文档库 最新最全的文档下载
当前位置:文档库 › 超声波斜探头结构及工作原理

超声波斜探头结构及工作原理

超声波斜探头结构及工作原理
超声波斜探头结构及工作原理

超声波探头根据不同的用途分为许多种类,有纵波直探头、纵波斜探头、横波斜探头、表面波探头、爬坡探头等等。其中纵波直探头和横波斜探头在工作检测中最为常见。直探头与横波斜探头在结构与工作原理等方面有诸多相似之处,本文介绍横波斜探头的结构、探头工作原理以及影响探头性能的主要因素。

1、探头结构

超声波斜探头由吸声材料、外壳、阻尼块、斜楔块和产生超声波的压电晶片等原件组成。如图1为超声波斜探头结构示意图。

图1.超声波斜探头结构示意图

吸声材料作用是吸收晶片背面、斜块四周发散的超声波噪声;探头外壳有金属外壳和塑料外壳,外壳起到支撑固定、保护以及电磁屏蔽等作用。探头阻尼对压电晶片的振动起阻尼作用,一是可使晶片起振后尽快停下来,减少晶片余震,减小超声波脉冲宽度,提高超声检测分辨力;二是吸收晶片向背面发射的超声波,减少始脉冲杂波;三是同样起到支撑晶片的作用。斜楔块一般采用机玻璃制成,其作用是改变晶片产生的声束角度。压电晶片是整个探头的“心脏”,是探头产生超声波的最关键的元件,一般压电晶片采用石英、压电陶瓷等具

有压电效应的材料制作而成。

2、工作原理

超声波仪器电路产生的电脉冲作到具有压电效应的晶片,使压电晶片产生逆压电效,晶片发生轴线方向和垂直轴线的径向振动,如图2所示。晶片径向振动产生杂波被吸声材料吸收,而轴向振动产生的超声波声束才是有用的声束。晶片振动方向即为超声波质点振动方向,质点振动方向与超声波声束传输方向相同,则可推断出晶片轴向振动产生的有用声束为纵波声束,斜楔块的超声波声速为有机玻璃的纵波声速。当晶片接收到一个电脉冲完成一次逆压电效应,将被固定在晶片上的阻尼块阻止余震,减少超声波余波,从而较小超声波脉冲宽度。

图2.压电晶片轴向和径向振动示意图

晶片产生的纵波声束通过具有一定角度的斜楔块和耦合剂层进入工件,声束在耦合剂与工件接触界面发生波形转换。当纵波声束以小于第一临界角的角度进入工件,工件的声束为纵波和横波,且纵波声束的角度大于横波。入射角大于第一临界角小于第二临界角,工件的声束为纯横波。图3 为入射纵波声束角度小于第一临界角,图4为入射纵波声束角度大于第一临界角且小于第二临界角。

图3.入射纵波声束角度小于第一临界角

图4.入射纵波声束角度大于第一临界角且小于

第二临界角

3、影响探头性能的因素

探头性能的优良主要从探头的灵敏度、性噪比、分辨率、始波宽度、盲区大小等性能因素。影响探头性能的因素在于制作探头元件的材料性能,比如:采用压电陶瓷比石英制作的晶片灵敏度、分辨率、性噪比都要高,复合材料制成的压电晶片又比压电陶瓷性能好。国内的常规检测探头大部分采用压电陶瓷制成,TOFD和超声相控阵探头多采用性能更好的复合材料制。影响探头性能因素还有吸声材料、外壳、阻尼块的材料性能以及探头制作工艺水平。国外的探头制作工艺水平要高于国产探头,其价格也比国产探头贵不少。随着国内探头的制作工艺水平不断提高,国产探头性能正在追赶甚至比肩于进口探头。

感谢以下网站对本资料的支持

测厚仪https://www.wendangku.net/doc/fc7654388.html,

超声波测厚仪https://www.wendangku.net/doc/fc7654388.html, 钢板测厚仪https://www.wendangku.net/doc/fc7654388.html,

金属测厚仪https://www.wendangku.net/doc/fc7654388.html,

管道测厚仪https://www.wendangku.net/doc/fc7654388.html,

钢管测厚仪https://www.wendangku.net/doc/fc7654388.html,

厚度测量仪https://www.wendangku.net/doc/fc7654388.html,

超声测厚仪https://www.wendangku.net/doc/fc7654388.html,

高温测厚仪https://www.wendangku.net/doc/fc7654388.html,

壁厚测量仪https://www.wendangku.net/doc/fc7654388.html,

超声波测厚仪https://www.wendangku.net/doc/fc7654388.html,

膜厚仪https://www.wendangku.net/doc/fc7654388.html,

涂层测厚仪https://www.wendangku.net/doc/fc7654388.html,

涂层测厚仪https://www.wendangku.net/doc/fc7654388.html,

镀层测厚仪https://www.wendangku.net/doc/fc7654388.html,

油漆测厚仪https://www.wendangku.net/doc/fc7654388.html,

油漆测厚仪https://www.wendangku.net/doc/fc7654388.html,

漆膜测厚仪https://www.wendangku.net/doc/fc7654388.html,

锌层测厚仪https://www.wendangku.net/doc/fc7654388.html,

防腐层测厚仪https://www.wendangku.net/doc/fc7654388.html,

麦考特测厚仪https://www.wendangku.net/doc/fc7654388.html,

尼克斯测厚仪https://www.wendangku.net/doc/fc7654388.html,

磁感应测厚仪https://www.wendangku.net/doc/fc7654388.html,

涡流测厚仪https://www.wendangku.net/doc/fc7654388.html,

膜厚测试仪https://www.wendangku.net/doc/fc7654388.html,

覆层测厚仪 https://www.wendangku.net/doc/fc7654388.html,

电镀层测厚仪https://www.wendangku.net/doc/fc7654388.html,

涂镀层测厚仪https://www.wendangku.net/doc/fc7654388.html,

镀锌层测厚仪https://www.wendangku.net/doc/fc7654388.html,

电解测厚仪https://www.wendangku.net/doc/fc7654388.html,

氧化膜测厚仪https://www.wendangku.net/doc/fc7654388.html,

磁性测厚仪https://www.wendangku.net/doc/fc7654388.html,

干膜测厚仪https://www.wendangku.net/doc/fc7654388.html,

湿膜测厚仪https://www.wendangku.net/doc/fc7654388.html,

镀铬测厚仪https://www.wendangku.net/doc/fc7654388.html,

标线测厚仪https://www.wendangku.net/doc/fc7654388.html,

磷化膜测厚仪https://www.wendangku.net/doc/fc7654388.html,

尼克斯测厚仪https://www.wendangku.net/doc/fc7654388.html,

超声探伤仪https://www.wendangku.net/doc/fc7654388.html,

磁粉探伤机 https://www.wendangku.net/doc/fc7654388.html,

焊缝探伤仪https://www.wendangku.net/doc/fc7654388.html,

超声波探伤仪https://www.wendangku.net/doc/fc7654388.html, 超声波探伤仪https://www.wendangku.net/doc/fc7654388.html, 钢轨探伤仪https://www.wendangku.net/doc/fc7654388.html,

