文档库 最新最全的文档下载
当前位置:文档库 › 基本物理常量(2002国际推荐值)

基本物理常量(2002国际推荐值)

基本物理常量(2002国际推荐值)
基本物理常量(2002国际推荐值)

《磁性物理学》教学大纲关于组织修制定

《磁性物理学》教学大纲 Magnetism in Physics 课程代码: M102105 总学时:(理论+实验)56+12 学分:4 课程性质:专业方向课课程类别:必修 先修课程:普通物理、理论物理、固体物理面向专业:应用物理学 开课学科:凝聚态物理学开课二级学院:理学院 执笔:崔玉建审校:焦志伟 一、课程的地位与任务 本课程是应用物理专业的专业方向基础课。主要介绍磁现象和规律、磁性起源及自发磁化理论、铁磁体内的能量、磁畴和技术磁化、铁磁物质在交变场作用下的磁化特性、各种磁物理效应和磁性材料的应用。以此作为学习其它专业方向课的基础。 二、课程主要内容与基本要求 第一章 1、熟练掌握各基本磁学量的物理概念及其相互关系;理解磁化曲线和磁滞回线。 2、掌握磁体中静磁能的概念,理解退磁场的概念,理解简单几何形状磁体退磁因子的计算方法;会进行磁滞回线的退磁修正。 3、了解磁路的简单概念。 实践环节:了解磁场、磁感应强度的测量方法。

第二章 1、理解洪特定则,会计算原子或离子的磁矩。 2、了解轨道角动量淬灭的条件。 3、了解晶体的能带理论对金属磁矩的解释。 第三章 1、掌握顺磁物质的基本物理特性,理解朗之万的经典和量子理论顺磁性理论; 2、掌握铁磁物质的基本物理特性,理解奈尔的铁磁学理论,理解居里温度与分子场系数的关系;理解海森堡铁磁学理论的基本概念;分子场系数、居里温度与交换积分常数的关系;物质出现铁磁与反铁磁的条件。了解贝斯统计理论和自旋波理论。 3、掌握反铁磁性和亚铁磁性的基本物理特性;理解分子场理论对反铁磁和亚铁磁性的唯象理论处理;理解超交换作用的基本概念。 4、掌握铁氧体的结构、磁矩和磁特性。 实践环节:了解铁氧体的制备方法和磁性的测量方法。 第四章 1、掌握常见的磁性材料的磁晶各向异性,掌握单轴晶体和立方晶体的各向异性能的计算;了解磁晶各向异性场的概念;了解产生磁晶各向异性的机理;了解磁性材料的其它几种各向异性;了解磁晶各向异性性能的测量方法。 2、掌握磁致伸缩的基本概念;掌握立方晶体的磁致伸缩公式;了解

大学物理知识点

A r r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确 r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?= ? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+

常用物理常数表

常用物理常数表 光速 101099792458.2?=c cm sec -1 万有引力常数 81067259.6-?=G dyn cm -2 g -2 普朗克常数 27106260.6-?=h erg sec 271005457266.12/-?==πh η erg sec 玻尔兹曼常数 1610380662.1-?=k erg deg –1 里德堡常量 312.109737/2342==∞ch e m R e π cm -1 斯特藩—玻尔兹曼常数 51066956.5-?=σ erg cm -2 deg -4 sec -1 电子电量 101080325.4-?=e esu 1910602192.1-?= coulomb 电子质量 281010956.9-?=e m g 原子质量单位 2410660531.1-?=amu g 精细结构常数 0360.1372//12==e hc πα 第一玻尔轨道半径 82220105291775.04/-?==e m h a e π cm 经典电子半径 1322108179380.2/-?==c m e r e e cm 质子质量 2410672661.1-?=p m g 007276470.1= amu 中子质量 241067492.1-?=n m g 00866.1= amu 电子静止能量 5110034.02=c m e meV 常用天文常数表 地球质量 2710976.5?=⊕M g 地球赤道半径 164.6378=⊕R km 地球表面重力 665.980=⊕g cm sec -2 天文单位 810495979.1?=AU km 1光年 ly = 9.460×1012 km 1秒差距 pc= 3.084×1013 km=3.262ly 千秒差距 kpc=1000pc 地月距离 3.8×105 km 太阳到冥王星的平均距离 5.91×109km 最近的恒星(除太阳)的距离 4×1013km =1.31pc= 4.3ly

