文档库 最新最全的文档下载
当前位置:文档库 › 实验问题

实验问题

实验问题
实验问题

实验13 环己烯的制备

1、能否用浓硫酸做脱水催化剂?与磷酸相比,使用硫酸有何优缺点?

环己醇为原料,浓磷酸为脱水剂来制备环己烯,

脱水剂可以是磷酸或硫酸。磷酸的用量必须是硫酸的一倍以上,但它却比硫酸有明显的优点:一是不产生碳渣;二是不产生难闻气味(用硫酸易生成SO2副产物)。

2、分析影响环己烯产率的因素?

由于反应中环己烯与水形成共沸物(沸点70.8℃,含水l0%);环己醇也能与水形成共沸物(沸点97.8℃,含水80%)。因比在加热时温度不可过高,蒸馏速度不宜太快,以减少末作用的环己醇蒸出。文献要求柱顶控制在73℃左右,但反应速度太慢。本实验为了加快蒸出的速度,可控制在90℃以下。

(2、本实验提高产率的措施是什么?

答:本实验主反应为可逆反应,提高反应采取的措施是:边反应边蒸出反应生成的环己烯和水形成的二元共沸物,并控制柱顶温度不超过90℃。

3、本实验用磷酸作催化剂比用硫酸作催化剂好在哪里?

答:采用硫酸作催化剂虽然反应速度较快,但由于硫酸的氧化性比磷酸强,反应时部分原料会被氧化、甚至碳化,使溶液颜色加深,产率有所降低。此外,反应时会有少量SO2气化放出。在纯化时,需要碱洗,增加了纯化步骤。)

实验14 1-溴丁烷的制备

1、本实验有哪些副反应?如何减少副反应?

副产物正丁醚用气相色谱分析发现粗产物中含有正丁醚,而且不论回流时间长短,正丁醚的含量都是0.2%-0.5%。将62.2%的硫酸用量增加一倍,粗产物中正丁醚的含量仍然相同。

浓硫酸洗涤的效果实验发现7ml粗产物用1ml浓硫酸洗涤后,所含的正丁醇几乎全部除去。如用1ml浓盐酸洗涤,则尚有少量正丁醇残留,需用3-5ml浓盐酸才能将正丁醇除尽。本实验采用3ml浓硫酸洗涤,完全可以除去粗产物中的正丁醇和正丁醚。

2、反应时硫酸的浓度太高或太低会有什么结果?

醇与氢溴酸的反应是一个可逆反应。为了促使平衡向右移动(即生成1-溴丁烷的方向移动),可采取:①增加其中一种反应物浓度的方法;②设法使反应产物离开反应体系的方法;③增收加反应的浓度和减少产物的两种方法并用。在本实验中,我们采取溴化钠与硫酸过量的方法来促使平衡向生成1-溴丁烷的方向移动。

因反应中用到浓硫酸,故可能的副反应有:

所以浓度太低不能达到效果太高副反应产物越多

3、试说明各步洗涤的作用

3、本实验制备1-溴丁烷,往往含有少量的2-溴丁烷,试分析生成2-溴丁烷的原因。

实验15 乙酸异戊酯的制备

1、浓硫酸加入过量多反应有何影响?

异戊醇会被氧化

2、提高可逆平衡反应的产物产率有哪些方法?

不同的反应采取的措施是不同的。如果正反应吸热,可以采取适当加热的方法。还有可以采取把生成物及时蒸出的措施,是反应不断正向进行,制取乙酸乙酯的反应就是一个典型的例子。

3、为什么粗产物一定要洗至中性,并要用干燥剂干燥?

实验17 肉桂酸的制备

1、具有何种结构的醛能进行珀金反应?

由芳醛类和脂肪酸酐,在碱的存在下合成了不饱和酸,此反应即“珀金反应”,或称“珀金合成法”。

2.、为什么不能用氢氧化钠代替碳酸钠溶液来中和反应结束后的水溶液?

实验18 3-丁酮酸乙酯的制备

1、减压蒸馏前要先常压蒸出低沸点物质,否则会有什么结果?

2、3-丁酮酸乙酯有互异构现象,通过什么实验可以验证?

实验19 β-萘乙醚的制备

1、制备β-萘乙醚为什么不用乙醇与卤代萘反应?

(可否用乙醇和β-溴萘制备β-萘乙醚?为什么

不能,因为β-溴萘中溴原子与萘环直接相连,属于乙烯型卤代烃,活性很低,根本无法取代。可以考虑换一种方法,用β-萘酚钠与溴乙烷作用

2、总结实验过程,阐述微量合成实验与常量合成实验有何异同?

过去的有机合成实验大都采用常量法,试剂用量在5~50克范围内。由于试剂用量较多、不仅实验费用高,花费时间也多。

实验64 乙酰水杨酸的制备与有效成分的测定

1、合成过程中,浓硫酸在反应中起什么作用?

在酯化反应以及酚羟基替代醇羟基完成的类似于酯化的反应,都需要用脱水剂来催化。

浓硫酸在这里的作用是脱水剂和吸水剂,一方面脱水作用促进酯化反应,另一方面吸水作用使这种可逆反应向着酯化反应的正方向移动,促进产品的生成

2、反应中产生的副产物是什么?如何除去?

副反应:水杨酸中有羟基,羧基,会发生脱水缩合

将反应后的内容物抽滤,用少量冰水洗涤两次,得阿斯匹林粗产物。

将阿斯匹林的粗产物移至另一锥形瓶中,加入25mL饱和NaHCO3溶液,搅拌,直至无CO2气泡产生,抽滤,用少量水洗涤,将洗涤液与滤液合并,弃去滤渣。

先在烧杯中放大约5mL浓盐酸并加入l0mL水,配好盐酸溶液,再将上述滤液倒入烧杯中,阿斯匹林复沉淀析出,冰水冷却令结晶完全析出,抽滤,冷水洗涤,压干滤饼,干燥。

这样就可以分开了。

3、是否所有的有机化合物都能用紫外可见可变波长检测器检测?为什么?

1、原理

紫外吸收检测器简称紫外检测器(ultraviolet detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer 定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。

大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用最广泛的检测器。

为得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。

紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。

光波根据光的传播频率不一样而划分的。紫外的测量范围一般为

0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。

2、用途

紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。

紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。

3、优点

紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。

不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。

实验72 水杨酸甲酯的制备

1、可否用回流分水的试验方法提高水杨酸甲酯的产率?为什么?