金属探伤仪https://www.wendangku.net/doc/fc7654388.html,

便携式探伤仪https://www.wendangku.net/doc/fc7654388.html, 钢结构探伤仪https://www.wendangku.net/doc/fc7654388.html, 磁粉探伤仪https://www.wendangku.net/doc/fc7654388.html,

超声波探伤仪https://www.wendangku.net/doc/fc7654388.html,

便携式硬度计https://www.wendangku.net/doc/fc7654388.html,

便携式硬度计https://www.wendangku.net/doc/fc7654388.html,

洛氏硬度计https://www.wendangku.net/doc/fc7654388.html,

轧辊硬度计https://www.wendangku.net/doc/fc7654388.html,

手持式硬度计 https://www.wendangku.net/doc/fc7654388.html,

里氏硬度计https://www.wendangku.net/doc/fc7654388.html,

铅笔硬度计 https://www.wendangku.net/doc/fc7654388.html,

便携硬度计https://www.wendangku.net/doc/fc7654388.html,

钢管硬度计https://www.wendangku.net/doc/fc7654388.html, 韦氏硬度计https://www.wendangku.net/doc/fc7654388.html,

轧辊硬度计https://www.wendangku.net/doc/fc7654388.html,

巴氏硬度计https://www.wendangku.net/doc/fc7654388.html,

模具硬度计https://www.wendangku.net/doc/fc7654388.html,

超声波硬度计https://www.wendangku.net/doc/fc7654388.html,

洛氏硬度计https://www.wendangku.net/doc/fc7654388.html,

金属硬度计https://www.wendangku.net/doc/fc7654388.html,

硬度测试仪https://www.wendangku.net/doc/fc7654388.html,

布氏硬度计https://www.wendangku.net/doc/fc7654388.html,

布氏硬度计https://www.wendangku.net/doc/fc7654388.html,

硬度计https://www.wendangku.net/doc/fc7654388.html,

肖氏硬度计 https://www.wendangku.net/doc/fc7654388.html,

铸件硬度计https://www.wendangku.net/doc/fc7654388.html,

钢板硬度计https://www.wendangku.net/doc/fc7654388.html,

硬度仪https://www.wendangku.net/doc/fc7654388.html,

铝合金硬度计https://www.wendangku.net/doc/fc7654388.html,

邵氏硬度计https://www.wendangku.net/doc/fc7654388.html,

橡胶硬度计https://www.wendangku.net/doc/fc7654388.html,

橡胶硬度计https://www.wendangku.net/doc/fc7654388.html,

电火花检测仪https://www.wendangku.net/doc/fc7654388.html,

电火花检测仪https://www.wendangku.net/doc/fc7654388.html,

电火花检漏仪https://www.wendangku.net/doc/fc7654388.html,

防腐层检测仪https://www.wendangku.net/doc/fc7654388.html,

防腐层检漏仪 https://www.wendangku.net/doc/fc7654388.html,

表面粗糙度仪https://www.wendangku.net/doc/fc7654388.html,

粗糙度测量仪https://www.wendangku.net/doc/fc7654388.html,

粗糙度测试仪https://www.wendangku.net/doc/fc7654388.html,

喷砂粗糙度仪https://www.wendangku.net/doc/fc7654388.html,

光洁度仪https://www.wendangku.net/doc/fc7654388.html,

便携式粗糙度仪https://www.wendangku.net/doc/fc7654388.html,

粗糙度仪https://www.wendangku.net/doc/fc7654388.html,

粗糙度检测仪https://www.wendangku.net/doc/fc7654388.html,

附着力测试仪https://www.wendangku.net/doc/fc7654388.html,

漆膜划格器https://www.wendangku.net/doc/fc7654388.html,

百格刀测试https://www.wendangku.net/doc/fc7654388.html,

百格刀 https://www.wendangku.net/doc/fc7654388.html,

LED观片灯https://www.wendangku.net/doc/fc7654388.html,

黑白密度计https://www.wendangku.net/doc/fc7654388.html,

光泽度仪https://www.wendangku.net/doc/fc7654388.html,

工业观片灯https://www.wendangku.net/doc/fc7654388.html,

黑度仪 https://www.wendangku.net/doc/fc7654388.html,

黑度计 https://www.wendangku.net/doc/fc7654388.html,

无损检测 https://www.wendangku.net/doc/fc7654388.html,

无损检测仪器https://www.wendangku.net/doc/fc7654388.html,

无损123https://www.wendangku.net/doc/fc7654388.html,

网站目录https://www.wendangku.net/doc/fc7654388.html,

达高特https://www.wendangku.net/doc/fc7654388.html,

达高特测厚仪https://www.wendangku.net/doc/fc7654388.html,

MX3测厚仪https://www.wendangku.net/doc/fc7654388.html,

PX7测厚仪https://www.wendangku.net/doc/fc7654388.html,

狄夫斯高https://www.wendangku.net/doc/fc7654388.html,

光谱磨样机https://www.wendangku.net/doc/fc7654388.html,

金相切割机https://www.wendangku.net/doc/fc7654388.html,

金相抛光机https://www.wendangku.net/doc/fc7654388.html,

金相磨抛机https://www.wendangku.net/doc/fc7654388.html,

金相预磨机https://www.wendangku.net/doc/fc7654388.html,

金相镶嵌机https://www.wendangku.net/doc/fc7654388.html,

金相磨样机https://www.wendangku.net/doc/fc7654388.html,

金相试样机https://www.wendangku.net/doc/fc7654388.html,

金相显微镜https://www.wendangku.net/doc/fc7654388.html,

磨抛机https://www.wendangku.net/doc/fc7654388.html,

镶嵌机https://www.wendangku.net/doc/fc7654388.html,

试样机https://www.wendangku.net/doc/fc7654388.html,

金相磨平机https://www.wendangku.net/doc/fc7654388.html,

金相研磨机https://www.wendangku.net/doc/fc7654388.html,

数字式粘度计https://www.wendangku.net/doc/fc7654388.html,

油漆粘度计https://www.wendangku.net/doc/fc7654388.html,

粘度仪https://www.wendangku.net/doc/fc7654388.html,

无损检测https://www.wendangku.net/doc/fc7654388.html,

百格刀https://www.wendangku.net/doc/fc7654388.html,

笔式硬度计https://www.wendangku.net/doc/fc7654388.html,

