文档库 最新最全的文档下载
当前位置:文档库 › 高三数学一轮复习讲义 专题5 函数的定义域、解析式、值域

高三数学一轮复习讲义 专题5 函数的定义域、解析式、值域

高三数学一轮复习讲义 专题5  函数的定义域、解析式、值域
高三数学一轮复习讲义 专题5  函数的定义域、解析式、值域

专题5 函数的定义域、解析式、值域

考纲导读:

考纲要求: 理解函数的解析式的定义.掌握列表法、图象法和解析式法;理解函数值域的概念;掌握求函数值域的常用方法;理解有关复合函数的值域分析;掌握函数解析式与定义域的常见求解方法以及在实际问题中的应用.

考纲解读:函数的定义域、解析式、值域是函数的的重要的要素,也是高考的命题始点,不同的命题的呈现方式往往均是从这几个主面展开的,因而此部分内容既基础,又抽象.

考点精析:

考点1、函数的定义域

求函数定义域类问题或与定义域相关的题目难度不大,一般为选择题或填空题,有时可能是解答题的第一小问,定义域是研究函数问题的基础所在.

【考例1】 (北京四中)函数2

()lg(31)

f x x =++的定义域是( )

A. 1(,)3-+∞

B. 1(,1)3-

C. 11(,)33-

D. 1

(,)3

-∞-

解题思路:本题考查了函数的定义域及不等式组的求解.用不等式组列出该函数解析式

中所有的限制条件,解不等式组求各不等式解的交集即可.

正确答案:由已知可得10,1

1310,

3x x x ->??-<

+>?, 故应选B.

回顾与反思:掌握基本初等函数( 如分式函数、对数函数、三角函数,根式函数等)

的定义域是求函数定义域的关键.

知识链接:常见函数的定义域满足的条件:

①如果()f x 是整式,那么函数的定义域是实数集;

②如果()f x 是分式,那么函数的定义域是使分母不等于零的实数的集合;

③如果()f x 为二次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;

④如果()f x 是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.

【考例2】 (北京四中)函数y =( )

A. (3,+∞)

B. [3,)+∞

C. (4,+∞)

D. [4,)+∞

解题思路:本题考查了函数的定义域及对数不等式、不等式组的解法.求解时要注意不等式的边界值是否可以取到,可以用代入法加以验证.

正确答案:由已知可得2log 20,

40,x x x -≥??≥?>?

,故应选D.

回顾与反思:与对数函数复合的复合函数的定义域求解是常见的高考基础题,此类问题,

需要通过对数函数的图象特征加以分析.

知识链接:复合函数的定义域的求解往往归结为解不等式组的问题.解不等式组时,可以借助数轴求交集,特别注意端点处的实点和虚点.

考点2、函数的值域与最值

函数的值域与最值类题目是对函数基本概念的考查,为中档题目,常见题型有选择题、填空题或解答题,注意应用各种不同类型的求解方法.

【考例1】 (陕西文)函数f (x )=1

1+x 2

(x ∈R )的值域是( )

A .[0,1]

B .[0,1)

C .(0,1]

D .(0,1)

解题思路:解法一利用函数对应法则,由内向外求解,解法二利用了反求法求解. 正确答案:解法一 ∵2

0x ≥, ∴2

11x +≥ , 21

011

x <≤+,即得f (x )∈(0,1], 故应选C. 解法二:由y =11+x 2 , 可得2

11x y

=-, ∵2

1110y

x y y

-=

-=≥,解之得y ∈(0,1] 故应选C. 回顾与反思:本题考查了分式函数的值域的求解方法.根据不同的思维方式可以得出不

同的求解方式.

知识链接:用对应法则法求值域时,按顺序分解函数表达式是关键,用不等式法求函数值域时,需认真分析其等号能否成立.

【考例2】 (北京四中)定义在R 上的函数()y f x =的值域为[a ,b ],则(1)y f x

=+的值域为 ( )

A. [a ,b ]

B. [a +1, b +1]

C. [a -1, b -1]

D. 无法确定

解题思路:.一方面可以通过定义域的变换看函数值域的变化分析,另一方面可以通过函数图象的变化观察值域的变化得答案,后一种思维方式较佳.