首先搅拌是有用的,提高反应速率。水肯定会有影响的,酸和醇反应生成酯,同时也会有水的生成的,而此反应是可逆反应,分离出水可以提高反应的转化率,是反应方向象产物方向进行。由于甲醇的沸点比水的低,而且有毒,用分水器我估计也没什么效果。你可以确定浓硫酸的加入量,由于浓硫酸可以与水发生水合,可以帮助去除部分水。

2、综合文献资料,总结提高酯化反应的产物产率的方法,举例说明每种方法应用的条件

除了增加反应物浓度还可以适当增加反应温度和反应压力,及时分离副反应产生的副产物水

增加反应物之一的投料量

2更换催化剂

(怎样提高苯甲酸和乙醇的酯化反应产率:.将乙醇过量10%~20%,浓硫酸为催化剂,用甲苯为脱水剂,共沸脱水基本至理论量即可,收率达90%以上;

2.苯甲酸和SOCl2反应,制成苯甲酰氯,然后和乙醇或乙醇钠反应,收率也比较高,但不如方法1。)

清洁而温和的催化酯化反应新方法

——离子液体催化剂

石峰邓友全**彭家键乔琨缪少军

(中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室,兰州

730000)

发展环境友好催化转化工艺是当前催化研究的热点之一。传统的醇酸酯化反应通常使用质子酸,如浓硫酸等[1],存在着废酸液污染环境、产物与催化剂难以分离、产物有色与腐蚀设备等问题。固体超强酸(如氯化铜-氯化铝、硫酸根-二氧化锆等)及杂多酸等作为新一代酸催化反应催化剂近年来已被人们广泛研究[2],而相对鲜为人知的由烷基吡啶、咪唑等含氮杂环化合物的季铵盐与金属卤化物构成的常温下呈液态的离子液体作为“清洁”与绿色的化学反应介质正在被人们接受和关注[3]。室温离子液体催化的烷基化、加氢、聚合等反应已相继被研究[4-6],但将离子液体应用于催化酯化反应则未见报道。

我们经过实验研究首次发现,适当组成的离子液体可用于催化酯化反应。相同条件下与浓硫酸作催化剂相比,具有酯化反应温度低、较低反应温度下即可达到较高转化率,产物与离子液体自动分层而容易分离且纯度高,离子液体可连续使用等优点。

1 试验部分

离子液体由适量的氯化丁基吡啶与氯化铝构成。其中,氯化丁基吡啶的合成:氯丁烷和吡啶在微型高压釜中于120°C条件下反应20h,粗产物用乙醇-乙酸乙酯进行重结晶,并于真空干燥箱中干燥24h,得纯化的固体氯化丁基吡啶。

每一次酯化反应,均取适量的上述离子液体0.005mol(其摩尔数按Al-浓度计算),其中,氯化铝与氯化丁基吡啶的摩尔比为1:2。浓硫酸作催化剂时,其数量同样为0.005mol(约0.3ml)。均取0.25mol的乙酸与0.25mol不同的醇(酸与醇的摩尔比为1:1)为反应物。

反应在50ml带取样口的圆底烧瓶中磁子搅拌下进行,于一定温度下回流2h,不加入其它有机溶剂分出反应中生成的水。反应物与产物的分析采用美国惠普6890/5973色质联用仪进行检测。根据醇反应前后的浓度(峰面积)的变化,计算反应的转化率。

2 结果与讨论

2.1 离子液体与浓硫酸催化酯化反应性能比较

比较不同的醇与醋酸发生酯化反应时,尽管转化率随所选醇的不同而有所不同,但离子液体催化活性均优于相同摩尔数的浓硫酸,而反应的选择性差别不大(表1)。其中苯甲醇酯化反应的副产物主要是苯甲基醚。

当乙酸/乙醇进行酯化反应时,从测得乙醇转化率随时间的变化数据可以看到(表2),在相对较低的反应温度下,离子液催化活性要比浓硫酸强,即转化速率超过浓硫酸。

(1)

(1)反应温度为63°C

2.2 反应温度不同时离子液体与浓硫酸催化酯化反应性能比较

当异戊醇和苯甲醇分别与乙酸反应时,实验结果表明(表3),异戊醇和苯甲醇在浓硫酸中催化酯化的转化率随反应温度的升高而提高,而在离子液体催化酯化的转化率随反应温度的升高反而降低。可能的原因是随着温度升高,溶有反应物的离子液体与产物酯层混溶性增大,不利于平衡朝酯化反应方向进行。

2.3 重复催化酯化反应可能性

采用异戊醇在80°C条件下进行酯化来了解离子液体重复使用可能性。每一次反应完后,移去离子液上层产物,然后在110°C下,适当减压除去离子液中的水和未反应的醇和酸(约10-15min),再次加料重复酯化反应。结果表明(表4)离子液经过一两次酯化反应后催化性能有所下降,然后趋于稳定。说明离子液体作为催化酯化反应的催化介质可以被重复使用。

尽管离子液中的酯化反应机理还有待进一步研究,但初步实验研究结果表明,离子液在酯化反应中与浓硫酸相比具有酯化反应速度快、反应温度相对较低时即可获得更高的转化率和不污染环境等优点。突出的特点是产物与催化剂极易分离、纯度高,并且能重复使用。显然,所采用离子液体催化体系尚未优化,还有较大地改进余地。因此,离子液体作为新的和实用的醇酸酯化催化体系不仅可能,而且是环境友好的。

实验12 信号强度实验(RSSI)

实验三信号强度实验(RSSI) 一实验目的 通过改变两个802.15.4/Zigbee通讯模块之间的距离,观察信号强度随距离变化的情况,了解RSSI 二实验设备 ●PC机一台 ●802.15.4/Zigbee模块两个 ●仿真器一个 ●串口延长线一根 ●IDC10仿真排线一根 三实验说明 RSSI(receive signal strength indicator):即为信号强度指示,是真实的接收信号强度与最优接收功率等级间的差值。 LQI [2-4](link quality indicator):是链路质量指示,表征接收数据帧的能量与质量。其大小基于信号强度以及检测到的信噪比(SNR),由MAC(media access control)层计算得到并提供给上一层,一般与正确接收到数据帧的概率有关口[3]。 RSSI值和LQI值在802.15.4/ZigBee收发模块每接收一个数据帧时都可以得到,及时反映信号强度的变化和受到的干扰的变化。LQI的动态范围比RSSI大,有更高的分辨率。 四实验步骤 1.连接实验设备 首先把仿真器和2430 学习板连接好,再用USB 线把仿真器和电脑连接起来 2.下载程序 按照实验二中的方法,将“实验三信号强度实验(RSSI)\spptest\App_Ex\cc2430\IAR_files \appEx_cc2430.ewp添加到IAR工程中,然后分别将RX和TX下载到两个模块中 3. 模块加电测试 给两个802.15.4/Zigbee模块加电,如果两个模块组网成功,则模块上的两个LED灯交替闪烁 4. 打开协议分析软件Packet sniffer for CC2430 IEEE 802.1 5.4,然后改变两个 802.15.4/Zigbee模块之间的距离,观察RSSI/LQI值的变化情况,如图15:

心理学实验设计方案

心理学实验设计方案 一,实验题目:人类在背诵英语单词时,英语单词的长度和被试背诵的时间是否影响背诵者的记忆效果 1假设 1.1选用短的英语单词背诵时,背诵者的记忆效果比选用长的英语单词好; 1.2背诵英语单词的时间长的比背诵时间短的记忆效果好 2变量及额外变量的操纵方法 2.1自变量:单词的长度,背诵时间 2.2因变量:背诵者的记忆效果(在分析中,选取单词默写正确个数为 2.3额外变量:被试的性别、智商水平,疲劳效应等 2.3.1额外变量的操控方法: 2.3.1.1选择性别数量上相等的被试(男10女10) 2.3.1.2选择在同一智商水平(按韦克斯勒智力量表)的被试 2.3.1.3让被试在实验中休息 3被试的选择及分组 选取男女被试各10名,每位被试接受四种水平(长单词—长时间、长单词—短时间、短单词—长时间、短单词—短时间)的实验处理 4实验实施过程及方法 4.1选择100个英语单词(其中,长短单词各50个)作为实验材料,20名被试把他们随机分配到四个处理水平上,每个处理水平上分配5名被试。 4.2让每组被试记忆单词,短单词选取CET四级词汇中含5-6个字母的单词,长单词选取CET四级词汇中含9-11个字母的单词;记忆的短时间为5分钟,长时间为10分钟。 4.3记忆时间到时,让被试默写自己记忆的单词;批改被试默写的单词 二、计算机键盘与水平面可有三种倾斜度:0度、10度和15度,试设计一项实验来证明,哪一种倾斜度最有利于输入字符。 单因素被试间设计

1. 提出假设:在计算机和水平面之间的三种倾斜度中,0度,10度和15度中,打一段相同的材料(使用相同的语言),在完成任务以后,比较一下哪种任务完成的时间是最少的,假设倾斜10度所需要的时间是最少的。 2. 被试 筛选被试:筛选被试:在对被试进行选择的过程中,需要进行严格的筛选。在进行最后的测试之前,要对每个被试进行测试。让所有被试在同一个房间里进行,给他们500字的中文文字,在最后的结果中筛选出在3-4分钟内完成的被试,这样能够排除掉打字技术对成绩的干扰。其中选出被试45名。每个被试分别接受三个水平的实验处理(0度,10度和15度)。 单因素被试间设计 3. 实验材料 3台配置一样的电脑,分别是:0度,10度和15度。 分别给被试呈现不熟悉的材料,避免对材料有熟悉度,每段文字500字。 4. 实验程序 (1) 把被试统一安排在指定教室进行,事先不需要太多的交流。 (2) 指导语:大家好,今天我们要进行一项文字输入的测试。在屏幕中央将会出现一篇文字,请您以最快的速度输入文字。在我说开始后,大家可以开始了。 (3)电脑自动记录被试完成的时间。 (4)进行数据分析。 三、研究者要探讨灯光强度与颜色对反应时的影响,试设计一个2×2实验研究范式。(要求说明实验中自变量、因变量与控制变量,是组间设计还是组内设计,被试如何分组,实验结果如何整理等) 参考答案: 实验设计:采用2×2多因素实验设计。 该实验研究的自变量有两个:灯光强度:分为强、弱两个水平,灯光的颜色:可分为红、绿两种不同颜色的灯光。这样,共有四种实验处理:红色的强光、红色的弱光、绿色的强光、绿色的弱光。 因变量:记录每个被试在不同实验条件下的反应时间。 控制变量:所有被试的练习次数、准备状态、额外动机、年龄以及其他个别差异应保持相等。

冉绍尔汤森效应实验

实验5-3 冉绍尔-汤森效应实验 作者:任学智 同组者:关希望 指导老师:周丽霞 一. 引言 1921年,德国物理学家冉绍尔(Carl Ramsauer )用磁偏转法分离出单一速度的电子,对极低能量0.75~1.1eV 的电子在各种气体中的平均自由程做了研究。结果发现,氩气(Ar )气中的平均自有程e λ远大于经典力学的理论计算值。以后,他又把电子能量扩展到100eV 左右,发现Ar 原子对电子的弹性散射截面Q (与e λ成反比)随电子能量的减小而增大,在10eV 左右达到极大值,而后又随着电子能量的减小而减小。 1922年,现代气体放电理论的奠基人、英国物理学家汤森(J.S.Townsend )和贝利(Bailey )也发现了类似的现象。进一步的研究表明,无论哪种气体原子的弹性散射截面(或电子平均自由程),在低能区都与碰撞电子的能量(或运动速度v )明显相关,而且类似的原子具有相似的行为,这就是著名的冉绍尔-汤森效应。 冉绍尔-汤森效应在当时是无法解释的。因为经典的气体分子运动论把电子看成质点,把气体原子看成刚性小球,它们之间碰撞的散射截面仅决定于原子的尺寸,电子的平均自由程也仅决定于气体原子大小及其密度 n ,都与电子的运动速度无关。不久,在德布罗意波粒二相性假设(1924年)和量子力学理论(1925~1928年)建立后,人们认识到,电子与原子的碰撞实际上是入射电子波在原子势场中的散射,是一种量子效应,以上实验事实才得到了圆满的理论解释。 冉绍尔-汤森效应是量子力学理论极好的实验例证,通过该实验,可以了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量原子散射截面的方法,测量低能电子与气体原子的散射几率以及有效弹性散射截面与电子速度的关系。 本实验的目的主要有:了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量的原子散射截面的方法;测量低能电子与气体原子的散射几率Ps 与电子速度的关系;测量气体原子的有效弹性散射截面Q 与电子速度的关系,测定散射截面最小时的电子能量;验证冉绍尔-汤森效应,并学习用量子力学理论加以解释。 二. 实验原理 1.理论原理 冉绍尔在研究极低能量电子(0.75eV —1.1eV )的平均自由程时,发现氩气中电子自由程比用气体分子运动论计算出来的数值大得多。后来,把电子的能量扩展到一个较宽的围进行观察,发现氩原子对电子的弹性散射总有效截面Q 随着电子能量的减小而增大,约在10eV 附近达到一个极大值,而后开始下降,当电子能量逐渐减小到1eV 左右时,有效散射截面Q 出现一个极小值。也就是说,对于能量为1eV 左右的电子,氩气竟好像是透明的。电子能量小于1eV 以后Q 再度增大。此后,冉绍尔又对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。并且,结构上类似的气体原子或分子,它们的总有效散射截面对电子速度的关系曲线V F Q =(V 为加速电压值)具有相同的形状,称为冉绍尔曲线。图B8-1为氙(Xe ),氪(Ke ),氩(Ar )三种惰性气体的冉绍尔曲线。图中横坐标是与电子速度成正比的加速电压平方根值,纵坐标是散射截面Q 值,这里采用原子单位,其中a 0为原子的玻尔半径。图中右方的横线表示用气体分子运动论计算出的Q 值。显然,用两个钢球相碰撞的模型来描述电子与原子之间的相互作用是无法解释冉绍尔效应的,因为这种模型得出的散射截面与电子能量无关。要解释冉绍尔效应需要用到粒子的波动性质,即把电子与原子的碰撞看成是入射粒子在原子势场中的散射,其散射程度用总散射截面来表示。