透光率仪https://www.wendangku.net/doc/fc7654388.html,

硬度测量仪https://www.wendangku.net/doc/fc7654388.html,

数显硬度计https://www.wendangku.net/doc/fc7654388.html,

台式硬度计https://www.wendangku.net/doc/fc7654388.html,

林格曼黑度计https://www.wendangku.net/doc/fc7654388.html,

显微硬度计https://www.wendangku.net/doc/fc7654388.html,

维氏硬度计https://www.wendangku.net/doc/fc7654388.html,

钳式硬度计https://www.wendangku.net/doc/fc7654388.html,

镀层硬度计https://www.wendangku.net/doc/fc7654388.html,

漆膜硬度计https://www.wendangku.net/doc/fc7654388.html,

涂层硬度计https://www.wendangku.net/doc/fc7654388.html,

玻璃钢硬度计https://www.wendangku.net/doc/fc7654388.html,

塑料硬度计https://www.wendangku.net/doc/fc7654388.html,

钢材硬度计https://www.wendangku.net/doc/fc7654388.html,

光泽度测试仪https://www.wendangku.net/doc/fc7654388.html,

油漆光泽度仪https://www.wendangku.net/doc/fc7654388.html,

便携式布氏硬度计https://www.wendangku.net/doc/fc7654388.html,

便携式洛氏硬度计https://www.wendangku.net/doc/fc7654388.html,

硬度块https://www.wendangku.net/doc/fc7654388.html,

硬度计试块https://www.wendangku.net/doc/fc7654388.html,

中国硬度计网https://www.wendangku.net/doc/fc7654388.html,

中国测厚仪网https://www.wendangku.net/doc/fc7654388.html,

中国探伤仪网https://www.wendangku.net/doc/fc7654388.html,

中国粘度计网https://www.wendangku.net/doc/fc7654388.html,

中国粗糙度仪网https://www.wendangku.net/doc/fc7654388.html,

中国涂层测厚仪https://www.wendangku.net/doc/fc7654388.html,

EPK测厚仪https://www.wendangku.net/doc/fc7654388.html,

minitest测厚仪https://www.wendangku.net/doc/fc7654388.html,

Positest附着力https://www.wendangku.net/doc/fc7654388.html,

positector测厚仪https://www.wendangku.net/doc/fc7654388.html,

Dm5e测厚仪https://www.wendangku.net/doc/fc7654388.html,

Mikrotest测厚仪https://www.wendangku.net/doc/fc7654388.html,

电火花测漏仪https://www.wendangku.net/doc/fc7654388.html,

手持式粗糙度仪https://www.wendangku.net/doc/fc7654388.html,

超声波检测仪https://www.wendangku.net/doc/fc7654388.html,

硬度计的分类以及硬度计的使用要求

数显邵氏硬度计https://www.wendangku.net/doc/fc7654388.html,

数显巴氏硬度计https://www.wendangku.net/doc/fc7654388.html,

数显韦氏硬度计https://www.wendangku.net/doc/fc7654388.html,

数显布氏硬度计https://www.wendangku.net/doc/fc7654388.html,

数显洛氏硬度计https://www.wendangku.net/doc/fc7654388.html,

数显里氏硬度计https://www.wendangku.net/doc/fc7654388.html,

便携式里氏硬度计https://www.wendangku.net/doc/fc7654388.html,

压电超声波换能器原理

超声波换能器 一种能把高频电能转化为机械能的装置。由材料的压电效应将电信号转换为机械振动。超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。 超声波换能器,要解决的技术问题是设计一种作用距离大、频带宽的超声波换能器。 换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-5压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。 压电陶瓷超声换能器工作原理 压电陶瓷是一种功能性陶瓷,所谓功能性陶瓷就是对光,电,等物理量比较敏感的陶瓷。压电陶瓷对光和压力比较敏感,对压电陶瓷施加一个外力,压电陶瓷表面会产生电荷,这就是压电陶瓷的正压电效应,是一个将机械能转化为电能的过程;对压电陶瓷外加一个电场,压电陶瓷会发生微小的形变,这就是压电陶瓷的逆压电效应,是一个将电能转化为机械能的过程。利用逆压电效应,可以把高频电压转化为高频率的振动,从而产生了超声波。 超声波换能器是将电能转换成机械能(超声波)的器件,其中最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。这种夹心换能器在负荷变化时产生稳定的超声波,是获得功率超声波驱动源的最基本最主要的方法。[1] 将非电能量转换成电能量,不需要外电源,称换能器,也称有源传感器,换能器是超声波设备的核心器件,其特性参数决定整个设备的性能。 现在用的超声波换能器,除了磁致伸缩结构以外就是常用的用前后盖板夹紧压电陶瓷的“朗之万”换能器,超声波就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,同样尺寸外形的换能器的性能和使用寿命是千差万别的。 我们主要生产大功率超声波换能器,应用与超声波塑料焊接机、超声波金属焊接机、各种手持式超声波工具、连续工作的超声波乳化均质器、雾化器、超声波雕刻机等超声波焊接设备。磁致伸缩 磁致伸缩有镍片换能器和铁氧体换能器。 铁氧体换能器的电声转换效率比较低,使用一、二年后效率下降,甚至几乎丧失电声转换能力。 镍片换能器的工艺复杂,价格昂贵,所以很少使用。 压电晶体 最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。 压电效应将电信号转换为机械振动。这种换能器电声转换效率高,原材料价格便宜,制作方便,也不容易老化。 常用的材料有石英晶体、钛酸钡和锆钛酸铅。 石英晶体的伸缩量太小,3000V电压才产生0.01um以下的变形。 钛酸钡的压电效应比石英晶体大20-30倍,但效率和机械强度不如石英晶体。 锆钛酸铅具有二者的优点,可用作超声波清洗,探伤和小功率超声波加工的换能器。 压电换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。 按实现的作用分为超声波加工、超声波清洗、超声波探测以及超声波雾化等。 编辑本段外形分类

外贴式超声波液位计工作原理及技术分析

外贴式超声波液位计 一、外贴式超声波液位计原理 外贴式超声波液位计从罐外连续、精确的测量罐内的液位,完全不接触罐内的液体和气体,实现了真正的隔离测量。外贴式超声波液位计测量方式不同与其他液位计(安装其他液位计时必须在容器上开孔,在容器内部测量液位),其特点是无需在容器上开孔,利用超声波分析原理,在容器外部就能够不间断地测出液面的精确高度。该仪表安装时不需要在罐壁上开孔安装传感器,仪表既不接触容器内的液态介质,也不接触容器内的气态介质。有效解决了在强腐蚀、剧毒、高压力、易燃爆、高纯度、无杂菌感染等特殊恶劣、苛刻条件下测量液位这一世界技术难题。因为外测液位仪完全不接触容器内的液体,因此,它使用时极为安全可靠,安装维护特别方便,是绿色环保仪表,可广泛用于各种容器内液面的连续精确测量。 二、外贴式超声波液位计工作原理: 外贴式超声波液位计处理后的液位高度数值准确,无需CPU再作分析、比较、判断。CPU获取液位数值后,可送NVRAM存储、送数码显示器显示。此外仪表可输出4~20mA标准信号或通过RS-485接口将测量结果输出至上位计算机(或二次表)。 如图2所示,测量液位时,经过调制过的声波信号从探头发射出去,经过液面反射回来后由探头检测到回波信号。回波信号经过预处理、加工、后处理后直接准确给出时间t,CPU根据数字模型表述关系计算出液面高度。 h=act/2 h:液位高度 t:声波从发射到返回所用的时间

a:修正系数 c:超声波在液体中传播的声速 液位计工作原理示意图图2 三.技术优势: 1)外贴式超声波液位计优势如下: •传感器安装在罐体外壁上与被测液体不接触 •超声波的测量原理对人无害 •运算时间非常短 •传感器和变送器之间的距离可达300m •不受罐内高压的影响 •用该产品使带有泡沫的介质液位同样精确测量成为可能•外安装的传感器不存在卫生问题 •同样可以测量有毒、有害、腐蚀性的介质液位 •传感器无可动件无磨损