正确答案:∵函数(1)y f x =+的图象是由函数()y f x =的图象向左平移1个单位得到的,其值域不改变,

∴其值域仍为[a ,b ],故应选A.

回顾与反思:本题考查了抽象函数的值域及函数图象的平移,考查了考生对函数的本质属性的掌握程度

知识链接:分析一个函数的值域,应首先考虑函数的定义域.函数的值域是对函数的概念的深化,函数值域的几何意义是对应函数图象上纵坐标的变化范围,故有时可结合函数图象分析值域.

考点3、函数的表示法

函数的表示法类题目是对基本概念的考查,为低中档题目,常见题型有选择题、填空题或解答题,注意应用各种不同类型的求解方法.

【考例1】 (盐城二模)已知两个函数)(x f 和)(x g 的定义域和值域都是集合{1,2,3},其定义如下表.

填写下列)]([x f g 的表格,其三个数依次为

A. 3,1,2 B . 2,1,3 C. 1,2,3 D. 3,2,1 解题思路:本题用列表法给出函数的表示法,旨在考查函数的不同取值条件下数据表信

息的提取与整合,代入求值时要注意按步骤依次给出结论,防止出错.

正确答案:由题意分析知,3)2())1((==g f g ,2)3())2((==g f g

,1)1())3((==g f g 则三个数依次为3,2,1,故选D.

回顾与反思:用列表法表示函数关系的优点是:不必通过计算就知道自变量取某些值时函数的对应值.

知识链接:列表法:就是列出表格来表示两个变量的函数关系;图象法,就是用函数图象表示两个变量之间的关系, 图象法表示函数关系的优点是:能直观形象地表示出函数的变化情况. 表示函数的三种方法,其实质是一样的,只是形式的区别,列表和图象更加直观,解析式更适合计算和应用. 在对待不同题目时,选择不同的表示方法,因为有的函数根本写不出其解析式.

【考例2】 (成都市摸底)已知函数()y f x =的图象与函数2()68h x x x =-+-的图象关于点(1,0)对称.

(Ⅰ)求函数()f x 的表达式;

(Ⅱ)设函数()()2|1|()g x f x x x a a R =-++-∈,求()g x 的最小值.

解题思路:利用中心对称点的坐标关系代入法可求得函数的解析式.然后利用分类讨论的方法找出各自不同范围内函数的最小值,写成分段函数的形式即可.

正确答案:(Ⅰ)设()y f x =图象上任意一点(,)x y ,则它关于点(1,0)的对称点的坐标为

回顾与反思:用解析式表示函数关系的优点是:函数关系清楚,容易从自变量的值求出对应的函数值,便于用解析式来研究函数的性质.

知识链接:解析式,就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.

创新探究:

【探究1】已知f (2-cos x )=cos2x -cos x ,求f (x -1)= .

创新思路:本题考查了整体换元法求函数的解析式,考查了换元思想的掌握情况. 解法一:(换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1 令u =2-cos x (1≤u ≤3),则cos x =2-u .

∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5 (1≤u ≤3) ∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4 (2≤x ≤4) 解法二:(配凑法)

f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5

∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4). 【探究2】动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图.

创新思路:本题主要考查函数基本知识、基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型

解析: (1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得P A =2)3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达式为:

f (x )=?

??????≤<-≤<+-≤<+-≤≤)43(

4)32( 106)21(

22)10(

2

2

x x x x x x x x x x

(2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也

有不同的方法,因此同样必须对P 点的位置进行分类求解

.

如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,

S △ABP =

21AB ·BP =21(x -1);当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=2

1;当P 在DA 上时,即3<x ≤4时,S △ABP =2

1

(4-x

).

故g (x )=0 (01),1

(1) (12),21 (23),21(4) (34).2

x x x x x x ≤≤???-<≤??

?<≤??

?-<≤??

