文档库 最新最全的文档下载
当前位置:文档库 › 概率论简答题

概率论简答题

概率论简答题
概率论简答题

概率论简答题

1.互不相容事件与等可能事件、对立事件及其相互独立事件有什么区别

2.概率为1的事件的积概率是1么?

3.直接计算古典概型有哪些计算方法?并举简单例子说明

4.古典概型有哪些基本问题?举例说明。

5.几何概型有什么特点又如何计算。

6.如何正确计算条件概率和应用乘法公式。

7.如何应用全概率公式和贝叶斯公式。

8.如何理解“独立事件”

9.如何证明几个事件相互独立

10.比赛双方实力相当,问9场比赛中赢5场和5场比赛中赢3场,哪一个可能性大?11.引入随机变量的分布函数有什么作用?如何确定与判断?

12.离散型随机变量的概率分布或连续型随机变量的概率密度函数如何确定及判断?

13. 离散型随机变量有哪些常见分布?其概率分布是什么?其分布函数是什么?

14. 随机变量X服从参数λ的泊松分布,当k取何值时概率最大?

15. 连续型随机变量有哪些常见分布?其密度函数是什么?其分布函数是什么?

16. 求连续型随机变量有哪些常见方法?举例说明

17. 二元函数为联合概率密度函数应如何判断?

18. 离散型随机变量应(X,Y)的联合分布列与边缘分布列有什么关系?如何计算?举例说明。

19. 连续型随机变量(X,Y)的联合密度函数与边缘密度函数有什么关系?如何计算?举例说明。

20. 如何判断随机变量的独立性?(包括离散与连续)

21. 如何计算离散型随机变量常见分布的期望与方差

22.如何计算连续型型随机变量常见分布的期望与方差

23. 对于一些复杂的随机变量,求他们的期望和方差用什么简易方法,并举例。

24. 准确定义协方差、相关系数?

25. 两个随机变量独立和不相关有何关系?举例说明。

26. 什么是中心极限定理?如何应用?举例说明

概率论试题

一 、选择题(选择正确答案,并将其代号写在题干后面的括号里.每小题 3 分,共 15 分) 1.设随机变量()2,1~-N X ,()2,1~N Y ,而且X 与Y 不相关,令Y aX U +=, bY X V +=,且U 与V 也不相关,则有【. C 】 ()A .0==b a ; ()B .0≠=b a ; ()C .0=+b a ; ()D .0=ab 2.对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故 障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E 【A 】 ()A .21p p +; ()B .()()122111p p p p -+-; ()C .()211p p -+; ()D .21p p . 3.若Y X ,ρ表示二维随机变量()Y X , 的相关系数,则“1,=Y X ρ”是“存在常数a 、b 使得{ }1=+=bX a Y P ”的【C 】 ()A .必要条件,但非充分条件; ()B .充分条件,但非必要条件; ()C .充分必要条件; ()D .既非充分条件,也非必要条件. 4.设总体X 与Y 相互独立,且都服从正态分布()10,N .()91X X ,,Λ是从总体X 中抽取的一个样本,()91Y Y ,,Λ是从总体Y 中抽取的一个样本,则统计量 ~29 2191Y Y X X U ΛΛ+++= 【C 】 ()A ()92 χ; ()B ()82χ; ()C ()9t ; ()D ()8t 5.设总体X 服从参数10=λ的泊松(Poisson )分布,现从该总体中随机选出容量为20一个样本,则该样本的样本均值的方差为【B 】 ()A . 1; ()B . 5.0; ()C . 5; ()D . 50. 二、填空题(每小题 3 分,共 15 分)

(完整版)04183概率论与数理统计(经管类)_1001

浙04183# 概率论与数理统计(经管类)试题 第 1 页(共 5 页) 全国2010年1月高等教育自学考试 概率论与数理统计(经管类)试题 课程代码:04183 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ?B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B ) D.P (AB )=φ 2.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.8 1 B.41 C.8 3 D. 2 1 3.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53 )A |B (P =,则P (B )=( ) A. 51 B. 52 C. 5 3 D. 5 4 4.设随机变量X 则k= A.0.1 B.0.2 C.0.3 D.0.4 5.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( ) A.F(-a)=1-? a 0dx )x (f B.F(-a)= ? -a dx )x (f 21 C.F(-a)=F(a) D.F(-a)=2F(a)-1 6.设二维随机变量(X ,Y )的分布律为