教案-----电路中的基本物理量

教案电路中的基本物理量 教学目的: 知识目标: (1)熟悉基本电路的组成和作用 (2)理解电压、电流、电动势的概念 (3)掌握电压、电流方向的判别 (4)理解电阻的定义和作用 技能目标: 熟识万用表测量电压、电流、电位的方法 教学重点、难点: 教学重点:电压、电流、电位、电动势、电阻概念的理解 教学难点:(1)电压、电流方向的判别 (2)电动势概念的理解 课型:讲练结合 教学分析: 本次课先由一个手电筒电路引入电路的组成和作用,通过对电流、电压、电动势的实际测试,根据测试的结果来体验分析电流、电压、电位、电动势的存在和方向。再辅以理论讲解来阐明电流、电压、电动势的概念及电流、电压参考方向的应用和电流、电压实际方向 的判别。 复习、提问: (1)手电筒电路是怎么工作的? (2)你认为电压、电流有方向吗?什么情况下有方向呢? 教学过程: 一、电路的组成和作用 导入:(先在黑板上画一手电筒电路的示意图如1(a))

(c) 图1 手电筒电路 手电筒大家都很熟悉,由电池、开关、灯泡、导线四部分组成。电池给灯泡供电,但只有在开关闭合的前提下,才会发亮。所以电池相当于电源,灯泡是供电的对象,称为负载,开关决定着灯亮与灭,所以开关便是控制元件,导线连接整个电路,使其为一闭合回路。电源、负载、控制元件、回路为组成电路的四要素。所以手电筒电路的电路模型如图1(c)。 1、电路组成的四要素: (1)电源(2)负载(3)控制元件(4)回路 2、电路的作用: (1)能量的传输和转换。如手电筒电路,灯泡发光,电池能转换为光能和热能。 (2)信号的传递和处理。如扩音机电路,如图(b),放大器用来放大电信号,而后传递到扬声器,把电信号还原为语言或音乐,实现“声-电-声”的放大、传输和转换作用。 前面我们了解了电路的组成和作用,然而描述一个电路的特性光以上这些是不够的,还需要一些其他的物理量来描述电路的特征。电流、电压、电动势便是描述电路特征的最基本的物理量。下面先通过实际测试来体验一下这些物理量的存在及他们的方向。 二、电流 这一小节的教学方法:(1)先让学生按照教师给定的方法测试试验电路1中流过电阻的电流,让学生先感性认识电流存在的形式,再理论分析电流的定义及计算。(2)再让学生用同样的测试方法反向测量,指针式万用表表笔反偏(数字式显示负值),使学生感性认识直流电流是有方向的,再理论分析电流方向的确定。 先测量试验电路1中流过电阻的电流大小。让学生感受电流在电路中存在的形式。

【北京理工大学】大学物理1(上)知识点总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即: t r v ?? = 速度,是质点位矢对时间的变化率: dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率:dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ=2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t =,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ = ω 角加速度 dt d ω= β 而R v ω=,22 n R R v a ω== ,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 ''kk pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题 三、功和能 知识点: 1. 功的定义 质点在力F 的作用下有微小的位移d r (或写为ds ),则力作的功定义为力和位移的标积即 θθcos cos Fds r d F r d F dA ==?= 对质点在力作用下的有限运动,力作的功为 ? ?=b a r d F A 在直角坐标系中,此功可写为 ???++=b a z b a y b a x dz F dy F dx F A