方法归纳:

1. 求解函数解析式是高考重点考查内容之一,需引起重视.所涉及的问题及解决方法

主要有:

①待定系数法,如果已知函数解析式的构造时,用待定系数法;

②换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;

③消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 2.求函数值域的常用方法:

(1)配方法:若函数类型为一元二次函数,则采用此法求其值域,其关键在于正确配成完全平方式.

(2)换元法:常用代数或三角代换,把所给函数代换成值域容易确定的另一函数,从而求得原函数的值域;用换元法求值域时,需认真分析换元后变量的范围变化.

(3)判别式法:若函数为分式结构,且分母中含有未知数,则通常去掉分母转化为一元二次方程,再由判别式,去求即原函数的值域.

(4)不等式法:借助于重要不等式求函数的值域,用不等式法求值域时,要注意均值不等式的使用条件“一正二定三等”.

(5)反函数法:若原函数的值域直接不好求解,可以考虑去求反函数的定义域,根据互为反函数的两个函数定义域与值域互换特点,确定原函数的值域;

(6)抽象型函数的值域,可采用反函数法,也可用分离常数法求解;

(7)单调性法:首先确定函数的定义域,然后再根据其单调性求函数值域,其中准确地找出其单调区间是关键;

(8)数形结合法:分析函数解析式表示的几何意义,根据其图象特点确定函数的值域. 过关必练: 一、选择题:

1. (湖北八校一联)已知)3

4

()34(01

)1(0cos )(-+???>+-≤=f f x x f x x

x f 则π的值为( ) A .-2

B .-1

C .1

D .2

2. (北京模)函数f (x )=

)

1(11

x x --的最大值是( )

A.

5

4

B.

45

C.

4

3

D.

3

4 3. (福建模)函数y =x +x 21-的值域是( )

A.(-∞,1]

B.(-∞,-1]

C.R

D.[1,+∞)

4. (长春四市一模)函数)0(1

32

<++=

x x x x

y 其中的值域是( ) A .)0,3[- B .[-3,1] C .]3,(--∞ D .)0,(-∞

5. (上海)设定义域为R 的函数???=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程

0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )

A .0c

B .0>b 且0

C .0

D .0≥b 且0=c

二、填空题:

6.

(北京)函数1

()2f x x

=

-的定义域为 . 7. (江苏)已知a ,b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++则

5a b -= .

8. (海淀期末)分段函数0

()0x x f x x x >?=?-?≤可以表示为f (x )=|x |,同样分段函数

()33x x f x x ?=?

>?≤3可以表示为f (x )=21

(x +3-|x -3|),仿此,分段函数33()x f x x x

可以表示为f (x )= ,分段函数() a

x a f x x a x b b x b ??

=<

≤≥可以表示为

f (x )= .

9. (黄冈期末)已知函数f (x )=bx

2-3x

,若方程f (x )=-2x 有两个相等的实根,则函数解析式为 .

10. (长沙模)规定记号“*

”表示一种运算,即,,a b a b a b *=+是正实数,已知13k *=.

(1)正实数k 的值为 ;(2)函数()f x k x =*的值域是 . 三、 解答题:

11. 有一个系列函数, 若它们的解析式相同, 值域相同,但其定义域不同, 则称这一系列函数为“同族函数”. 则函数解析式为2

y x =,值域为{1,2}的“同族函数”共有几个?

最新高三数学专题复习资料函数与方程

第八节 函数与方程 1.函数f(x)=ln(x +1)-2 x 的一个零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2.若x 0是方程? ????12x =x 13的解,则x 0属于区间( ) A.? ????23,1 B.? ???? 12,23 C.? ????13,12 D.? ? ???0,13 3.(A.金华模拟)若函数f(x)=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( ) A.? ????-12,14 B.? ???? -14,12 C.? ????14,12 D.???? ??14,12 4.(A.舟山模拟)设函数f 1(x)=log 2x -? ????12x ,f 2(x)=log 12x -? ???? 12x 的零点分 别为x 1,x 2,则( ) A .0