浙04183# 概率论与数理统计(经管类)试题 第 2 页(共 5 页) 则P{XY=0}=( ) A. 121 B. 61 C. 3 1 D. 3 2 7.设随机变量X ,Y 相互独立,且X~N (2,1),Y~N (1,1),则( ) A.P{X-Y ≤1}=21 B. P{X-Y ≤0}=21 C. P{X+Y ≤1}= 2 1 D. P{X+Y ≤0}= 2 1 8.设随机变量X 具有分布P{X=k}=5 1 ,k=1,2,3,4,5,则E (X )=( ) A.2 B.3 C.4 D.5 9.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑ == 5 1 i i x 5 1x 和25 1 i i 2 )x x (41 s ∑=-= ,则 s ) x (5μ-服从( ) A.t(4) B.t(5) C.)4(2χ D. )5(2χ 10.设总体X~N (2 ,σμ),2 σ未知,x 1,x 2,…,x n 为样本,∑=--= n 1 i 2i 2 )x x (1 n 1 s ,检验假 设H 0∶2σ=2 0σ时采用的统计量是( )

概率论大作业讲解

现实生活中的大数定理及中心值定理的应用 电子工程学院

目录 摘要........................................... 错误!未定义书签。第一章引言...................................... 错误!未定义书签。第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2大数定律的定义 (3) 2.3几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (6) 3.3大数定律在银行经营管理中的应用 9结论 (11) 参考文献 (12)

对于随机现象而言,其统计规律性只有在基本相同的条件下进行大量的重复试验才能显现出来.本文主要是通过大数定律来讨论随机现象最根本的性质——平均结果稳定性的相关内容.大数定律,描述当试验次数很大时所呈现的概率性质的定律,是随机现象统计规律性的具体表现. 本文首先介绍了大数定律涉及的一些基础知识,以便于对文中相关知识的理解.通过比较,就不同条件下存在的大数定律做了具体的分析,介绍了几种较为常见的大数定律和强大数定律,总结了大数定律的应用,主要有大数定律在数学分析中的应用,大数定律在生产生活中的应用,大数定律在经济如:保险、银行经营管理中的应用等等,将理论具体化,将可行的结论用于具体的数学模型中,使大家对大数定律在实际生活中的应用价值有了更深的认识.

概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律.大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带.大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值. 在现实生活中,经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然.又如:在分析天平上称重量为a 的物品,若以12,,x x 3,...,n x x 表示n 次重复称量的结果,经验告诉我们,当n 充分大时,它们的算术平均值1 1n i i X n =∑与a 的偏差就越小.这种思想,不仅在整个概率论中起着重要00作用,而且在其他数学领域里面也占据着相当重要的地位. 大数定律的发展与研究也经历了很长一段时间,伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理.现在,大数定律的相关模型已经被国内外广大学者所研究,特别是应用在实际生活中,如保险业得以存在并不断发展壮大的两大基石的一个就是大数定律.许多学者也已经在此领域中研究出了许多有价值的成果,讨论了在统计,信息论,分析、数论等方面的应用.在许多数学领域中,广大学者对某些具有特定类型的数学模型,都能利用大数定律的思考方式总结其代表性的性质及结论,使得这些类型的数学模型在进行讨论的时候大大简化了繁琐的论证过程,方便了研究.大数定律作为概率论的重要内容,其理论成果相对比较完善,这方面的文章较多,结果也比较完美,但对大数定律的应用问题的推广也是一项非常有价值的研究方向,通过对这些问题的应用推广,不仅能加深对大数定律的理解,而且能使之更为有效的服务于各项知识领域中.下面文中就通过对大数定律的讨论,给出了各大数定律之间的关系,归结出一般性结论.最后列举了一些能用大数定律来解决的实例,希望能通过这些实例,来进一步阐明大数定律在各个分支学科中的重要作用,以及在实际生活中的应用价值,加深大家对大数定律的理解.