系列位置效应实验报告

系列位置效应 张心语 2 重复测量的实验设计,自由回忆的范式。选取14名同学作为被试,摘要实验采用2 通过实验,来探究汉语的首因效应来自LTS,而近因效应来自STS。实验假设为实验假设:(1)词表数越多,首因效应、渐近线相对就低,但近因效应不受影响;(2)有干扰作业的实验处理下,首因效应和渐近线不受影响。实验结果由系列位置曲线图说明并证实了假设。关键词首因效应;近因效应;系列位置曲线;短时记忆;长时记忆 1引言 记忆是过去经验在人脑中的反映(杨治良,无日期)。最早詹姆斯(1890年)提出将记忆区分为长时记忆和短时记忆,他的两个因素的理论称为双重记忆理论,在自由回忆的实验中得到了证明其的证据(黄希庭,2007)。其中,系列位置曲线能够清晰的表明首因效应和近因效应。但是它们之间是什么关系,如何作区分,也成为心理学家探讨和研究的问题。 系列位置效应是指识记一系列项目时,项目在系列中的位置对记忆效果的影响(吴艳红,朱滢,1999)。记忆的系列位置效应的测量主要有系列回忆和自由回忆两种方法,如果被试不拘顺序,按照自己的意愿回忆,称为自由回忆。默尔达克(19 6 2年)采用自由回忆来测量人类的记忆,发现被试对一系列学习项目中每个项目的记忆优劣,与该项目在系列中呈现的先后顺序位置有关(黄一宁,1996)。系列位置效应包含两种成分: 一种是最先呈现的材料在回忆时优于中间的材料, 较易被回忆, 遗忘较少, 称之为首因效应; 另一种是最后呈现的材料被提取的可能性最大, 最易被回忆, 遗忘最少, 称之为近因效应(程灶火,王力,2003)。根据双重记忆理论的解释,假设短时记忆为空,开头的词进入时极可能得到大量的复述而进入长时记忆,也就是说从开头到中间位置上的那些单词是从长时记忆中回忆出来的。离词表结束位置越近的单词进入短时记忆的概率越高,因而回忆率就增加了,因为短时记忆中的单词是可以完全回忆出来的,这就产生了近因效应(黄希庭)。 区分长时记忆与短时记忆的证据来自于Postman 和Phillips 的实验(1965),他们的实验重点在于干扰短时记忆进入长时记忆的过程。干扰说是采用顺摄抑制(干扰)及倒摄抑制(干扰)的机制来说明系列位置效应,认为学习者在学习一系列的项目后,在自由回忆系列中的每一个项目时,都会受到其他项目的干扰作用。占系列首位的儿个项目,不受顺摄干扰,只受到随后项目的倒摄干扰。占系列最后的几个项目,不受倒摄干扰,只受到先前项目的顺摄

斯坦福监狱实验说明什么效应

心理学上的斯坦福监狱实验说明了什么: 实验详情该实验是由美国心理学家Zimbardo等人在1969年展开的。 目的:调查人的虐待心理倾向是先天还是后天 参与者:24个大学男学生(无入监经历,不吸毒,身体以及心理健康)作为酬劳一天15美元。 地点:调查人员在斯坦福大学心理系的地下室中建了一个模拟的监狱 过程:参与者由警察逮捕,并押至试验地点。以抽签的形式将参与者分成两批,12个人为囚犯,12个人为狱警。囚犯将先脱掉衣服洒上除虱药粉,穿上类似于女人的连衣裙一样的白色袍,不能穿底裤,头戴丝袜,为每个人编号来代替名字,并且在右脚脚踝出有铰链。狱警则穿制服,有警棒,带不反光的墨镜(Cool Hand Luke)来防止目光接触。由于没有钟表也没有窗户,所以囚犯们并不知道时间。狱警可随自己喜好进行惩罚。 结论:后天原因,由于监狱的特殊环境使得狱警的行为更加暴力,到后期有些严重的甚至以惩罚犯人为乐。由于社会的多方干扰,该实验不得不被迫提前结束。事实上只进行了6天。作为囚犯的参与者称之为可怕的梦魇。也对他们造成了不同程度上的伤害。这个实验也导致了关于监狱虐待一条新法律的诞生。以上皆为事实,或许会与电影情节有一些出入。 斯坦福监狱实验:

《斯坦福监狱实验》是2015年上映的剧情片,由Kyle Patrick Alvarez执导,埃兹拉·米勒和奥莉薇·瑟尔比出演。电影由真实事件改编而成,讲述了发生在1970年代初的斯坦福大学,一群大学生进行了一场关于人类行为的研究试验的故事。 基本信息: 《斯坦福监狱实验》是2015年上映的剧情片,由Kyle Patrick Alvarez执导,埃兹拉·米勒和奥莉薇·瑟尔比出演。 电影由真实事件改编而成,讲述了发生在1970年代初的斯坦福大学,一群大学生进行了一场关于人类行为的研究试验的故事。 剧情简介: 本片由真实事件改编而成,故事发生在1970年代初的斯坦福大学,一群大学生进行了一场关于人类行为的研究试验。他们分成两伙人,一伙人扮演监狱狱警,另外一些人则扮演囚犯,在24小时内开始模拟监狱里的日常生活。结果证明,扮演狱警的人在模拟监狱的情境中,开始变得有暴力倾向,而扮演囚犯的人则预谋造反。试验不久就被叫停,但其研究结果许多年来一直为人们所关注,引起了广泛的争议。