A .7 B .8 C .9 D .10 7.函数f(x)=?? ? x 2 +2x -3,x ≤0 -2+ln x ,x>0 的零点个数为________. 8.(A.杭州模拟)已知函数f(x)=??? x ,x ≤0, x 2 -x ,x>0, 若函数g(x)=f(x)-m 有三个不同的零点,则实数m 的取值范围为__________. 9.(A.义乌模拟)已知函数f(x)=ln x +3x -8的零点x 0∈[a ,b],且b -a =1,a ,b ∈N *,则a +b =________. 10.设函数f(x)=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f(x)的零点; (2)若对任意b ∈R ,函数f(x)恒有两个不同零点,求实数a 的取值范围. 11.已知函数f(x)=-x 2 +2ex +m -1,g(x)=x +e 2 x (x>0). (1)若g(x)=m 有实数根,求m 的取值范围; (2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根. 12.是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围,若不存在,说明理由. [冲击名校] 1.已知函数f(x)满足f(x)+1= 1 f x +1 ,当x ∈[0,1]时,f(x)=x ,若 在区间(-1,1]内,函数g(x)=f(x)-mx -m 有两个零点,则实数m 的取值范围是( ) A.??????0,12 B.??????12,+∞ C.??????0,13 D.? ? ???0,12 2.已知函数f(x)=?? ? kx +1,x ≤0,ln x ,x>0,则下列关于函数y =f(f(x))+1的 零点个数的判断正确的是( )

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

专题一:求函数值域十六法

求函数值域方法 求函数的值域或最值是高中数学基本问题之一,也是考试的热点和难点之一。遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例题、习题则是少得屈指可数。原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。本文谈一些求函数值域的方法,仅作抛砖引玉吧。 一、基本知识 1. 定义:因变量y 的取值范围叫做函数的值域(或函数值的集合)。 2. 函数值域常见的求解思路: ⑴.划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵.反解函数,将自变量x 用函数y 的代数式形式表示出来,利用定义域建立函数y 的不等式,解不等式即可获解。 ⑶.可以从方程的角度理解函数的值域,如果我们将函数()y f x =看作是关于自变量x 的方程,在值域中任取一个值0y ,0y 对应的自变量0x 一定为方程()y f x =在定义域中的一个解,即方程()y f x =在定义域内有解;另一方面,若y 取某值0y ,方程()y f x =在定义域内有解0x ,则0y 一定为0x 对应的函数值。从方程的角度讲,函数的值域即为使关于x 的方程()y f x =在定义域内有解的y 得取值范围。 特别地,若函数可看成关于x 的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 ⑷.可以用函数的单调性求值域。 ⑸.其他。 3. 函数值域的求法 (1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数()1y x =≥的值域。 ) +∞ 例2:求函数y = [)1,+∞ 例3:求函数1y = 的值域。 0≥11≥, ∴函数1y = 的值域为[1,) +∞。 (2)、配方法:配方法式求“二次函数类”值域的基本方法。形如2 ()()()F x a f x b f x c =++的函数的值域问题,均可使用配方法。 例1:求函数2 42y x x =-++([1,1]x ∈-)的值域。 解:2 2 42(2)6y x x x =-++=--+,

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? ? 一、?求函数的解析式? (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法

例1.已知 :23)1(2 +-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 65)(6)1(5)1(22+-=++-+=x x x f ,x x 所以 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(2 2-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。 解:设x t 11+=,则1≠t ,1 1-=t x ,代入已知得 t t t t t f 21)1(1111 )(222-=--=-??? ??-= ∴ )1(2)(2≠-=x x x x f 注意:1、使用换元法要注意t 的范围限制,这是一个极易忽略的地方。

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数2 y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a﹤0时,值域244ac b B y y a ??-??=≤?????? 。(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。(二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+,(1)求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。(四)课堂练习: 1.用区间表示下列集合: {}{}{}{} 4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2.已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3.课本P 19练习2。

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

艺术生高考数学专题讲义:考点37 直线及其方程

考点三十七 直线及其方程 知识梳理 1.直线的倾斜角 (1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率 (1)定义:当直线l 的倾斜角α≠π 2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率 通常用小写字母k 表示,即k =tan α. (2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1 . (3) 直线的倾斜角α和斜率k 之间的对应关系 每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下: 3.直线方程的五种形式 4.过P 1(11222(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0.