物理学中有哪些重要的常数

第五十三章:所有的常数,都不简单! ——灵遁者 我在想要不要写这一章,因为这一章可能无意义。但“许多有意义的事情,在众多无意义的夹缝中诞生。”所以既然想到了,就应该写出来。 我将罗列出很多常数,但并没有得出这些常数之间的关系。因为常数和常数之间的关系,不能单独在“数字”体现,而且参与到“作用”中去体现的。 它们之间的联系,隐秘的很。但我将它们列出来,或许可以帮助到有心人去思考这个问题。 大家在学习的过程中,往往注重了规律,注重了方程,但方程中一些常数,大家会忽略?? 它们有着惊人的相似或不同,我从高中就产生过这个疑问,记得非常清楚,当时学习化学的时候,有一个阿伏伽德罗常数。 阿伏加德罗常数,为0.012kg12C中所含的原子数目叫做阿伏加德罗常数。阿伏加德罗常数的符号为NA。阿伏加德罗常数的近似值为:6.02×10^23/mol。 它的含义:1mol任何粒子所含的粒子数均为阿伏加德罗常数个。 那么为什么是这个数字就是我的疑问??同样类似的疑惑,随着学习,出现过很多次。今天做个总结,大家一起来找找其内在的根本原因。 1、阿伏伽德罗常数 阿伏加德罗常数的近似值为:6.02×10^23/mol。 2、引力常数 万有引力常量为G=6.67x10-11 N·m2 /kg2 3、库伦常数 k为库仑常数,k=8.987551×10^9N ·m2/C2,一般取9.0×10^9N·m2/C2便于计算 4、普朗克常数 普朗克常数约为:h=6.62606957(29)×10^(-34) J·s 5、黄金比常数 黄金比常数约为:0.618 6、光速 真空光速约为:2.99 792 458× 10^8m/s 8、圆周率 圆周率π:3.1415926 9、欧拉常数 欧拉常数:e=?2.718281828… 10、精细结构常数 精细结构常数,电磁交互作用的耦合常数,α≈ 1/137。 在第五十二章,我们着重讲了这个精细结构常数,也就是受到这一章启发,我有了写这一章的念头。在章节中,我罗列了一个列表。关于常数的,也就是无量量纲的列表。大家可以返回去看一下。 我在这本书中写到过:“你的想象里有多精彩,这个宇宙就有多非凡。”看到这面的常数,你会怎么想,而且这些远远不够。关于常数的思考,我说以下几点。 1、很多常数,都不是整数,几乎没有。很多都是无限小数。人类再精细的

大学物理物理知识点总结

y 第一章质点运动学主要内容 一 . 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

《磁性物理学》教学大纲(68)doc-关于组织修(制)定

《磁性物理学》教学大纲 Magnetism inPhysics 课程代码:M102105 总学时:(理论+实验)56+12学分:4 课程性质: 专业方向课课程类别:必修 先修课程:普通物理、理论物理、固体物理面向专业: 应用物理学 开课学科:凝聚态物理学开课二级学院: 理学院 执笔:崔玉建审校:焦志伟 一、课程的地位与任务 本课程是应用物理专业的专业方向基础课。主要介绍磁现象和规律、磁性起源及自发磁化理论、铁磁体内的能量、磁畴和技术磁化、铁磁物质在交变场作用下的磁化特性、各种磁物理效应和磁性材料的应用。以此作为学习其它专业方向课的基础。 二、课程主要内容与基本要求 第一章 1、熟练掌握各基本磁学量的物理概念及其相互关系;理解磁化曲线和磁滞回线。 2、掌握磁体中静磁能的概念,理解退磁场的概念,理解简单几何形状磁体退磁因子的计算方法;会进行磁滞回线的退磁修正。 3、了解磁路的简单概念。 实践环节:了解磁场、磁感应强度的测量方法。 第二章 1、理解洪特定则,会计算原子或离子的磁矩。 2、了解轨道角动量淬灭的条件。 3、了解晶体的能带理论对金属磁矩的解释。 第三章 1、掌握顺磁物质的基本物理特性,理解朗之万的经典和量子理论顺磁性理论; 2、掌握铁磁物质的基本物理特性,理解奈尔的铁磁学理论,理解居里温度与分子场系数的关系;理解海森堡铁磁学理论的基本概念;分子场系数、居里温度与交换积分常数的关系;物质出现铁磁与反铁磁的条件。了解贝斯统计理论和自旋波理论。 3、掌握反铁磁性和亚铁磁性的基本物理特性;理解分子场理论对反铁磁和亚铁磁性的

