文档库 最新最全的文档下载
当前位置:文档库 › 栈桥及平台受力计算书要点

栈桥及平台受力计算书要点

栈桥及平台受力计算书要点
栈桥及平台受力计算书要点

钢管桩便桥 受力计算书

2010年3月6日

钢管桩便桥及平台受力计算书

一、便桥及平台结构简介

钢便桥及平台结构见附图,由于2、3号主墩横轴线与桥纵轴线斜交,所以工作平台与钻孔平台轴线斜交,在2、3号墩位置分别搭设钢便桥和钢平台,钢平台分为工作平台与钻孔平台。

便桥采用钢管桩基础,共一跨,与河堤堤岸相接,宽度为6m,跨度为11.5m。与便桥相连的为工作平台,宽度为9m,跨度为12m。便桥及工作平台共计有三排钢管桩,与河堤连接处桥墩采用2根φ630*8mm钢管桩,其余两个桥墩采用3根φ630*8mm钢管桩。便桥及工作平台的钢管桩以上采用2I40b工字钢作为横梁,横梁以上采用四根H580做为桥面主梁,主梁间距为144cm,主梁以上采用I20b作为桥面分布梁,分布梁间距为45cm,分布梁顶面铺设1cm厚钢板作为桥面板。

每个墩钻孔平台共计设10根φ529*8mm钢管桩,平台宽度为9m,由于与钢便桥斜交,平台形状为一梯形,梯形的上下底分别为14.31m和11.57m。梯形长边位置设4根钢管桩,其余两排均为三根钢管桩。钢管桩顶横梁中间一根为2I45b、边上两根为I45b。横梁上铺设I30轻型工字钢,间距为60cm。I30工字钢上除护筒位置外满铺[18b槽钢作为桥面系。

二、便桥及平台各主要部件的应力计算

按最不利荷载计算便桥及平台受力,最不利的荷载工况为一辆12m3罐车满载混凝土行驶在便桥或平台上时。经实际称重知,罐车8个后

轮共计荷载40t,前轮盒子啊约为10t。后轮有两个轴,轴间距为130cm,每个轴单侧车轮着地尺寸为60*20cm,后轮两个轴中心距离前轮距离约为5.5m。下面按此荷载对便桥及平台进行受力计算。

1、便桥及工作平台钢管桩受力计算

便桥及工作平台采用φ630*8mm钢管桩,简化的最不利工况是当罐车的两个后轴的中心与三根钢管桩的中间一根钢管桩中心重合时,偏安全考虑,按两个后轴40t全部由中间一根钢管承受,而不考虑边上钢管桩的受力。

在以上40t荷载基础上再考虑20%便桥自身荷载,则中间一根钢管桩最大荷载等于40*1.2=48t。

φ630*8mm钢管桩截面面积A=156cm2

便桥最大压应力=48000/156=308Kgf/cm2=30.8MPa,远小于容许值145MPa,所以便桥及工作平台钢管桩受力能够满足要求。

2、钢管桩上横梁受力计算

(1)横梁弯应力计算

显然钢管桩中心距离为350cm上的2I40a横梁受力最为不利,此时横梁作用在内侧钢管壁的支点距离L=350-63=287cm

罐车车轮左右车轮外侧距离为2m,则左右车轮中心距离为1.4m,约等于H型钢的中心间距1.44m。故当罐车两个后轴的中心作用在两根钢管横梁的中心时,横梁的受力最为不利,此时左右车轮分别作用在两根H型钢中心,按简支梁计算,纵梁支撑中心距离支点距离为56.9cm(见方案图),取70cm。其计算简图如下:

显然最大弯矩Mmax=20000*(287-140)/2=1470000Kgf.cm 横梁为2I40a ,其截面抵抗矩W=1086×2=2172cm 3

所以横梁的最大应力σmax =W

max M =1470000/2172=677Kgf/cm 2

=67.7Mpa <f=145Mpa

横梁抗弯应力能满足规范要求。

(2) 2I40a 最大挠度计算

采用清华大学求解器求得的最大挠度如下:

最大挠度值等于0.3cm <[Δ]=L/400=350/400=0.9cm ,所以2I40a 横梁型钢刚度满足规范要求。

3、便桥及工作平台H 型钢纵梁受力计算

(1)H 型钢抗弯能力计算

显然跨径为12m 的H 型钢受力最为不利,按简支梁进行计算,按罐车两个后轴的中心作用在跨中计算,此时前轮离支座50cm ,可以忽略其对跨中弯矩的影响。为简化计算,偏安全的认为两个后轴的单侧车轮中心点作用20t 荷载在H 型钢的跨中为最不利受力工况。

由于H 型钢中心间距为144cm ,罐车后轮宽度为60cm ,容易计算出两侧的两片H 型钢分配荷载的比例=15/144*2*100%=21%,也就是说两侧H 型钢分配了21%的荷载,这样后轮中心作用的H 型钢跨中分配的荷载P=20*(1-0.21)=15.8t

此时跨中最大弯矩M max =4

PL =15.8*1000*1200/4 =4.74×106K gf ·cm

考虑到实际情况,H 型钢实际上下翼板厚度为 1.7cm ,腹板为

1.2cm ,上下翼缘宽度均为30侧模,H 型钢的实际高度为58.2cm ,计算得H 型钢的惯性矩为97883cm 4,截面抵抗矩W=97883/(58.2/2)=3364cm 3。

所以H 型钢的最大应力

σmax =W

max M =4.74*106/3364=1409Kg/cm 2=140.9Mpa ,小于145MPa ,H 型钢的抗弯能力满足规范要求。

(2)H 型钢最大挠度计算

H 型钢跨中最大挠度值

=PL 3/(48EI)=15.8*1000*12003/(48*2.1*106*97883)=2.8cm

<[Δ]=L/400=1200/400=3cm ,所以H 型钢刚度满足规范要求。

(3)H 型钢纵梁稳定性分析

1)、整体稳定性分析

查《钢结构设计规范》4.2.1,本方案中符合“有铺板密铺在梁的受压翼缘上并与其牢固焊接、能阻止梁受压翼缘的侧向位移”,所以H 型钢的整体稳定性不需要计算。施工时注意将H 型钢纵梁与工字

