教育出版社课后答案

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(pr)∧(﹁q∨s) ?(01)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)(p∧q∧﹁r) ?(1∧1∧1) (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例)

第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p)

离散数学第三版课后习题答案

离散数学辅助教材 概念分析结构思想与推理证明 第一部分 集合论

离散数学习题解答 习题一(第一章集合) 1. 列出下述集合的全部元素: 1)A={x | x ∈N∧x是偶数∧x<15} 2)B={x|x∈N∧4+x=3} 3)C={x|x是十进制的数字} [解] 1)A={2,4,6,8,10,12,14} 2)B= 3)C={0,1,2,3,4,5,6,7,8,9} 2. 用谓词法表示下列集合: 1){奇整数集合} 2){小于7的非负整数集合} 3){3,5,7,11,13,17,19,23,29} [解] 1){n n∈I∧(?m∈I)(n=2m+1)}; 2){n n∈I∧n≥0∧n<7}; 3){p p∈N∧p>2∧p<30∧?(?d∈N)(d≠1∧d≠p∧(?k∈N)(p=k?d))}。 3. 确定下列各命题的真假性: 1) 2)∈ 3){} 4)∈{} 5){a,b}{a,b,c,{a,b,c}} 6){a,b}∈(a,b,c,{a,b,c}) 7){a,b}{a,b,{{a,b,}}} 8){a,b}∈{a,b,{{a,b,}}} [解]1)真。因为空集是任意集合的子集; 2)假。因为空集不含任何元素; 3)真。因为空集是任意集合的子集; 4)真。因为是集合{}的元素; 5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集; 6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;

7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集; 8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。 4. 对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B∈C,则A∈C。 2)如果A∈B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A∈C。 [解] 1)假。例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。 2)假。例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A ∈C。 3)假。例如A={a},B={a,b},C={{a},a,b},从而ACB∧B∈.C,但A∈C。5.对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B C,则A∈C。 2)如果A∈B∧B C,则A C。 3)如果A B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A C。 [解] 1)真。因为B C x(x∈B x∈C),因此A∈B A∈C。 2)假。例如A={a},B={{a},{b}},C={{a},{b},{c}}从而A∈B∧B C,但A C。 3)假。例如A={a},B={{a,b}},C={{a,{a,b}},从而A B∧B∈C,但A C。 4)假。例如A={a},B={{a,b}},C={{a,b},b},从而A B∧B∈C,但A C。 6.求下列集合的幂集: 1){a,b,c} 2){a,{b,c}} 3){} 4){,{}} 5){{a,b},{a,a,b},{a,b,a,b}} [解] 1){,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} 2){,{a},{{b,c}},{a,{a,b}}} 3){,{}} 4){,{},{{}},{,{}}}

离散数学课后习题答案

习题参考解答 习题 1、(3)P:银行利率降低 Q:股价没有上升 P∧Q (5)P:他今天乘火车去了北京 Q:他随旅行团去了九寨沟 Q P? (7)P:不识庐山真面目 Q:身在此山中 Q→P,或~P→~Q (9)P:一个整数能被6整除 Q:一个整数能被3整除 R:一个整数能被2整除 T:一个整数的各位数字之和能被3整除 P→Q∧R ,Q→T 2、(1)T (2)F (3)F (4)T (5)F (6)T (7)F (8)悖论 习题 1(3) ) ( ) ( ) ( ) ( ) ( ) ( R P Q P R P Q P R Q P R Q P → ∨ → ? ∨ ? ∨ ∨ ? ? ∨ ∨ ? ? ∨ →

(4) ()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右 2、不, 不, 能 习题 1(3) (())~((~)) (~)()~(~(~))(~~)(~) P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、 主合取范式 ) ()()()()()()()()()()()()()())(())(()()(()) ()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧?∧∨?∧?∧∨∧?∧?∨?∧∧?∨?∧?∧?=∧∧∨?∧∧∨∧?∧∨?∧?∧∨∧?∧?∨∧?∧?∨?∧∧?∨?∧?∧?=∨?∧∧∨∨?∧?∧∨∨?∧∨?∧?=∧∨?∧∨?=∨?∧∨?=→∧→ ————主析取范式 (2) ()()(~)(~) (~(~))(~(~))(~~)(~)(~~) P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨Q 2、 ()~() (~)(~) (~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价 3、解:根据给定的条件有下述命题公式: (A →(CD ))∧~(B ∧C )∧~(C ∧D ) (~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D ) ((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨ (~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )

离散数学习题解答

习题一 1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道? (1)中国有四大发明. 答:此命题是简单命题,其真值为1. (2)5是无理数. 答:此命题是简单命题,其真值为1. (3)3是素数或4是素数. 答:是命题,但不是简单命题,其真值为1. x+< (4)235 答:不是命题. (5)你去图书馆吗? 答:不是命题. (6)2与3是偶数. 答:是命题,但不是简单命题,其真值为0. (7)刘红与魏新是同学. 答:此命题是简单命题,其真值还不知道. (8)这朵玫瑰花多美丽呀! 答:不是命题. (9)吸烟请到吸烟室去! 答:不是命题. (10)圆的面积等于半径的平方乘以π. 答:此命题是简单命题,其真值为1. (11)只有6是偶数,3才能是2的倍数. 答:是命题,但不是简单命题,其真值为0. (12)8是偶数的充分必要条件是8能被3整除. 答:是命题,但不是简单命题,其真值为0. (13)2008年元旦下大雪. 答:此命题是简单命题,其真值还不知道. 2.将上题中是简单命题的命题符号化. 解:(1)p:中国有四大发明. (2)p:是无理数. (7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以π. (13)p:2008年元旦下大雪. 3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值. (1)5是有理数. 答:否定式:5是无理数.p:5是有理数.q:5是无理数.其否定式q的真值为1.

(2)25不是无理数. 答:否定式:25是有理数. p :25不是无理数. q :25是有理数. 其否定式q 的真值为1. (3)2.5是自然数. 答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1. (4)ln1是整数. 答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1. 4.将下列命题符号化,并指出真值. (1)2与5都是素数 答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1. (2)不但π是无理数,而且自然对数的底e 也是无理数. 答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数. 答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧?,其真值为1. (4)3是偶素数. 答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数. 答:p :4是素数,q :4是偶数,符号化为p q ?∧?,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数. (4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数. 答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ?∨?,其真值为1. (5) 符号化:r s ?∨?,其真值为0. 6.将下列命题符号化. (1)小丽只能从筐里拿一个苹果或一个梨. 答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ?∧∨∧?. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化 答:列出两种符号化的真值表:

屈婉玲版离散数学课后习题答案【1】

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式//最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q∨p)

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

离散数学课后习题答案(左孝凌版)

离散数学课后习题答案(左孝凌版) 1-1,1-2解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P: a和b是偶数。Q:a+b是偶数。P→Q e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨ Q)→ R (6) 解: a)P:天气炎热。Q:正在下雨。 P∧Q b)P:天气炎热。R:湿度较低。 P∧R c)R:天正在下雨。S:湿度很高。 R∨S d)A:刘英上山。B:李进上山。 A∧B e)M:老王是革新者。N:小李是革新者。 M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。 R:我在睡觉。 P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解:

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

离散数学第四版课后标准答案

离散数学第四版课后答案 第1章习题解答 1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9), (10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。 其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与” 联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)p: 2是无理数,p为真命题。 (2)p:5能被2整除,p为假命题。 (6)p→q。其中,p:2是素数,q:三角形有三条边。由于p与q都是真 命题,因而p→q为假命题。 (7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命

题,q为真命题,因而p→q为假命题。 (8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不 知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。(9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 1 (10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。 (12)p∨q,其中,p:4是偶数,q:4是奇数。由于q是假命题,所以,q 为假命题,p∨q为真命题。 (13)p∨q,其中,p:4是偶数,q:4是奇数,由于q是假命题,所以,p∨q 为假命题。 (14)p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15)p:蓝色和黄色可以调配成绿色。这是真命题。 分析命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令p:2+2=4,q:3+3=6,则以下命题分别符号化为 (1)p→q (2)p→?q (3)?p→q (4)?p→?q

最新离散数学习题答案

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: 20、求下列公式的成真赋值:

(4)()p q q ?∨→ 解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是: ()10p q q ?∨??????00 p q ????? 所以公式的成真赋值有:01,10,11。 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式:

离散数学课后习题答案_(左孝凌版)

1-1,1-2 (1)解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P:a和b是偶数。Q:a+b是偶数。P→Q

e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨Q)→R (6) 解: a)P:天气炎热。Q:正在下雨。P∧Q b)P:天气炎热。R:湿度较低。P∧R c)R:天正在下雨。S:湿度很高。R∨S d)A:刘英上山。B:李进上山。A∧B e)M:老王是革新者。N:小李是革新者。M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。R:我在睡觉。P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解: a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式) b)是合式公式 c)不是合式公式(括弧不配对) d)不是合式公式(R和S之间缺少联结词) e)是合式公式。 (2)解: a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。这个过程可以简记为:A;(A∨B);(A→(A∨B)) 同理可记 b)A;┓A ;(┓A∧B) ;((┓A∧B)∧A) c)A;┓A ;B;(┓A→B) ;(B→A) ;((┓A→B)→(B→A)) d)A;B;(A→B) ;(B→A) ;((A→B)∨(B→A)) (3)解: a)((((A→C)→((B∧C)→A))→((B∧C)→A))→(A→C)) b)((B→A)∨(A→B))。 (4)解: a) 是由c) 式进行代换得到,在c) 中用Q代换P, (P→P)代换Q.