5.线段的中点坐标公式 若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则??? x =x 1+x 2 2y =y 1 +y 2 2 ,此公式为线段P 1P 2的中点坐标公式. 典例剖析 题型一 直线的倾斜角和斜率 例1 已知两点A (-3,3),B (3,-1),则直线AB 的倾斜角等于__________. 答案 56π 解析 斜率k = -1-33-(-3) =-3 3, 又∵θ∈[0,π), ∴θ=5 6 π. 变式训练 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π 4,则y =__________. 答案 -3 解析 由2y +1-(-3)4-2=2y +4 2=y +2, 得y +2=tan 3π 4=-1.∴y =-3. 解题要点 求斜率的常见方法: 1.若已知倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. 2.若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1 x 2-x 1(x 1≠x 2)求斜率. 3.若已知直线的一般式方程ax +by +c =0,一般根据公式k =-a b 求斜率. 题型二 直线方程的求解 例2 已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程. 解析 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2 -2-2, 即x +2y -4=0.

专题3.3 图形面积求最值,函数值域正当时-玩转压轴题,突破140分之高三数学解答题高端精品(201

专题3 图形面积求最值,函数值域正当时 【题型综述】 1、面积问题的解决策略: (1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高) (2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形 2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化 3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。这样可以使函数解析式较为简单,便于分析 【典例指引】 例1已知椭圆C:22 221x y a b +=(0a b >>)的一个顶点为()0,1M -6:l y kx m =+(0k ≠)与椭圆C 交于A ,B 两点,若存在关于过点M 的直线,使得点A 与点B 关于该直线对称. (I )求椭圆C 的方程; (II )求实数m 的取值范围; (III )用m 表示?MAB 的面积S ,并判断S 是否存在最大值.若存在,求出最大值;若不存在,说明理由. 点评:(1)第二小问分为两个操作程序:①据对称性得到直线AB 斜率k 与截距m 之间的关系;②据位置关系构建直线AB 斜率k 与截距m 之间的不等关系.点关于直线对称的转化为对称轴为垂直平分线,法一进一步转化为等腰三角形,从而线段相等,利用两点距离公式进行坐标化,化简后得到交点坐标纵横坐标之和及弦AB 的斜率,故可以使用韦达定理整体代入.实际上所有使用韦达定理整体代入这个处理方式的标准是题意韦达定理化:①条件与目标均能化为交点坐标和与积的形式;②横坐标←??→交点在 直线上纵坐标;法二则点差法处理弦中点问题.均可得到直线AB 的斜率k 与截距m 之间的关系.构建不等式的方式:法一根据直线与椭圆的位置关系,利用判别式构建参数m 的不等式;法二根据点与椭圆的位置关系,利用中点在椭圆内构建参数m 的的不等式;故直线与椭圆相交可与点在椭圆内等价转化; (2)第三小问分成两个操作程序:①构建面积的函数关系;②求函数的值域.法一利用底与高表示三角形

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

高中数学专题讲义-线性规划

【例1】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤, 则OA OB ?u u u v u u u v 的最小值为( ) A .2 B .2 C .3 D .22+ 【例2】 已知变量,x y 满足120x y x y ????-? ≥≤≤,则x y +的最小值为( ) A .2 B .3 C .4 D .5 【例3】 不等式组0,10, 3260x x y x y ??--??--?≥≥≤所表示的平面区域的面积等于 . 典例分析 线性规划

【例4】设变量,x y满足约束条件 3 1 x y x y + ? ? -- ? ≥ ≥ ,则目标函数2 z y x =+的最小值为() A.1B.2C.3D.4 【例5】设变量,x y满足 0, 10 3260 y x y x y ? ? -- ? ?-- ? ≥ ≥ ≤ ,则该不等式组所表示的平面区域的面积等 于,z x y =+的最大值为. 【例6】目标函数2 z x y =+在约束条件 30 20 x y x y y +- ? ? - ? ? ? ≤ ≥ ≥ 下取得的最大值是________. 【例7】下面四个点中,在平面区域 4 y x y x <+ ? ? >- ? 内的点是() A.(0,0)B.(0,2)C.(3,2) -D.(2,0) -