福州大学历届概率论试卷(史上最全版)

福州大学概率统计(54学时)试卷(080116) 一、 单项选择(共21分,每小题3分) 1. 设A 、B 是任意两个事件,则P (A - B )= ( ) A. ()()P A P AB - B. ()()()P A P B P AB -+ C. ()()()P A P B P A B +-U D. ()()()P A P B P AB +- 2. 对于随机变量X ,Y ,若E (XY )=E (X )E (Y ),则 ( ) A. DY DX XY D ?=)( B.DY DX Y X D +=+)( C. X 与Y 独立 D. X 与Y 不独立 3.任何一个连续型随机变量的概率密度)(x ?一定满足( )。 A 、1)(0≤≤x ? B 、在定义域内单调不减 C 、 1)(=? +∞ ∞ -dx x ? D 、1)(>x ? 4. n X X X ,,,21Λ为总体X 的简单随机样本,是指( )。 A 、n X X X ,,,21Λ相互独立; B 、n X X X ,,,21Λ中任一i X 与X 分布相同; C 、n X X X ,,,21Λ相互独立且n X X X ,,,21Λ中任一i X 与X 分布相同; D 、n X X X ,,,21Λ相互独立或n X X X ,,,2 1Λ中任一i X 与X 分布相同。 5.设21,X X 为取自总体)1,(~μN X 的简单随机样本,其中μ为未知参数,下面四个关于μ的估计量中为无偏估计的是( )。 A 、 213432X X + B 、214241X X + C 、214143X X - D 、215 3 52X X +

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

04183概率论与数理统计(经管类)(有问题详解)

文案大全 04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

《概率统计》试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 2101 1811515515 k X p -- 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙 企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取 1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 ,03()2,342 0, kx x x f x x ≤

济南大学概率论A大作业答案

第一章 概率论的基本概念 一、填空题 1.;)3(;)2(;)1(C B A C B A C B A C B A C AB )()4(C B C A B A C B A C B A C B A C B A 或; 2. 2 1 81,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 87; 7. 85; 8. 996.01211010 12或A -; 9. 2778.0185 6 446==A ;10. p -1. 二、选择题 D ;C ;B ;A ;D ; C ;D ;C ;D ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=) 相互独立, 又)B A B A P B P A P ,,9 1 )(),((==∴ .3 2 )(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P 2.解: 设事件A 表示“取得的三个数字排成一个三位偶数”,事件B 表示“此三位偶数的末 尾为0”,事件B 表示“此三位偶数的末尾不为0”,则: =)(A P )()(B P B P += .125 3 4 1 2123423=+A A A A A 3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率公式: )()()()((321321B A P B A P B A P B A B A B A P B P ++== ) )()()()()()(332211A B P A P A B P A P A B P A P ++= (1) 设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

概率论与数理统计答案

习题答案 第1章 三、解答题 1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确. 2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤, 又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以 (1) 当)()(B A P B P = 时P (AB )取到最大值,最大值是)()(A P AB P ==. (2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ). 解:因为)()(B A P AB P =, 即)()()(1)(1)() (AB P B P A P B A P B A P AB P +--=-== , 所以 .1)(1)(p A P B P -=-= 4.已知P (A ) = ,P (A – B ) = ,试求)(AB P . 解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P . 5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n =种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:1 5 C k =24C 212)(C +25C

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

04183概率论与数理统计(经管类)

04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回, 则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X Λ21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量 的联合分布函数为,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21Λ是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X Λ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。 A .21)0(=≤+Y X P B .21)1(=≤+Y X P C .21)0(=≤-Y X P D .21)1(=≤-Y X P 10.设总体X~N (2,σμ),2 σ为未知,通过样本n x x x Λ21,检验00:μμ=H 时,需要 用统计量( C )。

概率论与数理统计大纲各章节作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:Ω={(正,正),(正,反),(反,正),(反,反)}; A={(正,反),(正,正)}; B={(正,正),(反,反)}; C={(正,反),(正,正),(反,正)}。 2.设31)(=A P ,2 1)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81)(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375 .0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他 拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 10 3819810991109101) |()|()()|()()()(2131211211321211=??+?+= ++=∴ ++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥 Θ 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 % 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 > 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2x B. C. 2x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2x B. 1 C. 2x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。 (A) 0≤ f (x ) ≤1; (B) 0≤ f (x ); (C )f (x ) ≤1; (D) 没有限制