钢分布梁牢固焊接即可满足要求。

2)、局部稳定性分析

查《钢结构设计规范》4.3.2组合梁腹板配置加劲肋应符合下列规定中的第一款:

当h 0/t w ≤80fy 235

时,对有局部压应力的梁应按构造配置横向加劲

肋。本方案中的H 型钢h 0=49.2cm ,t w =1.2,fy=235,

h 0/t w =41<80fy 235

=80,符合此条件,所以在每根Ⅰ20b 分布梁对

应位置需采用加劲板对H 型钢腹板进行加强,以确保H 型钢翼板稳定性满足规范要求。

横向加强肋的加强方法:

查《钢结构设计规范》4.3.6:横向加劲肋的最小间距为0.5h 0,最大间距应为2.0h 0,可以计算求得横向加劲肋的最小间距为24.6cm ,最大间距应为98.4,方案中加劲肋间距为45cm ,符合此规定。

加劲肋尺寸计算:

查《钢结构设计规范》4.3.6:在腹板两侧成对设置的钢板横向加劲肋,其尺寸应符合下列公式要求:

外伸宽度:bs ≥30

0h +40(mm ),厚度ts ≥15s b 根据以上公式计算如下:

最小外伸宽度=30492+40=56.4mm ,最小厚度=15

4.56=3.8mm 施工中采用宽度为80mm ,厚度为8mm 的加劲板完全可以满足受力要求。

4、便桥及工作平台桥面分布梁I20b 受力计算

(1)I20b 抗弯能力计算

桥面分布梁I20b 的最不利受力为单轴单侧罐车车轮作用在其跨中时,由于车轮横向着地宽度为60cm ,单侧单轴车轮荷载为10t ,可认为罐车车轮荷载以均布荷载作用在跨中60cm 范围的I20b 上。此时其最不利受力工况简化为简支梁,

均布荷载q=10*1000/60=166.7Kgf/cm ,其受力简图如下:

采用清华大学求解器求得的弯矩图如下:

最大弯矩值为286733Kgf.cm

I20b 截面抵抗矩W=250cm 3

则I20b 最大弯应力

σmax =W

max M =286733/250=1147Kg/cm 2=114.6Mpa ,小于145MPa ,故I20b 桥面分配梁抗弯能力满足规范要求。

(2)、I20b 最大挠度计算

采用清华大学求解器求得的最大挠度如下:

最大挠度值仅为0.08cm,显然能够满足规范要求。

5、桥面钢板受力计算

I20b顶面铺设10mm厚钢板作为便桥桥面,由于I20b的间距为450mm,净距为348mm,而钢板作用的荷载为均布面荷载,面荷载的计算如下:

单侧车轮荷载为100000N

单侧车轮作用面积=600*200=120000mm2

则均布面荷载=100000/120000=0.833Kg/mm2

采用ansys计算软件计算的钢板应力云图如下:

其最大应力为176MPa>[σ]=145Mpa,最大应力超标,对于施工临时结构,有必要时可以将容许应力放大1.3倍进行计算,则最大容许应力的极限值=145*1.3=188.5MPa>176MPa。故钢板的弯应力能

够满足规范要求。

最大挠度为2.2mm,2.2/450=1/205>1/400,挠度值超标,钢板会有微小变形,但对受力安全不会有影响。

三、钻孔平台各主要部件的应力计算

1、钻孔平台钢管桩受力计算

钻孔平台采用φ529*8mm钢管桩,同样简化的最不利工况是当罐车的两个后轴的中心与紧接工作平台中间一根钢管桩中心重合时,偏安全考虑,按两个后轴40t全部由中间一根钢管承受,而不考虑边上钢管桩的受力。

在以上40t荷载基础上再考虑20%便桥自身荷载,则中间一根钢管桩最大荷载等于40*1.2=48t。

Φ529*8mm钢管桩截面面积A=131cm2

便桥最大压应力=48000/131=366Kgf/cm2=36.6MPa,远小于容许值145MPa,所以钻孔平台钢管桩受力能够满足要求。

2、钢管桩上横梁受力计算

(1)2I45b及I45b横梁弯应力计算

钻孔平台共计10根桩,同一根横梁下钢管桩的最大中心距离为571cm,此时采用2I45b横梁;采用一根I45b横梁时其钢管中心间距最大为518cm。根据设计图纸采用2I45b的横梁上的最不利荷载取单横梁跨中最不利荷载取为15t(考虑钻机及钻锤荷载总重25t,并考虑偏载)

2I45b横梁受力计算:

偏于安全按简支梁计算,显然2I45b 最大弯矩

Mmax=20000*571/4=2855000Kgf.cm

横梁为2I45b ,其截面抵抗矩W=1500×2=3000cm 3

所以横梁的最大应力σmax =W

max M =2855000/3000=952Kgf/cm 2

=95.2Mpa <[σ]=145Mpa

2I45b 横梁抗弯应力能满足规范要求。

I45b 横梁受力计算:

偏于安全按简支梁计算,显然I45b 最大弯矩

Mmax=15000*518/4=1942500Kgf.cm

横梁为I45b ,其截面抵抗矩W=1500cm 3

所以横梁的最大应力σmax =W

max M =1942500/1500=1295Kgf/cm 2

=129.5Mpa <[σ]=145Mpa

I45b 横梁抗弯应力能满足规范要求。

(2) 横梁最大挠度计算

跨中作用集中荷载的跨中最大挠度计算公式如下:

Δmax=PL 3/(48EI)

对2I45b

Δmax=PL 3/(48EI)=20000*5713/(48*2100000*2*33759)=0.5cm <

[Δ]=L/400=571/400=1.4cm

对I45b

Δ

max=PL 3/(48EI)=15000*5183/(48*2100000*33759)=0.6cm <

[Δ]=L/400=518/400=1.3cm

所以2I40b 与I45b 横梁刚度满足规范要求。

3、钻孔平台I30工字钢受力计算

(1)I30工字钢抗弯能力计算

I30工字钢支点间距为350cm ,工字钢间距为60cm ,当罐车单侧单轴后轮作用在I30跨中时其受力为最不利,按两跨连续梁进行计算。

工字钢跨中承受轮宽60cm 的均布线荷载作用,

其均布线荷载q=10000/60=166.7Kg/cm

其受力图示如下:

采用求解器求得的弯矩图如下:

此时跨中最大弯矩M max =665790K gf ·cm

I30工字钢σmax =W

max M =665790/472.3=1410Kg/cm 2=141Mpa ,小于145MPa ,I30分布梁的抗弯能力满足规范要求。

(2)、I30最大挠度计算

采用清华大学求解器求得的最大挠度如下:

最大挠度值仅为0.3cm<[Δ]=L/400=350/400=0.9cm,能够满足规范要求。

4、桥面[18b槽钢受力计算

(1)、[18b槽钢抗弯能力计算

罐车有两个后轴,每个后轴重20t,由于每侧分布宽度为60cm,可以考虑作用在3片[18槽钢上面,在槽钢上的分布宽度(即轮压顺桥向长度)取为20cm,其分布线荷载q=10000/3/20=166.7Kg/cm。

由于I30间距为60cm,也就是说[18b槽钢支点间距为60cm,当罐车的两个后轴单侧分别作用在两跨[18b跨中时,[18b受力最为不利。

其计算简图如下:

采用清华大学结构力学求解器求得该梁的弯矩图如下:

跨中弯矩最大M max=35780Kg·cm

[18槽钢开口朝下,由于其对Y轴的界面抵抗矩上下不一样,开口

侧的抵抗矩比腹板端要小很多,图中弯矩也是下口的数值大,所以只计算开口侧的应力即可。

其开口侧截面抵抗矩W=21.5cm 3

所以横梁的最大应力

σmax =W max

M =35780/21.5=1664Kg/cm 2=166.4>[σ]=145Mpa

由于便桥属于临时结构,其最大容许应力可乘以1.3倍的系数,145*1.3=188.5MPa >166.4,所以[18b 槽钢应力能满足要求。

2)、[18b 槽钢挠度计算

采用清华大学结构力学求解器求得该梁的最大挠度如下:

最大挠度值等于0.02cm <[Δ]=L/400=60/400=0.15cm

所以[18b 槽钢刚度能够满足规范要求。

下承式贝雷钢栈桥设计计算书

目录 1 设计说明 ....................................................................................................................... - 1 - 栈桥构造 ................................................................................................................. - 1 -贝雷梁.................................................... - 2 - 桩顶横梁.................................................. - 2 - 钢管桩基础................................................ - 2 -设计主要参考资料 .............................................. - 2 -设计标准 ...................................................... - 3 -主要材料力学性能 .............................................. - 3 -2 作用荷载........................................................ - 3 - 永久作用 ...................................................... - 3 -可变作用 ...................................................... - 3 -混凝土罐车................................................ - 3 - 流水压力.................................................. - 4 - 风荷载.................................................... - 4 - 制动力.................................................... - 4 -荷载工况 ...................................................... - 4 -3 栈桥结构计算分析................................................ - 4 - 计算模型 ...................................................... - 4 -计算分析 ...................................................... - 5 -计算结果汇总 .................................................. - 6 -4 基础计算........................................................ - 7 - 钢管桩入土深度 ................................................ - 7 -钢管桩稳定性 .................................................. - 8 -5 结论............................................................ - 9 -

公路工程-桥梁-钢栈桥-贝雷梁 计算书及图纸

合六高速瓦东干渠便桥设计检算 一、设计跨度:m l 10=; 桥面宽度:m B 4= 荷载: 6m3罐车35t,荷载如上图一、图二。 图一: t F R A 15.62 3.122' === t l b F R A 872.7104.63.12"=?=?= t R R R A A A 022.14"'=+= 104.66.33.12103.124141??+??=+?= l Fab Fl M m t -=+=0892.593392.2875.30 图二: t R A 3.12'= t l b F R A 088.1010 7.94.10"=?=?= t R R R A A A 388.22"'=+= m t a F M -=?=?=89.523.43.12' m t l b a F M -=??=??=0264.310 7.93.04.10" m t M M M -=+=9164.55"' 通过计算,以图一荷载布置为控制计算。 二、桥面构件: 桥面板厚9mm ,宽度m 2.12?(车道板)t 696.185.710009.02.12=???? 桥面木(枕木m cm cm 5.21622??),桥面宽4米,交错布置如图:

t m t 2.322.010/8.05.216.022.03=? ??? 三、构件强度检算: 1.车道板: 3216200912006 1mm W =??= 43729009120012 1mm I =??= mm N Fl M -=??==3382500220615004 141 ]/2213.1170[/8.20822mm N mm N W M =?=<==σσ 2桥面木: 按2跨匀布荷载计算: I10纵梁间距:mm 5.3422)68753(=÷- mm N q /8.89685 615001== mm N mm N mm mm N q /028.025004.702500/8005.216.022.03)(2==???=桥面木 mm N mm mm N q /8478.01000/785000.12.1009.03 ) (3=???=车道板 mm N q /7.9085.003.08.89=++= 329386671602206 1mm W =??= 437509333316022012 1mm I =??= mm N kql M -=??-==13299605.3427.90125.022 ]/13[/4.1938667 132996022mm N mm N W M =<===σσ ]855.0400 342[009.075093333101005.3427.90521.0100444mm mm EI kql f =<=????== N kql V B 194165.3427.90625.0-=??-==左 N kql V B 194165.3427.90625.0-=??==左 N R 38832194162=?=

栈桥详细计算书

目录 1、编制依据及规范标准 (4) 1.1、编制依据 (4) 1.2 、规范标准 (4) 2、主要技术标准及设计说明 (4) 2.1 、主要技术标准 (4) 2.2 、设计说明 (5) 2.2.1 、桥面板 (5) 2.2.2 、工字钢纵梁 (5) 2.2.3 、工字钢横梁 (5) 2.2.4 、贝雷梁 (5) 2.2.5 、桩顶分配梁 (6) 2.2.6 、基础 (6)

2.2.7、附属结构 (6) 3、荷载计算 (6) 3.1 、活载计算 (6) 3.2 、恒载计算 (7) 3.3 、荷载组合 (7) 4、结构计算 (7) 4.1 、桥面板计算 (8) 4.1.1 、荷载计算 (8) 4.1.2 、材料力学性能参数及指标 (9) 4.1.3 、力学模型 (9) 4.1.3 、承载力检算 (9) 4.2 、工字钢纵梁计算 (10) 4.2.1 、荷载计算 (10) 4.2.2 、材料力学性能参数及指标 (11) 4.2.3 、力学模型 (11) 4.2.4 、承载力检算 (11) 4.3 、工字钢横梁计算 (13) 4.3.1 、荷载计算 (13) 4.3.2 、材料力学性能参数及指标 (13)