数学实验的设计与实践

数学实验的设计与实践 一、数学实验的界定 “数学实验(Mathematics Experiment)”是指类似于物理实验、化学实验等的科学实验,结合数学学科的特点,“数学实验”可以界定为:为获得某种数学理论,检验某个数学猜想,解决某类实际问题,而运用一定的物质手段,在数学思维活动的参与下,在特定的时空环境下进行的探索、研究活动。初中数学实验的设计研究是对数学实验的方法、手段、媒体等要素设计的研究。初中数学实验的实践研究是对教师在数学实验过程中的组织教学、误差控制、干扰因素等实验操作问题的研究。数学实验与物理、化学实验、生物实验相比,不仅需要动手,更需要动脑,思维量大是数学实验的基本特征。 二、数学实验的发展 随着科学的发展,尤其是计算机的出现,改变了数学只用纸和笔进行研究的传统方式,给数学工作者带来了最先进的工具,丰富和发展了“数学实验”的内涵,各种先进的计算机软件为学生创新性学习提供了空间,学生可以利用这些软件进行数学实验、数学探究,“发现”数学规律。学生通过观察、实验、归纳进行合理的数学猜想;体验数学思想方法的真谛。应该说,信息技术给数学实验教学注入了新的生命,使传统的手工制作、实地观察、制作模型等数学实验手段得以更新,为实验教学提供了新的物质条件,数学正在成为一门“实验科学”。 在国外,数学实验已经成为常见的教学形式,美国的中学有专门的数学实验室,英国的中学教材中有许多实验材料。美国全美数学教师协会(NCT)在1989年颁布的《课程与评价标准》中还写道:“让每一个普通教室成为计算机教室,让每一个学生随时随地可以学习和探索数学”。美国2000年《学校数学的原则和标准》要求,在课堂教学中,教师有责任产生良好的智力环境,促进学生进行认真的数学思考。教师应该选择和使用合适的课程材料,恰当的工具,先进的教学技术,以便支持学生的数学学习,组织适当的实验,让学生在实验与操作的过程中理解数学。由此可见,世界上许多国家在数学实验课程的研究等方面均已广泛开展。 在国内,1996年教育部立项的面向21世纪非数学专业数学教学体系和内容改革的总体构想中,把“数学实验”列为数学基础课之一。其目标是,不将数学看成先验的逻辑体系,而是将它视为一门“实验科学”,从实际问题出发,借助计算机等辅助工具,通过学生亲自设计和动手,体验解决问题的过程,从实验中去学习、探索和发现数学规律。中科院院士、数学教育学家姜伯驹在一篇文章中指出,“应该组织数学实验课程,在教师指导下,通过自己动手计算、体验解决问题的过程,探索某些理论或应用的课题,使新鲜想法借助数学软件可以迅速实现,从而在失败与成功中得到真知。这种方式,变被动的灌输为主动的参与,有利于培养学生的独立工作能力和创新精神。”近年来,数学实验在国内许多高校开展了实践探索。1997年后,各高校相继开设数学实验课程,结合数学软件、数学建模开发了相应的教材体系。2001年8月在无锡马山召开的“全国数学科学方法论与数学创新教育学术交流会”上,中国社会科学院哲学所林夏水先生在《计算机实验》报告中建议,可以在中学开设数学实验。随后,在中学数学教学中开展数学实验,也成为众多一线教师的一种探索,在各类数学教学研究刊物上,不断有“数学实验”的提法。如北京四中李晋渊、刘坤《数

WiFi信号及手机信号检测方法及标准

店家WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm 信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实

际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android 系统移动设备和笔记本电脑。 2、检测软件: 1)iOS系统:SPEEDTEST,可检测Ping值、下载速率、上传速率,功能亮点是可以保存往次检测记录。 2)Android系统:SPEEDTEST,功能和iOS系统的一样,功能亮点是可以保存往次检测记录。 3)WiFi分析仪:可检测WiFi信号强度、信道、寻找AP等功能。

冉绍尔—汤森效应实验

中国石油大学近代物理实验实验报告成绩: 班级:应物11—4 姓名:辛拓同组者:武丁仓教师:亓鹏 冉绍尔—汤森效应实验 【实验目的】 1、了解电子碰撞管的设计原则,掌握电子与原子的的碰撞规则和测量的原子散射截面的方法。 2、测量低能电子与气体原子的散射几率Ps与电子速度的关系。 3、测量气体原子的有效弹性散射截面Q与电子速度的关系,测定散射截面最小时的电子能量。 4、验证冉绍尔—汤森效应,并学习用量子力学理论加以解释。 【实验原理】 1、理论原理 电子与原子的碰撞实际上市入射电子波在原子势场中的散射,是一种量子效应。冉绍尔在研究极低能量电子(0.75eV-1.1eV)的平均自由程时,发现氩气中电子自由程比用气体分子运动论计算出来的数值大得多。后来,把电子的能量扩展到一个较宽的范围内进行观察,发现氩原子对电子的弹性散射总有效截面Q随着电子能量的减小而增大,约在10eV附近达到一个极大值,而后开始下降,当电子能量逐渐减小到1eV左右时,有效散射截面Q出现一个极小值。也就说,对于能量为1eV左右的电子,氩气竟好像是透明的。电子能量小于1eV以后Q再度增大。此后,冉绍尔又对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。并且,结构 V为加速电 压值)具有相同的形状,称为冉绍尔曲线。 2、测量原理 当灯丝加热后,就有电子自阴极逸出,设阴极电流为I k,电子在加速电压的作用下,有一部分电子在到达栅极之前,被屏板接收,形成电流I S1;有一部分穿越屏板上的矩形孔,形成电流I0,由于屏板上的矩形孔与板极P之间是一个等势空间,所以电子穿越矩形孔后就以恒速运动,受到气体原子散射的电子到达屏板,形成散射电流I S2;而未受到散射的电子则到达板极P,形成板流I P,因此有 I k = I0+ I S1 I S = I S1 + I S2 I0 = I P + I S2 电子在等势区内的散射概率为 Ps=1?Ip/Io 可见,只要测量出I P和I0即可以求得散射几率。

旁观者效应实验

实验地点: 繁华的街口 实验人数: 三人以下简称A.B.C 实验过程: (1)A乔装成路人,走在街口的时候假装突然发病,慢慢坐在地上,然后呼救。 (2)此时C在一隐蔽处,用DV机记录在A假装发病倒地过程中及接下来一段时间里,路人对A发生这一情况所做出的反应。 (3)一段时间过后,B乔装成路人,在走过A时,上前询问A的情况,并进行救助。(4)C在一旁用DV机记录在B做出上前询问及救助后,路人又是怎样的反应。 实验现象: 现象一:在A乔装成路人并在街口发病后,过往的众多路人并未上前进行救助或是拨打110,120等急救电话,期间有路人驻足观看,回头张望,抑或视而不见。 现象二:在B上前询问进行救助的行为发生后,有一个路人也走上前询问,接着跟多的路人上前围观和帮助。 实验结论: 现象一和现象二可以分别称为责任分散效应和从众效应。 责任分散效应也称为旁观者效应,是指对某一件事来说,如果是单个个体被要求单独完成任务,责任感就会很强,会作出积极的反应。但如果是要求一个群体共同完成任务,群体中的每个个体的责任感就会很弱,面对困难或遇到责任往往会退缩。因为前者独立承担责任,后者期望别人多承担点儿责任。“责任分散”的实质就是人多不负责,责任不落实。 正是由于在紧急状态下有其他目击者在场,才使旁观者无动于衷。旁观者效应,他们解释道,不是在于旁观者的“病态”人格,而是在于旁观者对其他观察者的反应。旁观者数量越大,旁观者效应越明显。总体来说,当紧急情形出现时,如果只有一人在场,约有半数的人会伸手相救;如果知道还有另外一个人在场,援助者只有33%;如果知道还有更多的人在场,援助者只有22%。 人们常常要以别人为参照物来定位自己,通过观察别人来判断自己是否正确,所以这就导致了多人在场时反应会变慢。同时每个人都以为别人会做,自己就不做了,或者抱着罚不责众的心态,所以也就没有人会上前帮助或报警了。 从众效应作为一个心理学概念,是指个体在真实的或臆想的群体压力下,在认知上或行动上以多数人或权威人物的行为为准则,进而在行为上努力与之趋向一致的现象。从众效应既包括思想上的从众,又包括行为上的从众。从众是一种普遍的社会心理现象,从众效应本身并无好坏之分,其作用取决于在什么问题及场合上产生从众行为,具体表现在两个方面:一是具有积极作用的从众正效应; 二是具有消极作用的从众负效应。 积极的从众效应可以互相激励情绪,做出勇敢之举,有利于建立良好的社会氛围并使个体达到心理平衡,反之亦然。 正是由于B的救助行为给旁人的引导,所以更多的人上前救助。

