文档库 最新最全的文档下载
当前位置:文档库 › 高中数学第二章柯西不等式与排序不等式及其应用2.1柯西不等式学案新人教B选修4-5

高中数学第二章柯西不等式与排序不等式及其应用2.1柯西不等式学案新人教B选修4-5

高中数学第二章柯西不等式与排序不等式及其应用2.1柯西不等式学案新人教B选修4-5
高中数学第二章柯西不等式与排序不等式及其应用2.1柯西不等式学案新人教B选修4-5

2.1柯西不等式

[对应学生用书P28]

[读教材·填要点]

1.平面上的柯西不等式的代数和向量形式

(1)定理1(柯西不等式的代数形式)

设a1,a2,b1,b2均为实数,则

(a21+a22)(b21+b22)≥(a1b1+a2b2)2.

上式等号成立?a1b2=a2b1.

(2)定理2(柯西不等式的向量形式)

设α,β为平面上的两个向量,则

|α||β|≥|α·β|

上式中等号成立?向量α和β共线(平行)?存在实数λ≠0,使得α=λβ.

(3)定理3:设a1,a2,b1,b2为实数,则

a21+a22+b21+b22≥ a1+b12+a2+b22

等号成立?存在非负实数μ及λ,使得

μa1=λb1,μa2=λb2.

(4)定理4(平面三角不等式)

设a1,a2,b1,b2,c1,c2为实数,则

a1-b12+a2-b22+b1-c12+b2-c22≥ a1-c12+a2-c22.

等号成立?存在非负实数λ及μ使得:

μ(a1-b1)=λ(b1-c1),μ(a2-b2)=λ(b2-c2).

(5)定理5:设α,β,γ为平面向量,则

|α-β|+|β-γ|≥|α-γ|

当α-β,β-γ为非零向量时,上面不等式中等号成立?存在正常数λ,使得α-β=λ(β-γ)?向量α-β与β-γ同向,即夹角为零.

2.柯西不等式的一般形式

定理设a1,a2,…,a n,b1,b2,…,b n为实数,则(a21+a22+…+a2n)1

2(b21+b22+…+

b2n)1

2≥|a1b1+a2b2+…+a n b n|,

其中等号成立?a 1b 1=a 2

b 2=…=a n b n

(当某b j =0时,认为a j =0,j =1,2,…,n )

[小问题·大思维]

1.在平面上的柯西不等式的代数形式中,取等号的条件可以写成a 1a 2=b 1b 2

吗? 提示:不可以.当a 2·b 2=0时,柯西不等式成立, 但a 1a 2=b 1b 2

不成立.

2.在一般形式的柯西不等式的右端中,表达式写成a i ·b i (i =1,2,3,…,n ),可以吗? 提示:不可以,a i ·b i 的顺序要与左侧a i ,b i 的顺序一致.

3.在一般形式的柯西不等式中,等号成立的条件记为a i =kb i (i =1,2,3,…,n ),可以吗?

提示:不可以.若b i =0而a i ≠0,则k 不存在.

[对应学生用书P29]

利用平面上的柯西不等式证明有关不等式

[例1] 已知a ,b ,c 为正数,且满足a cos 2θ+b sin 2 θ

θ

[思路点拨] 由柯西不等式直接证明即可. [精解详析] 由柯西不等式, 得a cos 2

θ+b sin 2

θ

≤[(a cos θ)2

+(b sin θ)2

]1

2

(cos 2θ+sin 2

θ)12

=(a cos 2

θ+b sin 2θ)12

θ

利用柯西不等式证明某些不等式时,有时需要将数学表达式适当的变形.这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.

1.设a ,b 均为正实数,且a +b =2. 求证:

a 22-a +

b 2

2-b

≥2. 证明:根据柯西不等式,有

[(2-a )+(2-b )]? ??

?

?a 22-a +b 2

2-b

=[(2-a )2

+(2-b )2

]????

??

? ????a 2-a 2+? ????b 2-b 2

≥?

????2-a ·a 2-a +2-b ·b 2-b 2

=(a +b )2

=4. ∴

a 22-a +

b 2

2-b

4

2-a +2-b

=2.

∴原不等式成立.

利用一般形式的柯西不等式证明不等式

[例2] 设a ,b ,c 为正数,且不全相等. 求证:

2a +b +2b +c +2c +a >9a +b +c

. [思路点拨] 本题考查三维形式的柯西不等式的应用.解答本题需要构造两组数据

a +

b ,b +

c ,c +a ;

1

a +b

1

b +c

1

c +a

,然后利用柯西不等式解决.

[精解详析] 构造两组数a +b ,b +c ,c +a ;1

a +b

1

b +c

1

c +a

,则由柯西

不等式得

(a +b +b +c +c +a )? ??

?

?1a +b +1b +c +1c +a ≥(1+1+1)2,①

即2(a +b +c )? ??

?