4.3.3 、力学模型 (14) 4.3.4 、承载力检算 (14) 4.4 、贝雷梁计算 (15) 4.4.1 、荷载计算 (15) 4.4.2 、材料力学性能参数及指标 (16) 4.4.3 、力学模型 (16) 4.4.4 、承载力检算 (17) 4.5 、钢管桩顶分配梁计算 (18) 4.5.1 、荷载计算 (18) 4.5.3 、力学模型 (19) 4.5.4 、承载力检算 (19) 4.6 、钢管桩基础计算 (19) 4.6.1 、荷载计算 (19) 4.6.2 、桩长计算 (20) 4.7 、桥台计算 (20) 4.7.1 、基底承载力计算 (21)

大桥盖梁模板计算书

76省道复线南延至大麦屿疏港公路工程 第6合同段 芦浦特大桥 盖梁模板计算书 宁波交通工程建设集团有限公司 76省道南延至大麦屿疏港公路工程第6合同段项目部 2013年6月15日

立柱、模板立面图

(1)侧模内楞计算 模板主要承受混凝土侧压力,本工程砼一次最大浇筑高度为2.2米,模板高度为2.35米。新浇筑混凝土作用于模板的最大侧压力取下列二式中的较小值(施工手册): 1 F=0.22γc t0β1β2V2 F=γcH 式中 F—新浇筑混凝土对模板的最大侧压力(KN/m2); γc—混凝土的重力密度,取24KN/m3; t0—新浇混凝土的初凝时间,取10h; V—混凝土的浇灌速度,取0.7m/h; H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,取2.2m; β1—外加剂影响修正系数,取1.2; β2—混凝土坍落度影响修正系数,取1.15; 1 所以 F=0.22γc t0β1β2V2 1 =0.22×24×10×1.2×1.15×0.72 =61KN/m2 F=γcH =24×2.2 =52.8KN/m2 综上混凝土的侧压力F=52.8 KN/m2

有效压头高度为 h=F/γc =52.8/24 =2.2m (2)侧模外楞计算 外楞为双拼的[14,间距为100cm 混凝土的侧压力为52.8KN/m 2 转化成线荷载=52.8KN/m 简化为简支梁计算 2811440840102141006.2Nm EI =???=- EA=2.06×1011×37×10-4Nm=7.6×108N 计算结果: kNm M 21.38max = kN Q 52.47max = 强度计算: []MPa MPa W M 5.1883.11458.132101611021.386-3max max =?==??==σσ<,合格; []MPa MPa A Q 5.1103.1853.1910 7.321052.4732333max max =?==????==-ττ<,合格; 刚度计算:

贝雷梁栈桥与平台计算书12.9

都匀经济开发区29号道路建设工程 K1+500-k1+596 钢便桥安全专项施工方案 市捷安路桥大临结构设计咨询公司 二○一七年七月

目录 一、工程概述 (1) 二、设计依据 (1) 三、计算参数 (2) 3.1、材料参数 (2) 3.2、荷载参数 (2) 3.3、材料说明 (4) 3.4、验算准则 (5) 四、栈桥计算 (5) 4.1、计算工况 (5) 4.2、建立模型 (5) 4.3、面板计算 (6) 4.4、小纵向分配梁计算 (6) 4.5、横向分配梁计算 (7) 4.6、贝雷梁计算 (8) 4.7、桩顶分配梁计算 (9) 4.8、钢管桩受力计算 (10) 4.9、钢管桩反力计算 (12) 4.10、整体屈曲计算 (12) 五、结论 (12) 附件一: (13)

一、工程概述 钢便桥位于清水江中游(29号道路)K1+500-K1+596,河道宽约81m,为方便河道两侧道路土石方挖填运输及施工用的材料运输,在清水江上搭建K1+500-K1+596长96m临时上承式贝雷钢桥结构便桥一座。 根据现场的地形、地貌,以保证避免破坏江河环保为前提条件,临时钢桥结构桥体为上承式贝雷钢桥结构,钢便桥位置设在道路主桥路线左侧,距主桥边线30米,以满足主桥梁施工需要。便桥桥面宽度6米(包含人行道每边0.8米),钢管桩间距跨度6米,总长96米,共设16跨。清水江两岸便桥台位置采用 C30钢筋混凝土浇筑基础。 清水江水位稳定,流速基本趋于平静,为了考虑安全,水流流速按照1m/s进行控制,岩石强度较大,打入难度很大,深度也相对较浅。由于水流流速较小,栈桥长度仅96m,为此,柏湾大桥两端采取固定牢固,其它通过板凳桩的方式进行固定的方式进行施工(深度较大区域在上下游增设钢管),该施工方法在同类型的地质情况下有较成功的案例,对于流水速度较小的区域是切实可行的方法。 贝雷梁栈桥桥面宽度为6m,最大跨度为6m,设计承重为80t,而施工过程中采用25t汽车吊进行施工作业,施工时应满足承载需要。 二、设计依据 ⑴、都匀经济开发区29号道路建设工程地质、水文报告; ⑵、现场实际情况及甲方要求; ⑶、主要适用标准、规: ①、《公路桥涵施工技术规》(JTJ041-2011) ②、《公路桥涵设计通用规》(JTGD60-2015) ③、《钢结构工程施工及验收规》(GB50205—2001) ④、《公路钢结构桥梁设计规》(JTG D64—2015) ⑤、《公路桥涵地基和基础设计规》(JTG_D63-2007) ⑥、《钢结构焊接规》(GB50661-2011); ⑦、《钢结构设计规》(GB 50017-2014)。 ⑷、主要参考书籍: ①、《简明施工计算手册》(第三版)(江正荣著,中国建筑工业);