唯象理论处理;理解超交换作用的基本概念。 4、掌握铁氧体的结构、磁矩和磁特性。 实践环节:了解铁氧体的制备方法和磁性的测量方法。 第四章 1、掌握常见的磁性材料的磁晶各向异性,掌握单轴晶体和立方晶体的各向异性能的计算;了解磁晶各向异性场的概念;了解产生磁晶各向异性的机理;了解磁性材料的其它几种各向异性;了解磁晶各向异性性能的测量方法。 2、掌握磁致伸缩的基本概念;掌握立方晶体的磁致伸缩公式;了解单轴晶体的磁致伸缩的公式;了解磁致伸缩的物理根源。 3、掌握磁弹性能的物理概念及几种简单情况下的计算方法;理解磁弹性能的物理意义。 第五章 1、理解铁磁体中的退磁能是形成磁畴的原动力;对磁畴、畴壁有清晰的物理概念。 2、理解畴壁形成原理,壁内原子磁矩取向规律以及畴壁的厚度和能量的简单计算。 3、了解各种类型的磁畴结构,掌握运用平衡条件求解磁畴结构的方法。 4、了解微粒、薄膜磁体的磁畴结构及其应用。 实践环节:磁畴的观察 第六章 1、理解磁化、反磁化过程,理解畴壁位移起始磁导率,转动磁化起始磁导率和矫顽力的 计算。 2、理解不可逆磁化过程的分析和反磁化过程的计算。 第七章 1、了解铁磁物质在交流磁场作用下的动态特性,掌握各种损耗的计算方法。 2、了解畴壁的动态方程和畴壁的自然共振,掌握μ', μ''随频率f变化的关系曲线。 第八章 1、掌握软磁铁氧体磁性材料的制备方法和测量方法。 2、掌握永磁铁氧体磁性材料的制备方法和测量方法。 实践环节:磁性材料的制备方法和测量。 第九章 1、了解铁磁体中磁阻效应、磁热效应、霍尔效应、磁光效应及其起源; 2、理解解磁性材料的使用范围和基本特点。 实践环节:了解磁阻效应、磁热效应、霍尔效应、磁光效应。 本课程要求完成课外习题20-30道。

教案-----电路中的基本物理量

教案-----电路中的基本物理量

教案电路中的基本物理量 教学目的: 知识目标: (1)熟悉基本电路的组成和作用 (2)理解电压、电流、电动势的概念 (3)掌握电压、电流方向的判别 (4)理解电阻的定义和作用 技能目标: 熟识万用表测量电压、电流、电位的方法教学重点、难点: 教学重点:电压、电流、电位、电动势、电阻概念的理解 教学难点:(1)电压、电流方向的判别 (2)电动势概念的理解 课型:讲练结合 教学分析: 本次课先由一个手电筒电路引入电路的组成和作用,通过对电流、电压、电动势的实际测试,根据测试的结果来体验分析电流、电压、电位、电动势的存在和方向。再辅以理论讲解来阐明电流、电压、电动势的概念及电流、电压参考方向的应用和电流、电压实际方向的判别。 复习、提问: (1)手电筒电路是怎么工作的? (2)你认为电压、电流有方向吗?什么情况下有方向呢? 教学过程:

一、电路的组成和作用 导入:(先在黑板上画一手电筒电路的示意图如1(a)) (c) 图1 手电筒电路手电筒大家都很熟悉,由电池、开关、灯泡、导线四部分组成。电池给灯泡供电,但只有在开关闭合的前提下,才会发亮。所以电池相当于电源,灯泡是供电的对象,称为负载,开关决定着灯亮与灭,所以开关便是控制元件,导线连接整个电路,使其为一闭合回路。电源、负载、控制元件、回路为组成电路的四要素。所以手电筒电路的电路模型如图1(c)。 1、电路组成的四要素: (1)电源(2)负载(3)控制元件(4)回路 2、电路的作用: (1)能量的传输和转换。如手电筒电路,灯泡发光,电池能转换为光能和热能。 (2)信号的传递和处理。如扩音机电路,如图(b),放大器用来放大电信号,而后传 递到扬声器,把电信号还原为语言或音乐, 实现“声-电-声”的放大、传输和转换作用。

大学物理上知识点整理

大学物理上知识点整理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状 大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 ?固体间的静摩擦力:(最大值) ?固体间的滑动摩擦力: 3、流体阻力:或?。 4、万有引力: ?特例:在地球引力场中,在地球表面附近:。 ?式中R为地球半径,M为地球质量。 ?在地球上方(较大),。 ?在地球内部(),。

三、惯性参考系中的力学规律?牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功

大学物理(上)知识点整理

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:;

经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关

基础物理常数全表PDF

Fundamental Physical Constants—Complete Listing Relative std. Quantity Symbol Value Unit uncert.u r UNIVERSAL speed of light in vacuum c,c029*******m s?1(exact) magnetic constantμ04π×10?7N A?2 =12.566370614...×10?7N A?2(exact) electric constant1/μ0c2ε08.854187817...×10?12F m?1(exact) characteristic impedance of vacuum μ0/ 0=μ0c Z0376.730313461...?(exact) Newtonian constant of gravitation G6.673(10)×10?11m3kg?1s?21.5×10?3 G/ˉh c6.707(10)×10?39(GeV/c2)?21.5×10?3 Planck constant h6.62606876(52)×10?34J s7.8×10?8 in eV s4.13566727(16)×10?15eV s3.9×10?8 h/2πˉh1.054571596(82)×10?34J s7.8×10?8 in eV s6.58211889(26)×10?16eV s3.9×10?8 Planck mass(ˉh c/G)1/2m P2.1767(16)×10?8kg7.5×10?4 Planck lengthˉh/m P c=(ˉh G/c3)1/2l P1.6160(12)×10?35m7.5×10?4 Planck time l P/c=(ˉh G/c5)1/2t P5.3906(40)×10?44s7.5×10?4 ELECTROMAGNETIC elementary charge e1.602176462(63)×10?19C3.9×10?8 e/h2.417989491(95)×1014A J?13.9×10?8 magnetic?ux quantum h/2eΦ02.067833636(81)×10?15Wb3.9×10?8 conductance quantum2e2/h G07.748091696(28)×10?5S3.7×10?9 inverse of conductance quantum G?1012906.403786(47)?3.7×10?9 Josephson constant a2e/h K J483597.898(19)×109Hz V?13.9×10?8 von Klitzing constant b h/e2=μ0c/2αR K25812.807572(95)?3.7×10?9 Bohr magneton eˉh/2m eμB927.400899(37)×10?26J T?14.0×10?8 in eV T?15.788381749(43)×10?5eV T?17.3×10?9 μB/h13.99624624(56)×109Hz T?14.0×10?8 μB/hc46.6864521(19)m?1T?14.0×10?8 μB/k0.6717131(12)K T?11.7×10?6 nuclear magneton eˉh/2m pμN5.05078317(20)×10?27J T?14.0×10?8 in eV T?13.152451238(24)×10?8eV T?17.6×10?9 μN/h7.62259396(31)MHz T?14.0×10?8 μN/hc2.54262366(10)×10?2m?1T?14.0×10?8 μN/k3.6582638(64)×10?4K T?11.7×10?6 ATOMIC AND NUCLEAR General ?ne-structure constant e2/4π 0ˉh cα7.297352533(27)×10?33.7×10?9 inverse?ne-structure constantα?1137.03599976(50)3.7×10?9