离散数学习题答案(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: | (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 ; 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

, 由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 — ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论:p u → 证明:用附加前提证明法。 ' ① p 附加前提引入 ② p q ∨ ①附加 ③ ()()p q r s ∨→∧ 前提引入

离散数学最全课后答案(屈婉玲版)

1.1.略 1.2.略 1.3.略 1.4.略 1.5.略 1.6.略 1.7.略 1.8.略 1.9.略 1.10.略 1.11.略 1.12.将下列, 并给出各命题的: (1)2+2=4 当且仅 当3+3=6. (2)2+2=4 的充要 条件是3+3 6. (3)2+2 4 与3+3 =6 互为充要条件. (4)若2+24, 则 3+36, 反之亦然. (1)p q, 其中, p: 2+2=4, q: 3+3=6, 真值为1. (2)p q,

其中, p: 2+2=4, q: 3+3=6, 真值为0. (3) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为0. (4) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为1. 1.13.将下列命题符号化, 并给出各命题的真值:(1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三. 令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三. (1) p q 1. (2) q p 1. (3) p q 1.

(4) p r 当p 0 时为真; p 1 时为假. 1.14.将下 列 . (1) 刘 晓月跑得快, 跳得高. (2) 老王是山东 人或河北人. (3)因为天气冷, 所以我穿了羽 绒服. (4)王欢与李乐组成一个 小组. (5)李辛与李末是兄弟. (6)王强与刘威都学 过法语. (7)他一面 吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他 迟到了. (12)2 与4 都是素数, 这是不对的. (13)“2或4 是素数, 这是不对的”是不对的.

离散数学习题详细答案

离散数学习题详细答案

————————————————————————————————作者:————————————————————————————————日期:

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: p q p ? q ? ()p p →? ()p p q →?→? 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。 20、求下列公式的成真赋值:

离散数学课后习题答案_(左孝

证明 设A 上定义的二元关系R 为: <<x,y >, <u,v >>∈R ?x y =u v ① 对任意<x,y >∈A ,因为x y =x y ,所以 <<x,y >, <x,y >>∈R 即R 是自反的。 ② 设<x,y >∈A ,<u,v >∈A ,若 <<x,y >, <u,v >>∈R ?x y =u v ?u v =x y ?<<u,v >,<x,y >>∈R 即R 是对称的。 ③ 设任意<x,y >∈A ,<u,v >∈A ,<w,s >∈A ,对 <<x,y >, <u,v >>∈R ∧<<u,v >, <w,s >>∈R ?(x y =u v )∧(u v =w s )?x y =w s ?<<x,y >, <w,s >>∈R 故R 是传递的,于是R 是A 上的等价关系。

3-10.6 设R是集合A 上的对称和传递关系,证明如果对于A中的每一个元素a,在A中同时也存在b,使在R之中,则R是一个等价关系。 证明对任意a∈A,必存在一个b∈A,使得<a,b>∈R. 因为R是传递的和对称的,故有: <a,b>∈R∧<b, c>∈R?<a, c>∈R?<c,a>∈R 由<a,c>∈R∧<c, a>∈R?<a,a>∈R 所以R在A上是自反的,即R是A上的等价关系。 3-10.7 设R1和R2是非空集合A上的等价关系,试确定下述各式,哪些是A上的等价关系,对不是的式子,提供反例证明。a)(A×A)-R1; b)R1-R2; c)R12; d) r(R1-R2)(即R1-R2的自反闭包)。 解 a)(A×A)-R1不是A上等价关系。例如: A={a,b},R1={<a,a>,<b,b>}

离散数学课后习题答案二

习题3.7 1. 列出关系}6|{=???∈><+ d c b a d c b a d c b a 且,,,,,,Z 中所有有序4元组。 解 }6|{=???∈><+ d c b a d c b a d c b a 且,,,,,,Z ,2,1,3,1,3,1,2,1,2,3,1,1,3,2,1,1,1,1,1,6,1,1,6,1,1,6,1,1,6,1,1,1{><><><><><><><><= ><><><><><><><><2,1,1,3,3,1,1,2,1,2,1,3,1,3,1,2,1,1,2,3,1,1,3,2,1,2,3,1,1,3,2,1 2. 列出二维表 3.18所表示的多元关系中所有5元组。假设不增加新的5元组,找出二维表3.18所有的主键码。 表3.18 航班信息 航空公司 航班 登机口 目的地 起飞时间 Nadir 112 34 底特律 08:10 Acme 221 22 丹佛 08:17 Acme 122 33 安克雷奇 08:22 Acme 323 34 檀香山 08:30 Nadir 199 13 底特律 08:47 Acme 222 22 丹佛 09:10 Nadir 322 34 底特律 09:44 解 略 3. 当施用投影运算5,3,2π到有序5元组>

相关文档
相关文档 最新文档