超声波换能器工作原理

2、超声波换能器的工作原理 (1) 超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压 电陶瓷式。电源输出到 超声波发生器,再到超声波换能器,一般还要经过 超声波导出、接收 装置就可以产生超声波了。 (2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出 电缆,其特征在于它还包括阵列接收器, 它由引出电缆、换能器、金属圆环、橡胶垫圈组成。 (3) 超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料 的压电效应将电信号转换为机械振动 ?超声波换能器是一种能量转换器件,它的功能是将输 入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。 超声波换能器的种类:可分为压电换能器、 夹心换能器、柱型换能器、倒喇叭型换能器等等。 40kHZ 超声波发射/接收电路综述 40kHZ 超声波发射电路 ⑴ 10kHz 因声波发射器]1 ) 40kHZ 超声波发射电路之一,由 F1~F3三门振荡器在F3的输出为40kHZ 方波,工作 频率主 要由C1、R1和RP 决定,用RP 可调电阻来调节频率。 F3的输出激励换能器 T40-16 的一端和反向器 F4, F4输出激励换能器 T40-16的另一端,因此,加入 F4使激励电压提高 了一倍。电容 C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器 F1~F4用CC4069 六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用 9V 叠层电池。测量F3 输出频率应为40kHZ ± 2kHZ 否则应调节 RR 发射超声波信号大于 8m 。 40kHZ 超声波发射电路 ⑵ 1615? F 100 — ^500 T40-16

超声波液位计

产品名称:超声波液位计 型号:XY-TUF1 工作原理 超声波液位计由三部分组成:超声波换能器、处理单元、输出单元。超声波液位计换能部分利用压电陶瓷作为超声波脉冲的发射器和接收器,当在压电陶瓷两端加上一定电压的时候,压电陶瓷受激励振动产生超声波脉冲,接着超声波换能器转入接收状态对已收到的超声波回波脉冲进行分析。首先需要监测接收是否是所发出的超声波脉冲的回波,如果是,则检测声波的行程时间,然后由处理单元把时间转换为距离和液位,再由输出单元进行输出。 超声波液位计技术优势:超声波液位计是非接触测量方式,±0.25%精度,1-25米量程,优异的聚焦:5度声束角,多种传感器材质,内置全量程温度补偿。超声波液位计测量有腐蚀(酸、碱)的介质、有污染的场合(下水道),或易产生粘附物的物质。适合于那些无法用物理方式接触的液体。 主要参数 量程:0-3、5、8、10、15、20 、 30、 40、 50 、100m 精度:0.25% 盲区:0.15-0.7m 工作温度:-20℃-+60℃

压力范围:-1-16公斤(型号:QF-8000或者QF-9000系列) 电源:24VDC、220VAC 输出:4-20mA、Rs-485 控制:二路继电器 防护等级:IP68 显示方式:12864点液晶显示 外壳:耐腐型传感器外壳 产品特点 1.多脉冲低电压多点发射发射电路,双平衡抑制噪声多点接收电路(QF-9000系列):提高仪器可靠性,解决不物位不平整测量不准确的难题,并大大加强抗干扰能力,可在变电站发射塔附近稳定工作。 2.自动功率调整、增益控制、温度补偿。 3.先进的检测技术,丰富的软件功能适应各种复杂环境。 4.采用新型的波形计算技术,提高仪表的测量精度。 5.具有干扰回波的抑止功能保证测量数据的真实。 6.16位D/A转换,提高电流输出的精度和分辨率。 7.传感器采用四氟乙烯材料,可用于各种腐蚀性场合。 8.多种输出形式:可编程继电器输出、高精度4-20mA电流输出、RS485数字通信输出分体超声波液位探头 性能特点

超声波仪器探头性能指标及其测试方法

超声波仪器、探头主要组合的性能测定 1、电噪声电平(%) 仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大,衰减器置“0”,深度粗调、深度微调置最大。读取时基线噪声平均值,用百分数表示。 2、灵敏度余量(dB) a)使用、Φ20直探头和CS-1-5或DB--PZ20—2型标准试块。 b)连接探头并将仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大。若此时仪器和探头的噪声电平(不含始脉冲处的多次声反射)高于满辐的10%,则调节衰减或增益,使噪音电平等于满辐度的10%记下此时衰减器的读数S0。 图1 直探头相对灵敏度(灵敏度余量)测量 c)将探头置于试块端面上探测200mm处的i2平底孔,如图17所示。移动探头使中Φ2平底孔反射波辐最高,并用衰减器将它调至满辐度的50%,记下此时衰减器的,则该探头及仪器的探伤灵敏度余量S为: S=S1--S0(dB) 3、垂直线性误差测量(%) (1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照 波,如图2所示。调节探伤仪灵敏度,使参照波的辐度恰为垂直刻 度的100%,且衰减器至少有30dB的余量。测试时允许使用探头压

块。 图2 垂直线性误差测量 (2)用衰减器降低参照波的辐度,并依次记下每衰减2dB时参照波辐度的读数, 直至衰减26dB以上。然后将反射波辐度实测值与表l中的理论值相 比较,取最大正偏差d(+)与最大负偏差d(-),则垂直线性误差△d 用式(1)计算: △d=|d(+)|+|d(-)| (1) (3)在工作频率范围内,改用不同频率的探头,重复(1)和(2)的测试。 dB) (1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照 波。 (2)调节衰减器降低参照波,并读取参照波辐度自垂直刻度的100%下降 至刚能辨认之最小值(一般约为3~5%)时衰减器的调节量,此调节 量则定为该探伤仪在给定频率下的动态范围。 (3)按(1)和(2)条方法,测试不同频率不同回波时的动态范围。 5、水平线性误差测量(%) (1)连接探头,并根据被测探伤议中扫描范围档级将探头置于适当厚度的 试块上,如DB――D1,DB—Pz20-2,CSK-1A试块等,如图3所示。 再调节探伤仪使之显示多次无干扰底波。 (2)在不具有“扫描延迟”功能的探伤仪中,在分别将底波调到相同辐度 的条件下,使第一次底波B1的前沿对准水平刻度“2”第五次底波 B5的前沿对准水平刻度“10”,然后依次将每次底波调到上述相同辐 度,分别读取第二、三四次底波前沿与水平刻度“4”、“6”、“8”的 偏差Ln,如图4所示,然后取其最大偏差Lmax按式(2)计算水平线 性误差ΔL: 式中:ΔL:水平线性误差,%; B:水平全刻度读数。 图3 水平线性误差测量 图4 水平线性误差测量 (3)在具有“扫描延迟”功能的探伤仪中,按(2)条的方法,将底波以前沿 对准水平刻度“0”,底波B6前沿对准水平刻度“l0”,然后读取第二 至第五次底波中之最大偏差值Lmax,再按式(3)计算水平线性误差△L