大学物理知识点整理

一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量)

牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关系的力称保守力:

大学物理必备常量

附录1.物理常量[1-5] 常用物理常量 普朗克常数 346.62610 Js h -=? 约化普朗克常数 341.05510 Js 2h π-==? 波耳兹曼常数 231.38110 J/K B k -=? 真空光速 82.99810 m /s c =? 自由空间磁化率 70410 H /m u π-=? 自由空间的介电常数 1208.85410 F/m ε-=? 地球表面重力加速度 29.8 m /s c = 电子电荷 191.60210 C e -=? 电子质量 319.10910 kg e m -=? 质子质量 271.67310 kg p m -=? 原子质量单位 271.66110 kg am u m -=? 波耳半径 110 5.29210 m a -=? 波耳磁子 249.27410 J/T 2B e e u m -==? 核磁子 275.05110 J/T 2N p e u m -=-=-? 质子磁子 N p u u 793.2= Rb 原子的物理常量 87Rb ,85Rb 的质量 a m u a m u m m m m 91.84,91.868587== 87Rb ,85Rb 的核磁子 N N u u u u 353.1,751.28587== 87Rb ,85Rb 的核自旋 2/5,2/38587==I I Rb 的D 2线的线宽 226.065 M νππΓ=Γ=?

Rb 的D 1线的线宽 225.745 M νππΓ=Γ=? Rb 的D 2线的频率 2384.23 T H z D ν= Rb 的D 1线的频率 1377.11 T H z D ν=

磁性物理学 课后习题(宛德褔 马兴隆)

磁性物理学课后习题(宛德褔马兴隆) 第一章物质磁性概述 1.1 在一小磁铁的垂直方向R处,测得它的磁场强度为H,试求这磁铁的次偶极矩j m和磁矩μm。 1.2 垂直板面方向磁化的大薄片磁性材料在去掉磁化场后,它的磁极化强度是1[Wb·m-2],试计算板中心的退磁场H d等于多少? 1.3 退磁因子N d与哪些因素有关? 试证处于均匀磁化的铁磁球形体的退磁因子N d=1/3。设该球形铁磁体的磁化强度M在球表面面积元ds上可产生磁极dm,在球心有一单位磁极m1,它与dm的作用服从磁的库伦定律。 1.4设铁磁体为开有小缺口l1的圆环,其圆环轴线周长为l2,当沿圆环周均匀磁化时,该铁磁体磁化强度为M,试证在缺口处产生的退磁场H d为:H d=-l1 l1+l2 M 第二章磁性起源 2.1 试计算自由原子Fe、Co、Ni、Gd、Dy等的基态具有的原子磁矩μJ各为多少? 2.2 为什么铁族元素有的有效玻尔磁子数n f的实验值与理论公式n f = g J[J(J+1)]1/2不符合而与公式n f = 2[S(S+1)]1/2较为一致? 2.3 何谓轨道角动量冻结现象? 2.4 证明g J = 1 + J(J+1)+S(S+1)-L(L+1) 2J(J+1) 第三章自发磁化理论 3.1推导居里-外斯定律x=C T?T P ,说明磁化率与温度的关系。 3.2铁(金属)原子的玻尔磁子数为 2.22,铁原子量为55.9,密度为7.86×103 [kg·m-3],求出在0(K)下的饱和磁化强度。 3.3铁氧体的N型M s(T)曲线有什么特点?试比较抵消点温度T d和居里温度T c 的异同。 3.4 计算下列铁氧体的分子磁矩:Fe3O4, CuFe2O4, ZnFe2O4,CoFe2O4, NiFe2O4, BaFe12O19和GdFe5O12