【例8】已知平面区域 1 ||1 (,)0,(,) 1 y x y x x y y M x y y x ?? + ? ?? -+ ? ?? ??? Ω== ?????? ? ?? ????? ? ?? ≤ ≤ ≥ ≥ ≤ ,向区域Ω内 随机投一点P,点P落在区域M内的概率为() A.1 4 B. 1 3 C. 1 2 D. 2 3 【例9】若x,y满足约束条件 30 03 x y x y x + ? ? -+ ? ? ? ≥ ≥ ≤≤ ,则2 z x y =-的最大值为. 【例10】已知不等式组 y x y x x a ? ? - ? ? ? ≤ ≥ ≤ ,表示的平面区域的面积为4,点() , P x y在所给平面区 域内,则2 z x y =+的最大值为______.

(推荐)高三文科数学一轮复习之求函数定义域和值域方法总结

求函数定义域和值域方法总结 一、求函数定义域方法总结 (一)简单函数定义域的类型及方法【必会!!!】 (1)f(x)为整数型函数时,定义域为R. 例如d cx bx ax x f c bx ax x f b kx x f +++=++=+=232)(,)(,)(定义域均为R. (2)f(x)为分式型函数时,定义域为使分母不为零的实数集合. 例如-4)(x 41)( ,1)(x 1)(≠+=≠= x x f x x f (3)f(x)为二次根式(偶次根式)型函数时,定义域为使被开方数大于等于零的实数的集合. 例如0)x -2(x 2)( 0),(x )(2≥≤+=≥=或x x x f x x f (4)f(x)为对数型函数时,定义域为使真数大于零的实数集合. 例如-1)(x )1(log )( 0),(x log )(2>+=>=x x f x x f a (5)正切函数)k ,k 2(x tan Z x y ∈+≠=ππ 例如Z)k ,2 k 4(x )2tan()(∈+≠=ππ x x f (6)00没有意义. 例如)2 1(x ,)12()(0≠-=x x f

(二)对于抽象函数定义域的求解 (1)若已知函数)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域由不等式b x g a ≤≤)(求出的x 的范围; 例如:已知)(x f 的定义域为]5,1[,则)23(+x f 的定义域为]1,3 1[-. (2)若已知函数))((x g f 的定义域为],[b a ,则函数)(x f 的定义域为)(x g 在],[b a x ∈上的值域. 例如:已知)3(-x f 的定义域为]7,0[,则)(x f 的定义域为]4,3[-. 二、求函数值域方法总结 (一)常见函数的值域(结合图像)【必会!!!】 (1)一次函数)0( ≠+=k b kx y 的值域为R . (2)二次函数)0( 2≠++=a c bx ax y 的值域为: 当0>a 时,值域为}44|{2a b ac y y -≥;当0=a a a y x 且的值域为}0|{>y y . (5)对数函数)10( log ≠>=a a x y a 且的值域为R . (6)三角函数:

函数的定义域与值域

函 数 一、函数定义 1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 答案:B 二、函数求值 1.已知f (x )=3x 3+2x +1,若f (a )=2,则f (-a )=________. 解析:∵f (x )=3x 3+2x +1, ∴f (a )+f (-a )=3a 3+2a +1+3(-a )3+2×(-a )+1=2, ∴f (-a )=2-f (a )=0. 2.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2 解析:选B 当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2. 当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2, 3.函数f (x ),g (x )分别由下表给出. 则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1. 当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 2