超声波探头

第三章探伤仪、探头和试块3.1第一节:探伤仪 3.2 探头 一、压电效应与压电材料 某些单晶体和多晶体陶瓷材料在应力(压缩力和拉伸力)作用下产生异种电荷向正反两面集中而在晶体内产生电场,这种效应称为正压电效应。相反,当这些单晶体和多晶体陶瓷材料处于交变电场中时,产生压缩或拉伸的应力和应变,这种效应称为负压电效应,如图所示。 负压电效应产生超声波,正压电效应接收超声波并转换成电信号。 常用的压电单晶有石英又称二氧化硅(SiO2)、硫酸锂(LiS04H20)、碘酸锂LiIO3)、铌酸锂(LiNbO3)等,除石英外,其余几种人工培养的单晶制造工艺复杂、成本高。 常用的压电陶瓷有钛酸钡(BaTi03)、锆钛酸铅(PZT)、钛酸铅(PbTiO3)、偏铌酸铅(P bNb2O4)等。 二、探头的编号方法 三、探头的基本结构 压电超声探头的种类繁多,用途各异,但它们的基本结构有共同之处,如图所示。它们一般均由晶片、阻尼块、保护膜(对斜探头来说是有机玻璃透声楔)组成。此外,还必须有与仪器相连接的高频电缆插件、支架、外壳等。 四、直探头 (一)直探头的保护膜

1.压电陶瓷晶片通常均由保护膜来保护晶片不与工件直接接触以免磨损。常用保护膜 有硬性和软性两类。氧化铝(刚玉)、陶瓷片及某些金属都属于硬性保护膜,它们适用于工件表面光洁度较高、且平整的情况。用于粗糙表面时声能损耗达20~30dB。 2.软性保护膜有聚胺酯软性塑料等,用于表面光洁度不高或有一定曲率的表面时,可 改善声耦合,提高声能传递效率,且探伤结果的重复性较好,磨损后易于更换,它对声能的损耗达6~7dB。 3.保护膜材料应耐磨、衰减小、厚度适当。为有利于阻抗匹配,其声阻抗Zm应满足 一定要求。 4.试验表明:所有固体保护膜对发射声波都会产生一定的畸变,使分辨率变差、灵敏 度降低,其中硬保护膜比软保护膜更为严重。因此,应根据实际使用需要选用探头及其保护膜。与陶瓷晶片相比,石英晶片不易磨损,故所有石英晶片探头都不加保护膜。 (二)直探头的吸收块 为提高晶片发射效率,其厚度均应保证晶片在共振状态下工作,但共振周期过长或晶片背面的振动干扰都会导致脉冲变宽、盲区增大。为此,在晶片背面充填吸收这类噪声能量的阻尼材料,使干扰声能迅速耗散,降低探头本身的杂乱的信号。目前,常用的阻尼材料为环氧树脂和钨粉。 五、斜探头 (一)结构与类型 (二)透声楔 斜探头都习惯于用有机玻璃作斜楔,以形成一个所需的声波入射角,并达到波型转换的目的。 一发一收型分割式双直探头和双斜探头也都以有机玻璃作为透声楔,这是因为有机玻璃声学

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考 编号被测工件厚度选择探头和斜率选择探头和斜率 14—5mm6×6 K3 不锈钢:1.25MHz 铸铁:0.5—2.5 MHz 普通钢:5MHz 26—8mm8×8 K3 39—10mm9×9 K3 411—12mm9×9 K2.5 513—16 mm9×9 K2 617—25 mm13×13 K2 726—30 mm13×13 K2.5 831—46 mm13×13 K1.5 947—120 mm13×13( K2—K1) 10121—400 mm18×18 ( K2—K1) 20×20 ( K2—K1) 超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1,外观检查. 2,致密性试验和水压强度试验. 3,焊缝射线照相. 4,超声波探伤. 5,磁力探伤. 6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。

超声波换能器工作原理精品名师资料

2、超声波换能器的工作原理 (1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。 (2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。 (3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。 40kHZ超声波发射/接收电路综述 40kHZ超声波发射电路(1) 40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。 F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。电容C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器F1~F4用CC4069 六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用9V叠层电池。测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。发射超声波信号大于8m。

40kHZ超声波发射电路(2) 40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。T40-16是反馈耦合元件,对于电路来说又是输出换能器。T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。电路工作电压9V,工作电流约25mA。发射超声波信号大于8m。电路不需调试即可工作。 40kHZ超声波发射电路(3) 40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。电路的振荡频率决定于

超声波探头知识分享

超声波探头

第三章探伤仪、探头和试块 3.1第一节:探伤仪 3.2 探头 一、压电效应与压电材料 某些单晶体和多晶体陶瓷材料在应力(压缩力和拉伸力)作用下产生异种电荷向正反两面集中而在晶体内产生电场,这种效应称为正压电效应。相反,当这些单晶体和多晶体陶瓷材料处于交变电场中时,产生压缩或拉伸的应力和应变,这种效应称为负压电效应,如图所示。 负压电效应产生超声波,正压电效应接收超声波并转换成电信号。 常用的压电单晶有石英又称二氧化硅(SiO2)、硫酸锂(LiS04H20)、碘酸锂LiIO3)、铌酸锂(LiNbO3)等,除石英外,其余几种人工培养的单晶制造工艺复杂、成本高。 常用的压电陶瓷有钛酸钡(BaTi03)、锆钛酸铅(PZT)、钛酸铅(PbTiO 3)、偏铌酸铅(PbNb2O4)等。 二、探头的编号方法 三、探头的基本结构 压电超声探头的种类繁多,用途各异,但它们的基本结构有共同之处,如图所示。它们一般均由晶片、阻尼块、保护膜(对斜探头来说是有机玻璃透声楔)组成。此外,还必须有与仪器相连接的高频电缆插件、支架、外壳等。

四、直探头 (一)直探头的保护膜 1.压电陶瓷晶片通常均由保护膜来保护晶片不与工件直接接触以免磨损。 常用保护膜有硬性和软性两类。氧化铝(刚玉)、陶瓷片及某些金属都属于硬性保护膜,它们适用于工件表面光洁度较高、且平整的情况。用于粗糙表面时声能损耗达20~30dB。 2.软性保护膜有聚胺酯软性塑料等,用于表面光洁度不高或有一定曲率的 表面时,可改善声耦合,提高声能传递效率,且探伤结果的重复性较好,磨损后易于更换,它对声能的损耗达6~7dB。 3.保护膜材料应耐磨、衰减小、厚度适当。为有利于阻抗匹配,其声阻抗 Zm应满足一定要求。 4.试验表明:所有固体保护膜对发射声波都会产生一定的畸变,使分辨率 变差、灵敏度降低,其中硬保护膜比软保护膜更为严重。因此,应根据实际使用需要选用探头及其保护膜。与陶瓷晶片相比,石英晶片不易磨损,故所有石英晶片探头都不加保护膜。 (二)直探头的吸收块 为提高晶片发射效率,其厚度均应保证晶片在共振状态下工作,但共振周期过长或晶片背面的振动干扰都会导致脉冲变宽、盲区增大。为此,在晶片背面充填吸收这类噪声能量的阻尼材料,使干扰声能迅速耗散,降低探头本身的杂乱的信号。目前,常用的阻尼材料为环氧树脂和钨粉。 五、斜探头 (一)结构与类型