大学物理A(2)基本知识点

大学物理A (2)基本知识点 一、试题题型、试卷结构和试题分数分布 1、试题题型: 选择题(10小题,每小题3分,计30分) 填空题(10小题,每小题3分,计30分) 计算题或证明题(4小题,每小题10分,计40分) 二、大学物理A (2)基本知识点 气 体 分 子 动 理 论 1. 理想气体状态方程 在平衡态下 RT M PV μ = , n k T p =, 普适气体常数 K m o l /J 31.8R ?= 玻耳兹曼常数 K /J 10 38.1N R k 23 A -?== 2. 理想气体的压强公式 t 2 E n 3 2v nm 31p = = 3. 温度的统计概念 kT 23E t = 4. 能量均分定理 每一个自由度的平均动能为1/(2KT)。 一个分子的总平均动能为自由度):i (kT 2i E =。 ν摩尔理想气体的内能RT 2 i E ?ν=。 5. 速率分布函数 Ndv dN )v (f = 麦克斯韦速率分布函数 2 v kT 2m 23 v e )kT 2m (4)v (f 2 - ππ= 三种速率

最概然速率 μ = = RT 2m kT 2v p 平均速率 πμ = π= RT 8m kT 8v 方均根速率 μ = = RT 3m kT 3v 2 热 力 学 基 础 1. 准静态过程:在过程进行中的每一时刻,系统的状态都无限接近于平衡态。 2. 体积功:准静态过程中系统对外做的功为 pdV dA =, ? = 2 1 v v pdV A 3. 热量:系统与外界或两个物体之间由于温度不同而交换的热运动能量。 4. 热力学第一定律 A )E E (Q 12+-=, A dE dQ += 5. 热容量 d T d Q C = 定压摩尔热容量 dT dQ C p p = 定容摩尔热容量 dT dQ C V V = 迈耶公式 R C C V p += 比热容比 i 2i C C V p += = γ 6. 循环过程 热循环(正循环):系统从高温热源吸热,对外做功,同时向低温热源放热。 效率 1 21 Q Q 1Q A - == η 致冷循环(逆循环):系统从低温热源吸热,接受外界做功,向高温热源放热。 致冷系数:2 122Q Q Q A Q -= = ε 7. 卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。 卡诺正循环效率 1 2T T 1- =η

磁性物理学习题与解答汇总

磁性物理学习题与解答 简答题 1.简述洪德法则的内容。 答:针对未满壳层,洪德法则的内容依次为: (1)在泡利原理许可的条件下,总自旋量子数S取最大值。 (2)在满足(1)的条件下,总轨道角动量量子数L取最大值。 (3)总轨道量子数J有两种取法:在未满壳层中,电子数少于一半是; 电子数大于一半时 2.简述电子在原子核周围形成壳层结构,需遵循哪些原则法则? 答:需遵循的原则法则依次为: (1)能量最低原则 (2)泡利不相容原理 (3)洪德法则 3.简述自由电子对物质的磁性,可以有哪些贡献? 答:可能的贡献有: (1)朗道抗磁 (2)泡利顺磁 4.简述晶体中的局域电子对物质的磁性,可能有哪些贡献? 答:可能的贡献有: (1)抗磁 (2)顺磁 (3)通过交换作用导致铁磁、反铁磁等 5.在磁性晶体中,为什么过渡元素的电子轨道角动量会被晶场“冻结”,而稀土元素的电子轨道角动量不会被“冻结”。 答:因为过渡元素的磁性来自未满壳层d轨道上的电子,d电子属于外层电子,在晶体中是裸露的,容易受到晶场的影响而被冻结;而稀土元素的磁性来自未满壳层f轨道上的电子,f电子属于内层电子,在晶体中不容易受到晶场的影响,所以不会冻结。 6.简述外斯分子场理论的成就与不足之处。 答:外斯分子场理论的成功之处主要有:唯象解释了自发磁化,成功得到第二类顺磁的居里—外斯定律和铁磁/顺磁相变的居里温度表达式等。 不足之处主要有:(1)低温下自发磁化与温度的关系与自旋波理论的结果差别很 大,后者与实验符合较好; (2)在居里温度附近,自发磁化随温度变化的临界指数,分子场 理论计算结果为1/2,而实验测量结果为1/3; (3)无法解释磁比热贡献在温度大于居里温度时的拖尾现象