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

《概率论与数理统计》答案

习题 1.1 1、(1)选中乘客是不超过30岁的乘车旅游的男性 (2)选中的乘客是不超过30岁的女性或以旅游为乘车目的 (3)选中乘客是不超过30岁的女性或乘车旅游的女性 (4)选中乘客是30岁以上以旅游为目的男性 2、(1)2010A B U (2)1053 1 1 1 i j k i j k A B C ===U U U U U (3) 2017 i i C =U (4)10 10 21 21 1 1 i j i j A C D --==U U U U 3、(1)1 n i i G =I (2) 1 n i i G =U (3)12123121n n n n G G G G G G G G G G G -L U L UL U L && 习题 1.2 1、(该题题目有误,请将()1/4P A =改作()1/3P A =) (1)1()()()()30P AB P A P B P A B =+-= U (2)3()()()()10 P AB P A B P A P AB =-=-= (3)7()1()10 P AUB P AB =-= (4)7()()()()()()15 P AB AB P AB P AB P AB P B P AB =+=+-=U 2、811 877 ?=? 3、(1)仅考虑末位:12110 15C C =(2)末位1和9的数的平方末位是1,故概率为:121101 5 C C = 4、至少两名女生的概率:541 22228 5 30 10.4046C C C C +- ≈ 5人全为女生的概率:58530 0.0004C C ≈ 5、一等奖:8 613316 1 5.643010C C -≈?二等奖:61761561 33168.464510C C C C -≈? 三等奖:511 6 6271613316 9.141710C C C C C -≈?四等奖: 511421 627156271 61 3316 0.0004C C C C C C C C +≈

(广外)概率论试题答案+答案

---------------------------------------------------------------最新资料推荐------------------------------------------------------ (广外)概率论试题答案+答案 一、填空: (20%) 1.设 A、 B 为随机事件, P(A)=0. 5, P(B/A )= 0. 4,则 P()=。 2.两封信随机的向编号为Ⅰ 、Ⅱ 、Ⅲ、Ⅳ的 4 个邮筒投寄,前两个邮筒中各有一封信的概率是。 3. 设三次独立重复的伯努利试验中事件 A 发生的概率均为 p,若已知 A 至少发生一次的概率为 19/27,则 p = _______________。 4.设三个相互独立的事件 A、 B、 C 都不发生的概率为 1/27,而且 P(A)=P(B)=P(C),则 P(A)=。 5.设连续型随机变量 X 的概率密度函数为: ax+1 0x2 f (x) = 0 其他 , 则 a = ________________。 6.已知 E =3, E =3,则 E(3 -4 +3) =____________。 7. 设随机变量 X 在[-6, 6]上服从均匀分布,则 DX=______。 8.某汽车站每天出事故的次数 X 服从参数为的泊松分布,且已知一天内发生一次事故和发生两次事故的概率相同,则= 。 9.设随机变量服从均值为 10,方差为202. 0的正态分布,即 ~ ()202. 0 ,10N,已知(5 . 2)9938. 00=,则落在区间(, 1 / 7

10.05)上的概率 ()10.05P X = ____________ 10.设随机变量在 [2, 5] 服从均匀分布,现在对进行四次独立观测,则恰好有两 次观测值大于 3 的概率为_______________。 二、单项选择题: (20%) 1. A、 B 为相互独立的事件, P(A) =0. 4, P (A + B) =0. 7,则 P(B) = 。 () A. 0.5 2.某人购买某种奖券,已知中奖的 概率为 P,若此人买奖券直到中奖时停止,则其第 k 次才中奖的 概率为: () B. 0.6 C. 0.7 D. 0.8 A. P k-1(1-P) B. P(1 -P)k - 1 C. Pk D. (1-P )k 3.下列函数中,()可以作 为连续型随机变量 X 的概率密度函数: () A.其它 B.其它 C.其它x D.其它 4.设)(1xF 与)(2xF分别为随机变量1X 与2X 的分布函数,为使 ( )( )x( ) xbFaFxF21+=是某随机变量的分布函数在下列给定的各组数值中应 取。 ( ) 1=a ,21=a,2 A.211=a ,21=b B. 21=b C. 2=a,21=b D. 21=b 5.设

相关文档
相关文档 最新文档