超声波换能器选用说明及其原理介绍

超声波换能器选用说明及其原理介绍 超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗掉很少的一部分功率(小于10%)。所以,使用超声波换能器最应考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。市面上超声波机械种类繁多,客户必须提供准确可靠的指标,才能保证公司提供的换能器产品能与贵公司的机器良好匹配,发挥最佳性能。 因换能器品种繁多,本文只提供了部分换能器参数。 ①谐振频率:f, 单位:KHz 该频率是指用频率发生器,毫伏表等通过传输线路法测得的频率,或用阻抗特性分析仪等类似仪器测得的频率。一般通称小信号频率。与它相对的是上机频率,即客户将换能器通过电缆连到驱动电源上,通电后空载或有载时测得的实际工作频率。因客户的匹配电路各不相同,同样的换能器配不同的驱动电源表现出来的频率是不同的,这样的频率不能作为订货依据。 ②换能器电容量:CT ,单位:PF 即换能器自由电容,一般可用电容电桥在400Hz-1000Hz的频率下测得,也可用阻抗特性分析仪类似仪器。再简单点,用一般的便携式电容表测量也可满足要求。 ③换能器工作方式 因加工方式和要求不同,换能器的工作方式大致可分为连续工作(花边机,CD套机,拉链机,金属焊接等)和脉冲式工作(如塑焊机),

不同的工作方式对换能器的要求是不同的。一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇式的,有停顿,但瞬间电流很大。平均而言,两种状态的功率都很大的。

④换能器型式和最大功率 整机厂家可能对于不同用途和目的的机器的标称功率有不同的规定,换句话说,同样的换能器用在不同的机器上标称功率可能是不同的。为避免产生岐义,客户应详细说明换能器的结构型式,如柱型、倒喇叭型等,及压电陶瓷晶片的直径和片数。 ⑤安装和配合尺寸 主要有变幅杆材质,表面处理方式,形状。换能器与变幅杆连接螺纹,变幅杆与模具连接螺纹,变幅杆法兰盘处直径、厚度、缺口或螺孔数量和位置。 如有侵权请联系告知删除,感谢你们的配合!

超声波探头-UTIII

第一节超声波探头 一.以构造分类 1.直探头: 单晶纵波直探头双晶纵波直探头 2.斜探头: 单晶横波斜探头α1<αL<αⅡ,双晶横波斜探头 单晶纵波斜探头αL<α1为小角度纵波斜探头 αL在α1附近为爬波探头 爬波探头;沿工件表面传输的纵波,速度快、能量大、波长长探测深度较表面波深,对工件表面光洁度要求较表面波松。(频率2.5MHZ波长约 2.4mm,讲义附件11、12、17题部分答案)。 3.带曲率探头: 周向曲率径向曲率。 周向曲率探头适合---无缝钢管、直缝焊管、筒型锻件、轴类工件等轴向缺陷的检测。工件直径小于2000mm时为保证耦合良好探头都需磨周向曲率。 径向曲率探头适合---无缝钢管、钢管对接焊缝、筒型锻件、轴类工件等径向缺陷的检测。工件直径小于600mm时为保证耦合良好探头都需磨径向曲率。 4.聚焦探头: 点聚焦线聚焦。 5.表面波探头:(当纵波入射角大于或等于第二临界角,既横波折射角度等于900形成表面波). 沿工件表面传输的横波,速度慢、能量低、波长短探测深度较爬波浅,对工件表面光洁度要求较爬波严格。 第一章“波的类型”中学到:表面波探伤只能发现距工件表面两倍波长深度内的缺陷。(频率2.5MHZ波长约1.3mm,讲义附件11、12题部分答

案)。 二.以压电晶体分类: 三.压电材料的主要性能参数: 1.压电应变常数d33: d33=?t/U在压电晶片上加U这么大的应力,压电晶片在厚度上发生了?t的变化量,d33越大,发射灵敏度越高(82页最下一行错)。 2.压电电压常数g33: g33=UP/P在压电晶片上加P这么大的应力.在压电晶片上产生UP这么大的电压,g33越大,接收灵敏度越高。 3.介电常数ε: ε=Ct/A[C-电容、t-极板距离(晶片厚度)、A-极板面积(晶片面积)]; C小→ε小→充、放电时间短.频率高。 4.机电偶合系数K: 表示压电材料机械能(声能)与电能之间的转换效率。 对于正压电效应:K=转换的电能/输入的机械能。

超声波液位计介绍

超声波液位 超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。 目录 基本简介 工作原理 现场条件 产品特点 超声波液位计测量水位的原理以及安装要求 超声波液位计主要技术参数 HD-ALY系列精巧型小盲区超声波液位计 基本简介 QF-8000超声波液位计可采用二线制、三线制或四线制技术,二线制为:供电与信号输出共用;三线制为:供电回路和信号输出回路独立,当采用直流24v供电时,可使用一根3芯电缆线,供电负端和信号输出负端共用一根芯线;四线制为:当采用交流220v供电时,或者当采用直流24v供电,要求供电回路与信号输出回路完全隔离时,应使用一根4芯电缆线。直流或交流供电,具有 4~20mADC,高低位开关量输出。 量程范围:0-50米,多种形式可选,适合各种腐蚀性、化工类场合,精度高,远传信号输出,PLC 系统监控。 工作原理 QF-8000超声波物位计工作原理是由超声波换能器(探头)发出高频脉冲声波遇到被测物位(物料)表面被反射折回反射回波被换能器接收转换成电信号.声波的传播时间与声波的发出到物体表面的距离成正比.声波传输距离S与声速C和声传输时间T的关系可用公式表示:S=C×T/2. 探头部分发射出超声波,然后被液面反射,探头部分

再接收,探头到液(物)面的距离和超声波经过的时间成比例: hb = ct2 即 距离[m] = 时间×声速/2 [m] 声速的温度补偿公式: LU20超声波液位计 环境声速= 331.5 + 0.6×温度 现场条件 1) 环境温度: -10 ~ +60℃(低温情况需特殊说明) 2) 表壳保护等级: IP65 适用于户外安装 3) 适用测量的介质: 适用于大部分液体及粉状颗粒状固体,弱酸,弱碱,强碱,低于40%的强酸。若在强酸应用场合,请与我司联系,应使用防腐探头。 4) 容器压力: 0.7~3 bar 5) 在下面的任何一种情况,要注意: ①有泡沫的液体/固体 ②周围有强电压,强电流,强电磁干扰,尽量避免高电压,高电流及强电磁干扰 ③大风和太阳直晒 ④强震动 超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。 产品特点 多脉冲低电压多点发射发射电路,双平衡抑制噪声多点接收电路(QF-9000系列):提高仪器可靠性,解决不物位不平整测量不准确的难题,并大大加强抗干扰能力,可在变电站发射塔附近稳定工作 自动功率调整、增益控制、温度补偿。 先进的检测技术,丰富的软件功能适应各种复杂环境。 采用新型的波形计算技术,提高仪表的测量精度。 具有干扰回波的抑止功能保证测量数据的真实。 16位D/A转换,提高电流输出的精度和分辨率。 传感器采用四氟乙烯材料,可用于各种腐蚀性场合。 多种输出形式:可编程继电器输出、高精度4-20mA电流输出、Rs-485数字通信输出分体超声波液位探头