初中物理基本物理量、公式及常数

初中物理基本物理量、公式及常数一、基本物理量:

二、常用公式: 三、常用数据:

四、初中物理单位换算: 4,初中物理易错点 一、测量 ⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。 ⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。 ⒊质量m:物体中所含物质的多少叫质量。主单位:千克;测量工具:秤;实验室用托盘天平。 二、机械运动 ⒈机械运动:物体位置发生变化的运动。 参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。 ⒉匀速直线运动: ①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。 ②公式:1米/秒=3.6千米/时。 三、力 ⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。 力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。 力的作用效果:使物体发生形变或使物体的运动状态发生改变。 物体运动状态改变是指物体的速度大小或运动方向改变。

⒉力的三要素:力的大小、方向、作用点叫做力的三要素。 力的图示,要作标度;力的示意图,不作标度。 ⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。 重力和质量关系:G=mg m=G/g g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。 重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。 ⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。物体在二力平衡下,可以静止,也可以作匀速直线运动。 物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。 ⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;方向相反:合力F=F1-F2,合力方向与大的力方向相同。 ⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。 滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】 7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。 四、密度 ⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。 公式:m=ρV 国际单位:千克/米3 ,常用单位:克/厘米3, 关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3; 读法:103千克每立方米,表示1立方米水的质量为103千克。 ⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。 面积单位换算: 1厘米2=1×10-4米2, 1毫米2=1×10-6米2。 五、压强 ⒈压强P:物体单位面积上受到的压力叫做压强。 压力F:垂直作用在物体表面上的力,单位:牛(N)。 压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。 压强单位:牛/米2;专门名称:帕斯卡(Pa) 公式:F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】 改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。 ⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计)。】 产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。 规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。[深度h,液面到液体某点的竖直高度。] 公式:P=ρgh h:单位:米;ρ:千克/米3;g=9.8牛/千克。 ⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半

关于大学物理基本知识

第一章力学 第1章质点运动学 1.1 本章主要内容 1.1.1 描写质点运动的基本物理量 (1) 位置矢量(矢径):是描写质点任意时刻在空间位置的物理量。如图所示, 质点在A点的位置矢量。 (2) 位移:是描述质点在Δt=t 2-t 1 时间内质点位置变化和方向的物理量。 (3) 速度:是描述质点位置变化的快慢和运动方向的物理量。 瞬时速度

直角坐标系中 (4) 加速度:是描述质点运动速度变化的快慢和方向的物理量。 瞬时加速度 直角坐标系中 1.1.2 种典型运动的运动公式 (1) 匀速直线运动: (2) 匀变速直线运动: (3) 匀速率圆周运动: (4) 抛体运动: 当时: (5) 圆周运动:,

,, (6) 角量与线量间的关系: , 1.1.3 描述质点运动的三种方法 (1) 矢量描述法:质点作空间曲线运动位置矢量随时间变化,是质点的 矢量运动方程。是质点运动的矢量表示法。 (2) 坐标描述法:支点的运动方程可以在直角坐标系中写成分量式 (3) 图线描述法:质点在某一坐标方向上的运动可以用坐标随时间的曲线(x-t 曲线)、速度随时间变化的曲线(v x-t曲线)和加速度随时间变化的曲线(a x-t) 来表示。 1.1.4 学习指导 (1) 矢径、速度、加速度反映的是在某一时刻或某一位置上运动状态及其变化情况,具有瞬时性。因此,质点的矢径或速度、加速度,都应指明是哪一时刻或 哪一位置的矢径、速度、加速度。 (2) 矢径、速度、加速度都是对某一确定的参照系而言的,在不同的参照系中对同一质点的运动描述是不同的,上述各量的大小和方向都可能不同,这就是它们

相关文档