实验一_信号及其传输特性分析

实验一 练习一信号的特性及其频谱分分析 实验原理 一. 信号的概念和分类 1. 信号 在通信与信息系统中,传输的主体是信号,系统所包含的各种电路、设备都是为了实施这种传输。因此,电路系统设计和制造的要求,必然要取决于信号的特性。随着待传输信号的日益复杂,相应地,信号传输系统中的元器件、电路的结构等也日益复杂。因此,对信号进行分析变得越来越重要。 2. 信号的分类 下面从不同角度对信号进行分类。 确定信号和随机信号:若其在任何时间的值都是确定已知的,那么是确定信号;若信号在实际发生之前具有一定的不确定性,则表明信号是随机信号。 连续信号和离散信号:将一个信号表示成为时间t的函数,如果其时间变量t的取值是连续的,那么这个信号就称为连续信号。若信号只在某些不连续的时间点上有确定的取值,则称信号是离散信号。 模拟信号和数字信号:时间或幅度连续的信号称为模拟信号,时间和幅度都离散的信号称为数字信号。 周期信号和非周期信号:在一个可以测量的时间范围内完成一种模式,并且在后续的相同时间范围内重复这一模式,这种信号是周期信号;不随时间变化出现重复的模式或循环,则是非周期信号。 二. 周期模拟信号 周期模拟信号可以分为简单类型或复合类型两种。简单类型模拟信号,即正弦波,不能再分解为更简单的信号。而复合型模拟信号则是由多个正弦波信号组成的。 正弦波是周期模拟信号的最基本形式。可以看做一条简单的震荡曲线,在一个周期内的变化是平滑、一直的、连续的、起伏的曲线。下图就是一个正弦波,每个循环由时间轴上方的单弧和后跟着的时间轴下方的单弧构成。 图1-1-1 正弦波

单个正弦波可以用三个参数表示:峰值振幅、频率和相位。这三个参数完全决定正弦波。 1. 峰值振幅 信号的峰值振幅是其最高强度的绝对值,与其携带的能量成正比。图1-1-2表示了两个信号和它们的峰值振幅。 图1-1-2 相位和频率相同但振幅不同的两个信号 2. 周期和频率 周期是信号完成一个循环所需要的时间,以秒为单位。频率是指1秒内的周期数。周期是频率的倒数,频率是周期的倒数,如下列公式所示。 图1-1-3显示了两个信号和它们的频率。

实验心理学实验讲义

3对偶比较法-制作颜色爱好顺序量表 一、实验介绍 本实验目的是学习对偶比较法和顺序量表的概念,制作颜色爱好的顺序量表。 心理量表是经典心理物理学用来测量阈上感觉的。心理量表根据其测量水平的不同,可分为四种:命名量表、顺序量表、等距量表和比例量表。其中等距量表和比例量表分别带来了心理物理学中的对数定律和幂定律。 顺序量表没有相等单位、没有绝对零点,它按某种标志将事物排成一个顺序,从中可以查出某事物在心理量表中所处的位置。制作心理顺序量表有对偶比较法和等级排列法两种方法,其中,对偶比较法是制作心理顺序量表的一种间接方法。 对偶比较法是把所有要比较的刺激配成对,然后一对一对呈现,让被试对于刺激的 某一特性进行比较并作出判断:这种特性在两个刺激中哪个更为明显。因此,若有n个 刺激,则一共可配成 n( n-1)/2 对。又因为有空间误差和时间误差,在实验中每对刺激要比较两次,互换其呈现顺序(时间误差)或位置(空间误差),所以一共要比较 n( n-1)次。 二、方法与程序: 本实验用对偶比较法制作颜色爱好顺序量表。计算机能产生不同色调的颜色,而且纯度高,适合于颜色爱好顺序量表的制作。实验共有七种颜色,它们是:红(Red)、 橙(Orange)、黄(Yellow )、绿(Green)、蓝(Blue )、青(Cyan)和白(White )。 实验顺序如下表:为抵消顺序误差,在做完21次后,应再测21次,顺序与前21次 顺序相反;为抵消空间误差,在后做的21次中左右位置应颠倒。 刺激红橙黄绿蓝青白 红—— 橙 1 —— 黄 2 3 —— 绿12 4 5 —— 蓝13 14 6 7 —— 青19 15 16 8 9 —— 白20 21 17 18 10 11 —— 实验前,主试应指导被试认真阅读指示语,并说明反应方法(按红、绿键认可,按黄键不认可),然后开始实验。 三、结果与讨论: 结果数据中有每种颜色被选择的次数,即选择分数(C)。 如果要制作等距量表,还需按如下公式计算选中比例P。 P= C/(2*( n-1))=C/12 再把P转换成Z分数,按Z分数制图即可制作成颜色爱好的等距量表。参考文献: 杨博民主编心理实验纲要北京大学出版社65-82页 4信号检测论-有无法 、实验介绍

冉绍尔-汤森效应实验

冉绍尔-汤森效应实验 【摘要】 加速电子与充氙闸流管中的氙原子碰撞,电子被散射,把闸流管先后浸入77K 液氮和在室温下测俩观众的栅极及板极电流。得出散射概率、散射截面与电子能量的关系,低能电子与气体原子的散射几率与电子速度的关系,验证冉绍尔-汤森效应。用量子力学解释这一效应 测量氙原子的电离电位。 【实验原理】 当灯丝加热后,就有电子自阴极逸出,设阴极电流为K I ,电子在加速电压的作用下,有一部分电子在到达栅极之前,被屏极接收,形成电流1S I ;有一部分穿越屏极上的矩形孔,形成电流0I ,由于屏极上的矩形孔与板极P 之间是一个等势空间,所以电子穿越矩形孔后就 以恒速运动,受到气体原子散射的电子则到达屏极,形成散射电流2S I ;而未受到散射 的电子则到达板极P ,形成板流P I ,因此有 10S K I I I += 2 1S S S I I I += 20S P I I I += 电子在等势区内的散射概率为: 01I I P P S - = (1) 可见,只要分别测量出P I 和0I 即可以求得散射几率。从上面论述可知,P I 可以直接测得,至于0I 则需要用间接的方法测定。由于阴极电流K I 分成两部分1S I 和0I ,它们不仅与K I 成比例,而且他们之间也有一定的比例关系,这一比值称为几何因子f ,即有