超声波液位计说明模板

超声波液位计说明书 令狐采学 本说明书适用三线制或4线制、二线制 由于盘装式和壁挂式已经停产,使用时可以参考本说明书一,用户自检: A,仪表正确通上合格的电源,按移位键(即左键)找出L(L 是探头到反射面的距离),垂直对准空旷的墙面作为超声波的反射面(假设是水面),观察L的数字,显示L的数字和实际距离相等说明测量功能正常.(首先要先熟悉有关距离L和液位H的关系图见附件). 说明: 1,由于仪表有严格的数据过滤和确认过程,数字变化可能会比您移动仪表的速度慢一些,属于正常现象。(有特殊要求请您在订货时说明) 2,在检验的过程中应该注意:L(max)≤测量距离能力, L(min)≥仪表的盲区C. 3,一般情况下,仪表量程d+盲区C=仪表最大测量距离能力L(max). 4,量程是和输出电流P有关的参数,和其他无关。 B,把超声波的发射口对向空旷的天空,一分钟以内仪表应该显示FFFF, 也可以取一块干燥的毛巾重叠数层堵住换能器的发

射口,从原理上说仪表此时没有回波收到,同样仪表会显示FFFF.说明您的仪表抗干扰性能不错. C,按移位键找出P(仪表应该输出的电流值),用电流表直接测量输出电流应该和P值相当. 经过以上3个项目的检验,用户可以放心的使用了. 二,连续按移位键可以依次查看仪表的以下参数参 数: P-XXXX 当前应该输出的电流(mA) h-XXXX 最后一次所设定的“当前液位”值(m). h-该参数没有实际意义. 该数对应菜单01 C-XXXX 仪表盲区(cm),盲区固有 d-XXXX 仪表量程(m)该数对应菜单02 d只和输出电流有关,和其他无关. H当前液(物)位m-XXXX 或L(距离m)XXXX 对于三线制超声波液位计用户菜单中编号为07的是工 作模式转换。 对于二线制超声波液位计用户菜单中编号为04的是工作模式转换。 工作模式设置为1.0000时是测量距离模式,设置为0.000是测量当前液位模式。 按上升键仪器直接显示“当前液位”H或距离L。 按SET键仪器直接显示P.

超声波图文详解

超声波探伤原理(初学者入门篇) 超声波是频率很高的声波,定向性很强,尤如手电筒发出的一束光,射到物体时,会被反射回来。超声波探头内,有个压电晶片,施加一个发射脉冲电压,就会产生超声波脉冲,当把探头压紧在光洁的被测工件上时,超声波束就会传入工件,以每秒数千米的声速前进,当碰到裂缝等缺陷时,从缺陷表面反射回来,传回到探头晶片上,产生回波电压。经仪器处理后,从声波来回所花费时间,再扣除掉晶片到探头表面保护膜所化的时间(称作探头零点),乘上声速就是超声波脉冲走过的路程称作声程,也就是从探头表面,声波入射到工件的点(称作入射点)到缺陷之间的距离,同时从回波电压大小也可推算出缺陷大小。由于发射时晶片强裂振动,震动哀减下来需要一定时间,此期间收到的回波混在余震中无法区别,故最小探测距离一般为5mm以上。如要探测近距离缺陷,需用频率高阻尼好的探头或双晶探头。

当声波前进到工件底部时,也会产生反射。反射方向同镜子反光规则,即垂直射入时,垂直反射回;斜射时,反射角等于入射角,且在法线两侧。如果工件底面平行于放置探头的探测面,垂直反射的回波仍能被探头接收到,而且工件底面面积一般来说远比缺陷大,故底面回波幅度也远比缺陷波幅度大。 底面回波简称底波。底波回传到探测面时,又会产生反射,又会向底面传播,如此来回反射,形成2次底波,3次底波,4次底波等等。由于存在扩散现象,反射损耗,吸收损耗等,各次底波会越来越小,经过一段时间后,能量就会耗尽,再起动下一次发射。每秒发射次数称发射重复频率,探头移动速度快时,要求较高发射重复频率,否则会造成漏检。

如果工件底面同探测面不平行,根据反射角等于入射角原理,反射波偏向一边,底面反射波就回不到探头,也就收不到底波,故工件的上下面不平行时,是看不到底波的。同理,如工件内部缺陷面平行于波束传播方向,也是收不到缺陷回彼的。如缺陷面垂直于波束传播方向,收到的缺陷回波会最大,所以要根据缺陷最可能的方向,尽量选择探伤灵敏度高的探测面探伤,或选不同方向探测面反复探测,如找不到合适的探测面,也可改用斜探头。 斜探头内的晶片是倾斜安装的,射出的超声波束也是斜线进入工件的。为表明倾斜程度,用工件内波束方向同探测面垂线之间的夹角表示。角度越大,波束越倾斜;声程在水平方向上的分量(也可叫投影)所占比例越大,垂直分量比例越小。常用的60度斜探头,水平同垂直之比为1.73比1(60度正切函数值),也可用这个比值称为K值来表示,故K = 1.73就是60度的斜探头,而K = 0是斜探头的特例,即称为直探头,没有水平分量,垂直分量就是声程。 斜探头常用于焊缝探伤,因为焊缝表面高低不平,不能用直探头直接在焊缝上探伤,而且缺陷往往平行于焊缝,直探头的声束和缺陷面的夹角很小,也不易发现缺陷。由于斜探头的声束是倾斜进入工件的,可以避开高低不平的焊缝表面,在焊缝一侧探伤,而且声束和缺陷面的夹角比较大,尤其是先入射到底面再斜着反射的声束正好垂直于缺陷表面,能产生比较大的反射波,容易检测到缺陷,这也称为2次波探伤。随着探头朝远离焊缝方向移动,一直可以探到焊缝最上部,不过再移下去声束会先打到上表面,再斜着反射下来,也可打到焊缝,形成3次波探伤。但是路程越远回波强度越弱,应尽量不用。用1次波探到的缺陷深度,就等于声束走过的垂直分量;用2次波探到的缺陷深度不等于垂直分量走过的路程之和。缺陷越浅,垂直分量走过的路程之和反而越大。例如板厚20mm,声束的垂直分量走过35mm(缺陷波出现在刻度垂直分量 35mm处),这表明声束的垂直分量走20mm,碰到底面后反射向上走15mm (35 - 20),故缺陷深度为5mm(20 - 15)。读者可在纸上画示意图理解。 由于超声波在传递过程中,强度会遂步衰减,相同大小的缺陷,在不同深度时,缺陷回波的高度是不一样的,不能用某一波高一刀切来定缺陷大小。为了帮助判断缺陷大小,用曲线来表示某一大小的缺陷回波高度同深度的关系。直探头探伤往往用AVG曲线,斜探头用DAC曲线。 超声波探头必须同工件表面紧密接触,中间那怕一层极薄的空气,也会产生极大衰减,在工件上刷耦合剂(例如机油)就能减少耦合损失。如工件表面光洁度不好,而曲线是对试块做的,那末根据两者光洁度的差别,探伤时,应对增益(仪器放大量)增加一些,以补偿耦合损失。补偿量大小可凭经验确定,也