(完整版)贝雷梁钢栈桥方案

阜阳市茨淮新河大桥 钢栈桥施工组织设计 编制: 复核: 审批: 日期: 舒城县汇众建筑工程劳务有限公司 茨淮新河大桥项目经理部 二00九年六月

第一章总体概述 (1) §1.1、工程总体概况 (1) §1.1.1项目所在地理位置 (1) §1.1.2工程范围及规模 (1) 第二章、设备、人员动员周期和设备、人员、材料运到施工现场的方法 (1) §2.1、投入本工程的设备、人员 (1) §2.2、人员动员周期 (1) §2.3、机械设备动员周期 (2) §2.4、材料组织 (2) §2.5、设备、人员、材料运到施工现场的方法 (3) 第三章钢栈桥施工组织方案 (3) §3.1 项目施工组织安排 (3) §3.1.1施工组织管理机构组成 (3) §3.1.2项目施工基地建设 (5) §3.1.3栈桥施工进度 (6) §3.2钢栈桥施工工艺 (7) §3.2.1栈桥结构设计 (7) §3.2.2栈桥施工 (9) §3.2.3栈桥施工过程质量控制 (15) §3.2.4栈桥质量验收标准 (18) §3.2.5栈桥工程质量检验报告单 (24) §3.3组织保证措施 (24) §3.3.1施工计划的保证 (26) §3.3.2人员的保证 (26) §3.3.3技术保证措施 (26) §3.3.4 施工设备和材料的保证 (26) 第四章、质量、安全保证体系 (27) §4.1、质量保证体系 (27) §4.1.1 质量目标 (27) §4.1.2 质量保证体系的建立 (27)

§4.1.3 质量保证体系的运行 (27) §4.2、安全保证措施 (28) §4.2.1安全生产目标 (28) §4.2.2安全保证体系及组织机构设置 (28) §4.2.3栈桥施工过程中安全管理措施 (29) §4.2.4栈桥使用过程中安全管理措施 (29) §4.2.6常规安全管理措施 (30) §4.2.7特殊安全管理措施 (30) §4.2.8安全管理其他措施 (31) 第五章、其他应说明的事项 (32) §5.1、管线保护措施 (32) §5. 2、环境保护 (33) §5.2.1原则 (33) §5.2.2环境保护措施 (33) §5.2.3水保措施 (36) §5.4、文明施工 (36) §5.5栈桥运行、维护和检修及拆除 (37) §5.5.1栈桥的运行、维护和检修 (37) §5.5.2栈桥的拆除 (38)

钢栈桥计算书

1编制依据 (1) 2工程概况 (1) 3钢栈桥及钢平台设计方案 (2) 3.1钢栈桥布置图 (2) 3.2钢平台布置图 (3) 4栈桥检算 (3) 4.1设计方法 (3) 4.2桥面板承载力验算 (4) 4.3 120a工字钢分配梁承载力验算 (5) 4.4贝雷片纵梁承载力验算 (6) 4. 5 I45b工字钢横梁承载力验算 (9) 4.6桥面护栏受力验算 (10) 5桩基检算 (13) 5.1钢管桩承载力验算 (13) ?5. 2桩基入土深度计算 (13) ?5. 3钢管桩自身稳定性验算 (14) 5.4钢管桩抗倾覆性验算 (14) ?5. 5钢管桩水平位移验算 (14) 6钻孔平台 (15)

*********钢栈桥计算书 1编制依据 1、现场踏勘所获得的工程地质、水文地质、当地资源、交通状况及施工环境等调查资料; 2、国家及地方关于安全生产及坏境保护等方面的法律法规; 3、《钢结构设计规范》GB-50017-2011; 4、《公路桥涵设计通用规范》JTG D60-2015 5、《公路桥涵地基与基础设计规范》JTG D63-2007 6、《公路工程施工安全技术规范》(JTG F90-2015) 7、《路桥施工计算手册》(人民交通出版社) 8、*********设计图纸。 2工程概况 *********位于顺昌县水南镇焕仔坑附近,跨越富屯溪。本项目起点桩号 K7+1-54,终点桩号K7+498. 5,桥梁全长344.5m。 *********场区属于剥蚀丘陵夹冲洪积地貌,桥址区地形较起伏,起点台较坡度约15。-20°,终点台较坡度约5。-10° o桥梁跨越富屯溪,勘查期间水深约3-9m,溪宽约180-190m o *********桩基施工是本工程的控制工期工程,我项目部经过对富屯溪水文、地质及其现场情况的详细调査,为保证工期,加快施工进度,跨富屯溪水中主墩计划采用钢栈桥+钢平台施工方案。 *********河中墩共7组,距河岸边最近的8#墩距岸边约20m,根据富屯溪历年

盖梁支架受力计算知识讲解

盖梁支架受力计算 (预埋钢棒上安工字钢横梁法) 一、概况 汨罗江特大桥盖梁除悬浇主墩及28#过渡墩盖梁另外计算外,最重盖梁为 40mT梁盖梁,其尺寸为15.9m(长)×2.3m(宽)×2.1m(高),若经计算该盖 梁支架满足要求,则其他盖梁支架均满足要求。 针对该工程特点设计便易操作的盖梁支架系统。混凝土及模板系统的恒载、 施工操作的活荷载通过型钢直接传递给牛腿,牛腿递给墩柱及桩基础。 二、设计计算依据 (1)《路桥施工计算手册》 (2)《公路桥涵钢结构及木结构设计规范》 (3)《机械设计手册》 三、支架模板的选用 盖梁模板: 1.1、侧模:采用组合钢模拼装。 1.2、底模:方正部分用组合钢模拼装。 1.3、横梁:采用[14#a槽钢,间距40cm。 1.4、主梁:采用I45a工字钢。 1.5、楔块:采用木楔。 1.6、穿心钢棒:采用45号钢,直径10cm。长度每边外露30cm. 四、计算方法 1、总荷载计算 盖梁砼荷载F1:体积71.85立方米,比重2.6吨/立方米,自重:195.9吨, 合F1=185.9*10=1859KN 模板重量F2:盖梁两侧各设置一根I45a工字钢作为施工主梁,长18米(工 字钢荷载),q1=80.4×10×18×2/1000=28.94 KN;主梁上铺设[ 14a槽钢,每 根长3.0米,间距为40cm,墩柱外侧各设置8根,两墩柱之间设置19根。 q2=(19+8×2)×3.0×14.53×10/1000=15.26KN(铺设槽钢的荷载);