10 S I I f = (2) 几何因子f 是由电极间相对张角及空间电荷效应所决定,即f 与管子的几何结构及所用的加速电压、阴极电流有关。将式(2)带入(1)式得到 111S P S I I f P - = (3) 为了测量几何因子f ,我们把电子碰撞管的管端部分浸入温度为77K 的液氮中,这时,管内掉气体冻结,在这种低温状态下,气体原子的密度很小,对电子的散射可以忽略不计, 几何因子f 就等于这时的板流*P I 与屏流* S I 之比,即 * * =S P I I f (4) 如果这时阴极电流和加速电压保持与式(1)和(2)时的相同,那么上式中的f 值与式(3)中掉相等,因此有 * * -=P S S P S I I I I P 11 (5) 设L 为出射孔S 到板极P 之间的距离,则 )exp(1QL P S --= (6) 当f<<1时,由(5)、(6)两式得 ??? ? ??-=** P S S P I I I I L Q ln 1 测量不同的加速电压Ea 下的Ps 的值,即可由上式得到总有效散射截面Q 与a E 的关系曲线。 使用直流加速电压的测量线路图

记忆中的系列位置效应现象

记忆中的系列位置效应现象 摘要本次实验是为了验证记忆中的系列位置效应现象,采用了自由回忆法和组内设计的实验设 计类型。共17名被试,每个被试分别记忆17个位置上的不同汉字。根据每个位置再现的正确率, 得到了被试对字单中的头几个字再现好,字单中部的项目再现不好,最后几个项目再现得也很好 的结论。验证了记忆中的系列位置效应现象。 关键词自由回忆法两种过程记忆理论前摄抑制倒摄抑制 1前言 系列位置效应是指在系列学习中,在一系列处于不同位置的记忆材料回忆效果不同;系列位置效应就是这种接近开头和末尾的记忆材料的记忆效果好于中间部分的记忆效果的趋势。其开头和结尾记忆效果较好,分别叫首位效应和近因效应,而其效果较差的中间部分称为渐近部分。系列位置效应一般在自由回忆中出现,是两种过程记忆理论的重要证据。系列位置效应的结果,以系列位置为x轴,正确再现的百分数为y轴,则可形成一个U形的曲线,叫系列位置曲线。 1962年,加拿大学者墨多克作过一次有趣的实验,他向被试呈现一系列无关联的词,如“肥皂、氧、枫树、蜘蛛、雏菊、啤酒、舞蹈、雪茄烟、火星、山、炸弹、手指、椅子、木偶”等,以每秒出现一个的速度呈现完毕,让被试以任意顺序自由回忆。结果发现,回忆的效果于字词在原呈现系列中所处的位置密切相关。在系列的开始部分和末尾部分的单词更容易回忆。根据实验结果所画出的两头高中间低的曲线,被心理学家们叫做“系列位置曲线”,这种现象也被称之为“系列位置效应”。 持两重记忆理论的心理学家认为,实验中词表系列开始部分有较多的复述机会而进入长时记忆系统,回忆时是从长时记忆系统中提取的;而末尾部分因刚刚学习过还来不及复述,是进入短时记忆中的,仍保持在人当前意识中,因此,更易于再现;记忆效果最差不在正中,而在中间稍偏右。弗勾尔脱认为这可能是由于中间偏右的项目受前面来的抑制较多,所以联系已经很弱了,从而更易受后面来的抑制的影响所造成。 本次的实验目的是为了验证记忆中的系列位置效应现象。但此次实验中还会加入对短时记忆的记忆容量的研究。在统计实验数据时,求出被试记忆的平均成绩,即短时记忆的容量,我们认为这次记忆的平均成绩应该为7±2个单字。 我们做这项实验也希望运用实验的结论更好的帮助学生掌握科学的记忆方法,提高学习效率,帮助老师合理安排课堂教学内容,提高教学质量。 2方法 2.1被试 本次实验共17名被试。男女都有,年龄在20岁左右,大学文化程度。无相关实验经历,记忆能力,思维能力正常。 2.2实验材料 17张长7㎝宽5.7㎝的高频汉字的卡片,笔画在5-9之间,字与字之间低联想值。17个汉字如下 府,拔,培,呈,则,别,括,沉,枯,奈,切,应,纪,持,价,务,观

实验四穆斯堡尔效应

本科生实验报告 实验课程核分析基础 学院名称核技术与自动化工程学院 专业名称核工程与核技术 学生姓名 学生学号 指导教师马英杰 实验地点6C802 实验成绩 二〇一五年十一月二〇一五年十二月

穆斯堡尔效应 【实验目的】 1、了解穆斯堡尔效应的基本原理 2、了解穆斯堡尔谱仪的结构和基本的实验方法 【实验器材】 穆斯堡尔谱仪 通用示波器 57 Co 放射源 α-Fe 薄膜样品 【实验原理】 穆斯堡尔效应是一种原子核无反冲的γ射线共振吸收或共振散射现象。 由于核激发态有一定寿命,相应的跃迁谱线宽度很窄,而核发射的γ射线能量较大,造成核的反冲,所以即使考虑到热运动的多普勒展宽造成的发射谱线与吸收谱线的重叠,一般也无法观察到核共振吸收现象。穆斯堡尔考虑把靶原子核镶嵌在晶格中,发射γ射线时带着整个晶体一起反冲,这样的反冲很小,有很大的概率观察到核共振吸收现象,这就是穆斯堡尔效应。 一、γ射线共振吸收 1、谱线的自然线宽 核的激发态存在有限长的寿命τ,回到基态时发出的γ射线存在一定的线宽,谱线强度与光子频率ω之间有关,为: 202 1()1 ()4I ωωωτ ∝ -+ 即洛仑兹线性。将E=hω/2π代入, 22 02 1()()4I E E E τ ∝ -+ 则当0/2E E τ-=± 时I(E)强度下降为最大值的一半,这时曲线宽度为/τ ,称为谱线的自然线宽Γ。 2、自由原子核的反冲 由能量、动量守恒定律可知核反冲能量E R 为: 222 2 022 12222R R p E E E Mu M Mc Mc γγ===≈ 即M 越大,反冲能量E R 越小。如以57Fe 为例,E 0=14.4keV ,则有E R ≈2×10-3eV 比自然线宽大得多。故对57Fe ,当谱线不存在其他展宽,发射与吸收谱线之间不存在任何重叠,所以不可能观察到γ射线的共振吸收现象。 3、多普勒展宽 由相对论性的多普勒效应 2210T D eV -= = ?