第3章 医用超声换能器与探头

第3章 医用超声换能器与探头 超声诊断仪是通过探头产生入射超声波(发射波)和接收反射超声波(回波)的,它是诊断设备的重要部件。高频电能激励探头中的晶体产生机械振动,反射超声波的机械振动又可以通过探头转换为电脉冲。也就是说探头能将电能转换成声能,又能够将声能转换成电能,所以探头又称作超声换能器。其原理来自于晶体的压电效应。 §3.1压电效应 压电效应泛指晶体处于弹性介质中所具有的一种声-电可逆特性,此现象为法国物理学者居里兄弟于1880年所发现,故也称居里效应(图3-7)。 图3-1晶体的压电效应 具有压电效应性质的晶体,称为压电晶体。目前常用于超声探头的晶体片有锆酸铅、钛酸钡、石英、硫酸锂等人工或天然晶体。钛酸钡及锆酸铅是在高温下烧结的多晶陶瓷体,把毛坯烧结成陶瓷体后,经过适当的研磨修整,

得到所需的几何尺寸,再用高压直流电场极化后,就具有压电性质,成为换能器件。 3.1.1正压电效应 在晶体或陶瓷的一定方向上,加上机械力使其发生形变,晶体或陶瓷的两个受力面上,产生符号相反的电荷;形变方向相反,电荷的极性随之变换,电荷密度同外施机械力成正比,这种因机械力作用而激起表面电荷的效应,称为正压电效应,如图3-7(a)。 3.1.2逆压电效应 在晶体或陶瓷表面沿着电场方向施加电压,在电场作用下引起晶体或陶瓷几何形状应变,电压方向改变,应变方向亦随之改变,形变与电场电压成比例,这种因电场作用而诱发的形变效应,称为逆压电效应,如图3-7(b)。 一般情况下,压电效应是线性的,然而,当电场过强或压力很大时,就会出现非线性关系。 晶体和陶瓷片因切割方位和几何尺寸的不同,产生机械振动的固有频率也不同,当外加的交变电压的频率与固有频率一致时,产生的机械振动最强;当外加的机械力的频率与固有频率一致时,所产生的电荷也最多。在超声波诊断仪中激励脉冲的频率必须与探头的固有频率相同。 §3.2压电换能器的特性 压电换能器的特性参量很多,现只简单介绍以下3种。 3.2.1频率特性 压电换能器的晶体本身是一个弹性体,因此有其固有的谐振频率,当所施力的频率等于其固有频率时,它将产生机械谐振,由于正压电效应而产生

超声波焊接机的工作原理

精心整理超声波焊接机的工作原理 超音波焊接机的工作原理是:? 是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。根据产品的外观来设计模具的大小、形状。? 超声波塑料焊接 1 2 一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。 3、超声波发生器 (1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。 (2)功率在500W以上的超声波塑料焊接机所用发生器采用自激式功率振荡器,也具有一定的频率跟踪能力。 4、超声波焊接机使用的声学系统,主要是有换能器和工具头构成的。 一、打开电源无显示? 二、原因:保险丝熔断?

三、解决方法:? 四、1、?检查功率管是否短路? 五、2、?更换保险丝? 六、 七、二、超声波测试无电流显示? 八、原因: 九、1、?功率管烧毁? 十、2、?高压电容烧毁? 十一、3、继电器控制线路部分有故障? 十二、解决方法:更换相关烧毁零件? 十三、 十四、 十五、 十六、 十七、 十八、 十九、 二十、 二十一、 二十二、 二十三、 二十四、 二十五、 二十六、 二十七、 二十八、 二十九、 三十、 三十一、 三十二、 三十三、 三十四、 三十五、 三十六、 三十七、 三十八、 三十九、解决方法: 四十、1、?将急停开关复位? 四十一、2、?检测使两个触发开关能同时触发? 四十二、3、?检测程序板排除故障,一般为IC问题? 四十三、 四十四、六、触发触发开关后,超声时间非常长或者保压时间非常长? 四十五、原因:焊接时间或保压时间波段开关断路? 四十六、解决方法:调整波段开关触点,使之接触良好? 四十七、 四十八、七、触发触发开关后,超声波不能触发? 四十九、原因:

超声波探头打图注意事项

超声打图注意事项 超声打图的一些基本的注意事项我初步从以下几点说明: (一)探头的选择及检查部位 1、凸阵探头:一般频率在2.0-6.0MHZ之间,打图的部位是人体较深的脏器比如:肝脏、肾 脏、胆囊、胰脏、脾脏等部位。 2、线阵探头:一般频率在6.0-12.0MHZ之间,打图部位是人体内浅表的脏器比如:甲状腺、 血管、乳腺、眼睛等部位 3、腔体探头:一般频率在5.0-9.0MHZ之间,检查途径一般是经阴道检查子宫及其附件组织、 和经直肠检查直肠周边的子宫及其附件组织和前列腺。 (二)仪器的调节 在打超声图前首先调节仪器的基本键,主要调节的内容有: 1、TGC 一般调制中间位置,如果图像近场或者远场比较暗或亮时,可适度调节各场对应的TGC。 2、深度调节标准为能清楚的看见所检查脏器的各个部位为准。 3、总增益的调节如果图像近远场都比较暗或者亮时调节此键。 通常情况下调节这三个键都能使图像达到清晰状态。 (三)如何观察图像 我们打图经常用的脏器就是肝脏、肾脏和颈部血管,这里就着重说明这几个脏器的图像如何查看。 1、肝脏右叶切面: 此切面一般在剑突下或者肋间隙就可以打出来。要能看见肝右叶的所有部位,肝包膜完整,肝脏实质内光点均匀,移动探头也可以看到三条肝静脉图片,在CFM模式下呈三条分叉的蓝色血流信号。 2、肾脏纵切面: 此切面一般在背部两侧的腰部中间处将探头竖着打或者斜着打就可以看见。要能看见肾脏包膜完整、肾脏皮质实质分界清楚,还能看见呈树枝状得肾脏血管走形,在CFM模式下呈红蓝相间的树枝状血管,血流很丰富。 3、颈动脉纵切面:

血管的超声图片清晰与否,主要看血管腔内是不是均匀的无回声区域,管壁清晰连贯,CFM 模式下血流是否充盈。 (四)列举图像 1、凸阵探头:就以肝脏右叶图和肾脏纵切面图为例,让大家更直观的看图像。 肝脏右叶切面图,可以看见肝脏包膜完整,肝实质光点分布均匀,三条肝静脉,中间最长的为肝中静脉。

20种液位计工作原理及常见故障分析

20种液位计工作原理及常见故障分析 摘要:本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,让仪表人系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。 常见液位计种类 1、磁翻板液位计 2、浮球液位计 3、钢带液位计 4、雷达物位计 5、磁致伸缩液位计 6、射频导纳液位计 7、音叉物位计 8、玻璃板/玻璃管液位计 9、静压式液位计 10、压力液位变送器 11、电容式液位计 12、智能电浮筒液位计 13、浮标液位计 14、浮筒液位变送器 15、电接点液位计 16、磁敏双色电子液位计 17、外测液位计 18、静压式液位计 19、超声波液位计 20、差压式液位计(双法兰液位计) 常用液位计的工作原理

1、磁翻板液位计 磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。 原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。 2、浮球液位计 浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。

相关文档
相关文档 最新文档