槽钢上铺设钢模板,每平方按0.45KN 计算, q3=(15.9×2.1×2+2.3×15.9+2.1×2.3×2)×0.45=50.9 KN (底模和侧模、端头模的荷载); q4=6KN (端头三角支架自重) F2=q1+q2+q3+q4+q4=107.1KN F3:人员0.5吨,合5KN F4:小型施工机具荷载:0.55吨,合5.5KN F5:振捣器产生的振动力及混凝土冲击力;本次施工时采用HZ6X-50型插入式振动器,设置2台,每台振动力为5KN ,施工时混凝土冲击力按5KN 计,则F5=2×5+5=15KN 总荷载: F=F1+F2+F3+F4+F5 =1859+107.1+5+5.5+15=1991.6KN 2、穿心钢棒(45号钢)受力安全分析 共有4个受力点,每点受力:Q max =F/4=1991.6/4≈497.9KN ; 钢棒截面积:S=0.05*0.05*3.14=0.0079m 2 最大剪应力:τmax =Q max /S=497.9/0.0079=63.03Mpa 45号钢钢材的允许剪力: [τ]=125Mpa 则[τ] =125 >τmax =63.03Mpa 结论:穿心钢棒(45号钢)受力安全 3、I45a 工字钢主梁受力安全分析 工字钢均布荷载:q=F/2/15.9=1991.6/2/15.9=62.63KN/m R1=R2=ql/2(a+l/2)=2340.17KN 工字钢横梁AB 段最大弯矩出现在中间处(x=a+l/2=7.95m ),a=3.25m , l=9.4m ;跨中最大弯矩 M max =62.63*9.4*7.95/2*[(1-3.25/7.95) *(1+2*3.25/9.4)-7.95/9.4] =360.98KN ?m 横梁CA 段和BD 段最大弯矩出现在支承点A 、B 两处,最大弯矩 2 12M qa =-=-1/2*62.63*3.252=-330.76 KN ?m

栈桥及码头计算

栈桥及码头设计计算书 1 贝雷梁桥几何特性及桁架容许内力 1.1、桁架单元杆件性能 1.2、几何特性 1.3、桁架容许内力表

2 施工栈桥设计 2.1、设计荷栽 2.1.1、50t轨道车 因现在不知道轨道车的具体结构及所运构件的长度,按偏安全考虑一个轨道车荷载按一个集中力计算: G 1 =500KN 2.1.2、30t重型汽车 2.1.3、贝雷片自重 单片贝雷片自重:G 3 =3KN,横断面排数8排 单跨长度:L=15m 2.1.4、砼桥面板自重 砼桥面板厚度为20cm,桥面宽为5m 每延米桥面板自重: G=31.25kN/m 2.1.5、制动力 轨道车:50KN 《公路桥涵设计通用规范》第2.3.9条 汽车:30KN 《公路桥涵设计通用规范》第2.3.9条 2.1.6、汽车荷载冲击系数 μ=15/(37.5+L)= 0.29 《公路桥涵设计通用规范》第2.3.2条 2.1.7、风荷载 ①、横桥向风荷载 横桥向风压计算: W=K 1*K 2 *K 3 *K 4 *W 其中 W =0.40 KN/m2基本风压 K 1 =0.85 设计风速频率换算系数 K 2=1.3 风载体形系数(桁架)

0.8 风载体形系数(钢管桩) K 3 =1.0 风压高度系数 K 4 =1.0 地形、地理条件系数桁架风压:《公路桥涵设计通用规范》第2.3.8条 W=K 1*K 2 *K 3 *K 4 *W = 0.44 KN/m2 作用在单跨上的横向风荷载 迎风面积: S=13.1m2 (桁架) 作用于桁架的风荷载: F=5.8KN (作用点位于桁架中心) 钢管桩风压: W=K 1*K 2 *K 3 *K 4 *W =0.27KN/m2 作用于一个墩子上的风荷载: 迎风面积S=35.06m2(钢管桩,按最低水位计算,同时考虑4根桩作用相同风载)作用于钢管桩的风荷载: F=9.54 KN 作用点离桩顶高度: H=6.95m ②、纵桥向风荷载 栈桥部分不考虑纵桥向风荷载 2.1.8、水流力 ①、低水位(江水未淹没桁架) 作用于钢管桩上的水流压力 F W =C W AγV2/2 水流力标准值 其中F W 水流力标准值 C W = 0.90 水流阻力系数(后排桩) A= 7.20 m2 桥墩阻水面积,单根桩 γ= 1.00 t/m3 (水密度) V= 2.13 m/S 《水文计算综合成果图》《港口工程荷载规范》第13.0.1条 F W =C W AγV2/2=14.69 KN (单根桩) 冲刷线以上桩长: H=12.00m 作用点位于桩顶下: H/3=4.00m

栈桥计算书(汇总版)

温州绕城高速北线第二合同段瓯江大桥栈桥计算

目录 1、基本数据 (1) 2、荷载参数 (1) 3、结构计算 (1) 3.1工况及荷载组合 (1) 3.2计算模型及方法 (2) 3.3计算内容 (2) 4计算成果 (2) 4.1标准段贝雷梁栈桥验算 (2) 4.1.1栈桥恒载计算: (2) 4.1.2纵梁I 14强度验算: (3) 4.1.3横梁I 28强度验算 (5) 4.1.4横梁I 28刚度验算 (6) 4.1.5贝雷梁内力计算 (6) 4.1.6贝雷强度验算 (7) 4.1.7贝雷刚度验算 (7) 4.2西岸加宽段贝雷栈桥 (8) 4.2.1贝雷强度验算 (8) 4.2.2贝雷刚度验算 (10) 4.2.3 2H45端横梁强度验算 (10) 4.3下行式单层三排栈桥验算 (11) 4.3.1贝雷强度验算 (11)

4.3.2贝雷刚度验算 (12)

栈桥设计计算书 1、基本数据 Pa E 11102?= MPa 160][=σ 314101714m m =I W 4147120000mm I I = 3288214mm 05=I W 42871150000mm I I = 345mm 1433731=H W 445322589453mm I H = 3 60mm 2480622=H W 460744186438mm I H = m g q I /K 877.1614= m Kg q I /465.4328= m g q H /K 467.7645= m Kg q H /132.10660= 2、荷载参数 1) 栈桥结构自重 2) 施工荷载:50t 履带吊 3、结构计算 3.1工况及荷载组合 工况一:履带吊车行驶在栈桥上。 荷载组合:1+2