二十个著名的心理学实验

01 斯坦福监狱实验 斯坦福监狱实验(Stanford prison experiment)是1971年由美国心理学家菲利普·津巴多领导的研究小组,在设在斯坦福大学心理学系大楼地下室的模拟监狱内,进行的一项关于人类对囚禁的反应以及囚禁对监狱中的权威和被监管者行为影响的心理学研究,充当看守和囚犯的都是斯坦福大学的在校大学生志愿者。 囚犯和看守很快适应了自己的角色,一步步地超过了预设的界限,通向危险和造成心理伤害的情形。三分之一的看守被评价为显示出“真正的”虐待狂倾向,而许多囚犯在情感上受到创伤,有2人不得不提前退出实验。最后,津巴多因为这个课题中日益泛滥的反社会行为受到警告,提前终止了整个实验。 斯坦福监狱实验经常被拿来与米尔格拉姆实验进行比较,米尔格拉姆实验是于1961年在耶鲁大学,由津巴多中学时代的好友斯坦利·米尔格拉姆进行的。津巴多作为监狱长。 死亡实验是一套故事基于斯坦福大学监狱实验的电影。 津巴多模拟监狱实验 斯坦福大学(Stanford)的心理学家菲利普·津巴多(Philip Zimbardo)和他的同事在斯坦福大学的心理学系办公大楼地下室里建立了一个“监狱”,他们以每天15美元的价格雇用了24名学生来参加实验。这些学生情感稳定,身体健康,遵纪守法,在普通人格测验中,得分属正常水平。实验者对这些学生随意地进行了角色分配,一部分人为“看守”,另一部分人为“罪犯”,并制定了一些基本规则。然后,实验者就躲在幕后,看事情会怎样发展。 两个礼拜的模拟实验刚刚开始时,被分配做“看守”的学生与被分配做“罪犯”的学生之间,没有多大差别。而且,做“看守”的人也没有受过专门训练如何做监狱看守员。实验者只告诉他们“维持监狱法律和秩序”,不要把“罪犯”的胡言乱语(如“罪犯”说,禁止使用暴力)当回事。为了更真实地模拟监狱生活,“罪犯”可以像真正的监狱中的罪犯一样,接受亲戚和朋友的探视。但模拟看守8小时换一次班,而模拟罪犯除了出来吃饭、锻炼、去厕所、办些必要的其他事情之外,要日日夜夜地呆在他们的牢房里。 “罪犯”没用多长时间,就承认了“看守”的权威地位,或者说,模拟看守调整自己,进入了新的权威角色之中。特别是在实验的第二天“看守”粉碎了“罪犯”进行反抗的企图之后,“罪犯”们的反应就更加消极了。不管“看守”吩咐什么,“罪犯”都唯命是从。事实上,“罪犯”们开始相信,正如“看守”所经常对他们说的,他们真的低人一等、无法改变现状。而且每一位“看守”在模拟实验过程中,都作出过虐待“罪犯”的事情。例如,一位“看守”说,“我觉得自己不可思议……我让他们互相喊对方的名字,还让他们用手去擦洗厕所。我真的把…罪犯?看作是牲畜,而且我一直在想,…我必须看住他们,以免他们做坏事。”?另一位“看守”补充说,“我一到…罪犯?所在的牢房就烦,他们穿着破衣服,牢房里满是难闻的气味。在我们的命令面前,他们相对而泣。他们没有把这些只是当作一次实验,一切好像是真的,尽管他们还在尽力保持自己原来的身份,但我们总是向他们表明我们才是上司,这使他们的努力收效甚微。” 这次模拟实验相当成功地证明了个体学习一种新角色是多么迅速。由于参加实验的学生在实验中表现出病态反应,在实验进行了6天之后,研究人员就不得不终止了实验。

冉绍尔-汤森德效应

冉绍尔——汤森德效应 摘要:冉绍尔——汤森德效应是在研究低能电子的平均自由程时发现的一种气体原子与电子弹性碰撞的散射截面Q与电子能量密切相关的现象。此现象与经典理论相矛盾,需要用量子理论解释。 关键词:散射截面碰撞概率加速电压补偿电压电离电位 一、引言 1921年德国物理学家冉绍尔在研究低能电子的平均自由程时发现:在惰性气体中,当电子的能量降到几个电子伏时,气体原子与电子弹性碰撞的散射截面Q(与平均自由程成反比)迅速减小;当电子能量约为1电子伏时,Q出现极小值,而且接近零。如果继续减少电子能量,则Q迅速增大,这说明弹性散射截面与电子能量密切相关。 1922年英国物理学家汤森德把电子能量进一步降低,用另外的方法研究平均自由程随电子速度变化的情况,也发现类似现象。随后,冉绍尔用实验证明了汤森德的结果。 冉绍尔——汤森德效应在当时无法解释,因为经典理论认为气体原子与电子弹性碰撞的散射截面仅决定于原子的尺寸,而与电子的运动速度无关,只有在波粒二象性和量子力学建立后,这种效应才得到圆满解释。因此冉绍尔——汤森德效应也验证了量子力学的正确性。 图1 惰性气体的冉绍尔曲线 如图1所示的是Xe、Kr、Ar三种惰性气体的冉绍尔曲线。因为电子的速度与加速电压V的平方根成正比,故横坐标采用平方根√V表示,纵坐标为散射截面Q,采用原子单位。由图1可以看出,结构相近的物质,其冉绍尔曲线的形状相似。 二、冉绍尔——汤森德效应的理论描述

在量子力学中,碰撞现象也称作散射现象。粒子的碰撞过程有弹性碰撞与非弹性碰撞两大类。在弹性碰撞过程中,粒子A 以波矢k 2|k|= mE (1) 沿Z 入射到靶粒子B (即散射中心)上,受B 粒子作用偏离原方向而散射,散射程度可用总散射截面Q 表示。 讨论粒子受辏力场弹性散射的情况。取散射中心为坐标原点;设入射粒子与散射中心之间的相互作用势能为U (r ),当r → ∞时,U (r )趋于零,则远离散射中心处的波函数Ψ由入射粒子的平面波Ψ1和散射粒子的球面散射波Ψ2组成 12() ikr ikz r e e f r ψψψθ→∞→+=+ (2) 这里考虑的是弹性散射,所以散射波的能量没有改变,即其波矢k 的数值不变。θ为散射角, 即粒子被散射后的运动方向与入射方向之间的夹角;f(θ)称散射振幅。 总散射截面 220|()|2|()|sin Q f d f d π θπθθθ =Ω=?? (3) 利用分波法求解满足式(3)边界条件的薛定谔方程 2 2 ()2U r E m ψψ??-?+= ??? (4) 可求得散射振幅为 1 ()(21)(cos )sin i e l l l f l P e k δ θθδ∞ == +∑ (5) 从而得到总散射截面 2 00 4(21)sin l l l l Q Q l k π δ ∞ ∞ ====+∑∑ (6) 中心力场中,波函数可表成不同角动量l 的入射波和出射波的相干叠加,l =0, 1, 2…的分波,分别称为s , q , d …分波。势场U (r )的作用仅使入射粒子散射后的每一个分波各自产生相移δl 。δl 可通过解径向方程 2222212(1)()()()0l l d d m l l r R r k U r R r r dr dr r +????+--=???????? (7) 求得,要满足 1()sin()2l l kr l R r kr kr πδ→∞→ -+ (8) 这样,计算散射截在Q 的问题就归结为计算各分波的相移δl ;式(6)中的Q l 为第l 个分波的散射截面。 在冉绍尔-汤森德效应实验里,U (r )为电子与原子之间的相互用势,可以把惰性气体的势场近似地看成一个三维方势阱 ,()0,U r a U r r a -≤?=?>? (9) U 0代表势阱深度,a 表征势阱宽度。对于低能散射,ka <<1,δl 随l 增大而迅速减少,仅需

相关文档