三、函数定义域 (1)一般函数的定义域求解 1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1] C .(-∞,0)∪(1,+∞) D .(-∞,0]∪[1,+∞) 解析:由题意知,x 2-x >0,即x <0或x >1.则函数定义域为(-∞,0)∪(1,+∞),选C. 2.(2017·贵阳监测)函数y =1-x 2 2x 2-3x -2 的定义域为( ) A .(-∞,1] B .[-1,1] C .[1,2)∪(2,+∞) D.??????-1,-12∪? ???? -12,1 解析:选D 由函数y =1-x 2 2x 2-3x -2得?? ? 1-x 2 ≥0,2x 2-3x -2≠0, 解得? ?? -1≤x ≤1,x ≠2且x ≠-1 2, 即-1≤x ≤1且x ≠-12, 所以所求函数的定义域为??????-1,-12∪ ? ???? -12,1,故选D. 3.函数f (x )= 1-|x -1| a x -1 (a >0且a ≠1)的定义域为____________________. 解析:由??? 1-|x -1|≥0, a x -1≠0 ??? ? 0≤x ≤2,x ≠0 ?0<x ≤2, 故所求函数的定义域为(0,2]. 4.函数f (x )=ln ? ? ???1+1x +1-x 2的定义域为( ) A .(-1,1] B .(0,1] C .[0,1] D .[1,+∞) 解析:选B 由条件知????? 1+1x >0,x ≠0, 1-x 2 ≥0. 即??? x <-1或x >0, x ≠0,-1≤x ≤1. 则x ∈(0,1]. 5.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .(6,+∞) B .(-3,6) C .(-3,+∞) D .[-3,6) 解析:选D 要使函数有意义应满足?? ? x +3≥0, 6-x >0, 解得-3≤x <6.

函数的定义域值域和解析式

函数的定义域、值域和解析式 1.函数的定义域 函数的定义域是指使函数有意义的自变量的取值范围. 2.求函数定义域的主要依据: ①分式函数:分母不为0; ②偶次方根:被开方数为非负数; ③对数函数:真数大于0,底数大于0且不为1; ④零次幂的底数不等于0 注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。 指数函数 x a y =(a >0且a ≠1) R (0,+∞) 对数函数 x y a log =(a >0且a ≠ 1) (0,+∞) R 正、余弦函数 y =sin x ,y =cos x R [-1,1] 正切函数 y =tan x {x |x ≠k π +2 π,k ∈Z} R 解析式 定义域 值域 一次函数 y =kx +b (k ≠0) R R 二次函数 c bx ax y ++=2 (a ≠0) R 当a >0时,),44( 2 +∞-a b a c 当a <0时,)44, (2 a b a c --∞ 反比例函数 x k y = (k ≠0) {x |x ≠0} {y |y ≠0} 均值函数 x b ax y + =(a >0,b >0) {x |x ≠0} (-∞,-2ab ]∪[2ab ,+∞) 常见函数的定义域与值域

,0 ||0 1?? ?>-≠+x x x ,||1 ? ??>-≠x x x 例1求下列函数的定义域 (1)1 log 1 )(2-=x x f (2))1(log 1 |2|)(2---=x x x f (3)y=x x x -+||)1(0 ; 解:(1)由题意可得???>->01log 0 2 x x 解得x >2. ∴所求定义域为(2,+∞) ?? ? ??≠->-≥--110 10 1|2|x x x 解得x ≥3 (2)由题意得 ∴所求定义域为(3,+∞) (3)由题意 化简 故函数的定义域为{x|x <0且x ≠-1}. 练习:求函数的定义域 (1) y=2 3 2 531 x x -+-; (2))34lg(1 3)(22-+-+-=x x x x x f 3.抽象函数的定义域 求复合函数y =f(t),t =q(x)的定义域的方法: ①若y =f(t)的定义域为(a ,b),则解不等式得a <q(x)<b 即可求出y =f(q(x))的定义域; ②若y =f(g(x))的定义域为(a ,b),则求出g(x)的值域即为f(t)的定义域. 例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f(x 1);(3)y=f( )31 ()31-++x f x ; 解:(1)0≤3x ≤1,故0≤x ≤3 1 , y=f(3x)的定义域为[0, 3 1] . (2)仿(1)解得定义域为[1,+∞ ). (3)由条件,y 的定义域是f )31(+x 与)3 1 (-x 定义域的交集 .

相关文档 最新文档