盖梁侧模板计算书

梁侧模板计算书 计算依据: 1、《混凝土结构工程施工规范》GB50666-2011 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计规范》GB 50017-2003 一、工程属性 承04k c4k 1×[1.35×0.9×34.213+1.4×0.9×2]=44.089kN/m2 下挂部分:正常使用极限状态设计值S正=G4k=34.213 kN/m2 三、支撑体系设计

左侧支撑表: 模板设计剖面图四、面板验算

梁截面宽度取单位长度,b=1000mm。W=bh2/6=1000×152/6=37500mm3,I=bh3/12=1000×153/12=281250mm4。面板计算简图如下: 1、抗弯验算 q1=bS承=1×44.089=44.089kN/m q1静=γ0×1.35×0.9×G4k×b=1×1.35×0.9×34.213×1=41.569kN/m q1活=γ0×1.4×υc×Q4k×b=1×1.4×0.9×2×1=2.52kN/m M max=0.107q1静L2+0.121q1活L2=0.107×41.569×0.32+0.121×2.52×0.32=0.428kN·m σ=M max/W=0.428×106/37500=11.407N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 q=bS正=1×34.213=34.213kN/m νmax=0.632qL4/(100EI)=0.632×34.213×3004/(100×10000×281250)=0.623mm≤300/400=0.75mm 满足要求! 3、最大支座反力计算 承载能力极限状态

盖梁计算书

盖梁计算书一、计算说明、参数本标段盖梁累计71个,均为双柱盖梁。总体分一般构造盖梁和框架墩盖梁(即预应力盖梁)两种。其中一般构造盖梁种尺寸。普通盖梁采用C35土,框架墩盖梁采用C50混凝土。一般构造盖梁共18个;15.736*2.1*1.5个;11.2*2.2*1.6共12个;11.595*2.2*1.6共18个,适用于松林大桥5#墩; 24.2*2.4*2.2个,适用于松林大桥4#、6#墩。由于11.2*1.9*1.4(1.595*1.9*1.4为斜交)盖梁具有代表性,故以下计算按11.2*1.9*1.4盖梁进行受力计算分析。盖梁采用大块定型钢模板施工方法。模板设置横加劲楞,横向加劲楞直接焊接在模板上;竖向][12加劲楞则布置在外侧,间距为0.8m,且其上安装对拉螺杆。计算参数:A3钢强度设计值:抗拉、抗压、抗弯:[σ]=12.5KN/cm2二、计算依据和参考资(1)揭阳至惠来高速公路A7标合同段两阶段施工图设计(2)公路桥涵施工技术规范(JTJ041-2000)(3)公路桥涵钢结构及木结构设计规范(JTJ025-86)(4)路桥施工计算手册.人民交通出版社.2002(5)公路桥涵施工技术规范实施手册.人民交通出版社.2002(6)机械工程师手册.机械工业出版社.2004三、模板计算荷载分项系数是在设计计算中,反映了荷载的不确定性并与结构可靠度概念相关联的揭惠高速公路A7一个数值。对永久荷载和可变荷载,规定了不同的分项系数。永久荷载分项系数γG:当永久荷载对结构产生的效应对结构不利时,对由可变荷载效应控制的组合取G=1.35。当产生的效应对结构有利时,—般情况下取γG=1.0;当验算倾覆、滑移或漂浮时,取γG=0.9;对其余某些特殊情况,应按有关规范

贝雷梁栈桥及平台计算书

仁义桂江大桥 贝雷梁栈桥及作业平台计算书 编制: 复核: 审核:

西部中大建设集团有限公司 梧州环城公路工程N02合同段工程总承包项目经理部 二○一五年十二月

目录 一、工程概述........................................... 错误!未定义书签。 二、设计依据........................................... 错误!未定义书签。 三、计算参数........................................... 错误!未定义书签。 、材料参数......................................................... 错误!未定义书签。 、荷载参数......................................................... 错误!未定义书签。、材料说明............................................. 错误!未定义书签。 、验算准则......................................................... 错误!未定义书签。 四、栈桥计算........................................... 错误!未定义书签。 、计算工况......................................................... 错误!未定义书签。 、建立模型......................................................... 错误!未定义书签。 、面板计算......................................................... 错误!未定义书签。 、工况一计算结果................................................... 错误!未定义书签。 、工况二计算结果................................................... 错误!未定义书签。 、工况三计算结果................................................... 错误!未定义书签。 、工况四计算结果................................................... 错误!未定义书签。 、工况五计算结果................................................... 错误!未定义书签。 、入土深度计算结果................................................. 错误!未定义书签。 、屈曲计算......................................................... 错误!未定义书签。 、栈桥计算结果汇总................................................. 错误!未定义书签。 五、7#墩平台计算....................................... 错误!未定义书签。 、建立模型......................................................... 错误!未定义书签。 、荷载加载......................................................... 错误!未定义书签。 、荷载工况......................................................... 错误!未定义书签。 、工况一计算....................................................... 错误!未定义书签。 、工况二计算....................................................... 错误!未定义书签。 、工况三计算....................................................... 错误!未定义书签。 、屈曲计算......................................................... 错误!未定义书签。 、7#墩平台计算结果汇总............................................. 错误!未定义书签。 六、8#墩平台计算....................................... 错误!未定义书签。 、建立模型......................................................... 错误!未定义书签。 、荷载加载......................................................... 错误!未定义书签。 、荷载工况......................................................... 错误!未定义书签。 、工况一计算结果................................................... 错误!未定义书签。 、工况二计算结果................................................... 错误!未定义书签。 、工况三计算结果................................................... 错误!未定义书签。 、屈曲计算......................................................... 错误!未定义书签。 、8#墩平台计算结果汇总............................................. 错误!未定义书签。 七、结论............................................... 错误!未定义书签。

钢管桩栈桥计算书

鉴江钢管桩栈桥及钢管桩平台受力计算书 2009年11月10日

钢管桩栈桥及钢管桩施工平台受力计算书 一、栈桥及钢管桩平添结构简介 栈桥及钢管桩平台结构见附图,栈桥与钢管桩平台的结构形式类似,均采用钢管桩基础,每排采用3根直径为529mm的三根钢管组成,2Ⅰ30工字钢嵌入钢管桩顶作为横梁,横梁上纵桥向布置两组150cm 高公路装配式贝雷桁架主梁,每组两片贝雷桁架采用45cm宽花架连接。贝雷桁架上横铺Ⅰ20b工字钢分布梁,分布梁间距为75cm,分布梁顶沿纵向铺设[16槽钢作为桥面板。栈桥横向宽6m,每个墩两侧的钢平台平面尺寸均为15×6m。 二、栈桥及钢管桩平台各主要部件的应力计算 1、贝雷桁架纵梁受力计算 根据下面对横向分布Ⅰ20b工字钢梁的受力计算可以得知,两组贝雷桁架中的外侧贝雷片总有一片承受上拔力,贝雷片的受力极不均匀,取受竖直向下的最大荷载计算,单片贝雷架承受的最大荷载为9008×2=18016Kg(重车有两个后轴),按简支梁计算。 贝雷架的跨中弯矩最大值Mmax=18.0×12/4=54t.m,单片贝雷片容许弯矩为78.8 t.m,所以贝雷桁架纵梁的受力能满足需要。 单片贝雷片的抗剪能力为24.5t,通过下面对横向分布I20b工字钢的受力计算知其最大支座反力为9008Kg,两个重轴,此时贝雷片相当于在跨中作用9008×2=18016Kg的集中力,显然贝雷片的剪力等于9008Kg,小于24.5t,贝雷片抗剪能够满足要求。 2、钢管桩上横梁受力计算 横梁支撑在钢管桩上,其支点距离为250cm,按两跨连续梁计算,取其最不利荷载,其计算简图如下: 先计算P的值:

盖梁模板设计计算书

盖梁模板设计计算书 一、概述 本合同段盖梁共有74个,按下接墩柱直径的不同可分为5种,其中下接φ1.3墩柱盖梁宽度有1.5m、1.6m两种,故共有6种不同的盖梁型式,其中每一种盖梁其它尺寸又有不同,详见附表:盖梁尺寸表。 针对盖梁种类多的情况,对质量要求与经济性进行综合考虑,拟对所有盖梁正侧模加工钢模,其余加工木模。 二、正侧模设计 1、正侧模尺寸及结构形式选定 正侧模高度分为1.35m、1.75m两种,1.35m高模板长度分为4.5m、1.5m两种,1.75m高模板长度分为4.5m、1.5m 两种。面板采用5mm厚钢板,紧贴模板的竖向小肋用□5×60扁钢,间距为300mm,横肋用[8槽钢,间距为500mm,对拉螺杆处竖向大肋用2[10槽钢,间距为1m。 2、模板荷载计算 (1)采用《简明施工计算手册》P310页推荐公式计算新浇普通砼作用于模板的最大侧压力,由该公式可以看出,最大侧压力与砼浇筑速度V、盖梁总高度H呈单调递增函数关系,故选取9#桥盖梁作为计算对象(高度较大,平均平面面积较小)。 砼浇筑速度:按每小时浇筑40m3计算,砼平均浇筑速度V=3.10m/h。砼的入模温度假定为10℃,K S取1.15,K W1.2 1500 1500 P m=4+ · Ks·Kw·3√V =4+ ×1.15×1.2×3√3.10 T+30 40 =79.46Kpa P m=25H=25×1.5=37.5Kpa 取P m=37.5Kpa

(2)振捣砼时产生的荷载取4.0Kpa。 (3)荷载组合:依据《公路桥涵施工技术规范》第8.2.2条规定:计算强度荷载P1=37.5 +4.0=41.5Kpa; 验算强度荷载P2=37.5Kpa。 3、面板计算 Lx/Ly=500/300=1.6 按双面板计算,选面板三面固定、一面简支的最不利情况计算。 (1)强度计算 先计算M max 查《建筑工程模板施工手册》 W=0.00249 M x=0.0384 M y=0.0059 M x0=-0.0814 M y0=-0.0571 取1m 宽板条作为计算单元,最大强度计算荷载为: q=41.5×103×10-6×1=0.0415N/mm M x·max=M x0·ql2=-0.0814×0.0415×3002=-304.029N·mm 面板的截面系数 W=1/6bh2=1/6×1×52=4.167mm3 查《建筑工程模板施工手册》P498知: M max 304.029 σmax===72.96N/mm2<[σ] V x·W x 1×4.167 =145N/mm2 其中V x=1(截面塑性发展系数) (2)刚度验算 F=P1=0.0375N/mm2 h=300mm

齐济河贝雷梁钢栈桥

目录 1编制依据及原则 .......................................................................................... - 1 - 1.1 编制依据 ........................................................................................... - 1 - 1.2 编制原则 ........................................................................................... - 1 - 2.工程概况 ...................................................................................................... - 2 - 2.1工程简介 ............................................................................................ - 2 - 2.2水文情况 ............................................................................................ - 2 -3.总体部署 ................................................................................................... - 2 - 3.1施工组织管理机构 ............................................................................ - 2 - 3.2劳力组织及用工计划 ........................................................................ - 3 - 3.3机械设备配备 .................................................................................... - 3 -4.工期安排 ................................................................................................... - 4 -5.栈桥总体设计 .............................................................................................. - 4 - 5.1设计通行能力 .................................................................................... - 4 - 5.2基本桥型布置 .................................................................................... - 4 - 5.3栈桥材料用量 .................................................................................... - 6 -6.栈桥的施工方法 ....................................................................................... - 7 - 6.1测量定位 ............................................................................................ - 7 - 6.2钢管桩桥台及支墩施工 .................................................................... - 7 - 6.3栈桥、平台贝雷梁施工 .................................................................... - 8 - 6.4桥面系施工 ........................................................................................ - 8 - 6.5栈桥上其它结构设置施工技术措施................................................ - 8 - 7.钢桥施工质量保证措施 .............................................................................. - 9 - 8.渡汛措施 .................................................................................................... - 10 - 9. 栈桥施工安全保证措施 .......................................................................... - 12 - 10. 栈桥施工环境保护措施 ........................................................................ - 13 - 11.设计验算 (16)

相关文档