?1a +b +1b +c +1c +a ≥9,

于是

2a +b +2b +c +2c +a ≥9a +b +c

.

由柯西不等式知,①中有等号成立

?

a +b

1

a +b

b +c

1

b +

c =

c +a

1

c +a

?a +b =b +c =c +a ?a

=b =c .

因题设,a ,b ,c 不全相等,故①中等号不成立, 于是

2a +b +2b +c +2c +a >9a +b +c

.

柯西不等式的结构特征可以记为(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2

+…+a n b n )2

,其中a i ,b i 均为正实数(i =1,2,…,n ),在使用柯西不等式时(要注意从整体上把握柯西不等式的结构特征),准确地构造公式左侧的两个数组是解决问题的关键.

2.设a ,b ,c 为正数,求证:a 2b +b 2c +c 2

a

≥a +b +c .

证明:∵? ??

??a 2b +b 2c +c 2

a (a +

b +

c ) =????

??? ????a b 2+? ????b c 2+? ????c a 2·[(b )2+(c )2+(a )2

] ≥?

??

??a b ·b +b c ·c +c a ·a 2=(a +b +c )2

即? ??

??a 2

b +b 2

c +c 2

a (a +

b +

c )≥(a +b +c )2

, 又a ,b ,c 为正实数,∴a +b +c >0.

∴a 2b +b 2c +c 2

a

≥a +b +c . 利用柯西不等式求最值

[例3] 设2x +3y +5z =29,求函数u =2x +1+3y +4+5z +6 的最大值. [思路点拨] 本题考查三维柯西不等式的应用,解答本题需要利用好特定条件,设法去掉根号.

[精解详析] 根据柯西不等式 120=3[(2x +1)+(3y +4)+(5z +6)] ≥(1×2x +1+1×3y +4+1×5z +6)2

故2x +1+3y +4+5z +6≤230. 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =22

15时等号成立,

此时u max =230.

利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.

3.设x ,y ,z ∈R ,且满足:x 2

+y 2

+z 2

=1,x +2y +3z =14,则x +y +z =________. 解析:根据柯西不等式可得,(x 2

+y 2

+z 2

)(12

+22

+32

)≥(x +2y +3z )2

=14,所以要取

到等号,必须满足x 1=y 2=z 3,结合x +2y +3z =14,可得x +y +z =314

7

.

答案:314

7

[对应学生用书P30]

一、选择题

1.若a ,b ∈R ,且a 2

+b 2

=10,则a +b 的取值范围是( ) A .[-25,25] B .[-210,210] C .[-10,10]

D .(-5,5]

解析:∵a 2

+b 2

=10, ∴(a 2

+b 2

)(12

+12

)≥(a +b )2

, 即20≥(a +b )2

, ∴-25≤a +b ≤2 5. 答案:A

2.已知x ,y ∈R +

,且xy =1,则?

????1+1x ?

??

??1+1y 的最小值为( )

A .4

B .2

C .1

D .14

解析:? ????1+1x ? ????1+1y ≥? ????1+1xy 2=4,故选A.

答案:A

3.已知4x 2

+5y 2

=1,则2x +5y 的最大值是( ) A. 2 B .1 C .3

D .9

解析:∵2x +5y =2x ·1+5y ·1≤4x 2

+5y 2

·12

+12

=1·2= 2. ∴2x +5y 的最大值为 2. 答案:A

4.设a 1,a 2,…,a n 为实数,P =a 21+a 22+…+a 2

n

n ,Q =a 1+a 2+…+a n n

,则P 与Q 的

大小关系为( )

A .P >Q

B .P ≥Q

C .P

D .不确定 解析:由柯西不等式知

(a 2

1

+a 22

+…+a 2

n )1

2·()111n ?1442443

++个

12

≥a 1+a 2+…+a n ,

∴ a 2

1+a 2

2+…+a 2

n ·n ≥a 1+a 2+…+a n . 即得 a 21+a 22+…+a 2

n

n ≥a 1+a 2+…+a n n ,∴P ≥Q .

答案:B 二、填空题

5.设a ,b ,c ,d ,m ,n 都是正实数,P =ab +cd ,Q =ma +nc ·b m +d

n

,则P 与Q 的大小________.

解析:由柯西不等式,得

P =

am ·b m +

nc ×d n

am

2

+nc

2

×

? ????b m 2+? ??

??d n 2

=am +nc × b m +d

n

=Q . 答案:P ≤Q

6.(陕西高考)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2

的最小值为________.

解析:由柯西不等式得(ma +nb )2

≤(m 2

+n 2

)(a 2

+b 2

),即m 2

+n 2

≥5,当且仅当m a =n b

时等号成立,∴m 2

+n 2

≥5,∴所求最小值为 5.

答案: 5

7.函数y =2cos x +31-cos 2x 的最大值为________. 解析:y =2cos x +31-cos 2x =2cos x +32sin 2

x

cos 2

x +sin 2

x [22

+32

2

]=22.

当且仅当

cos x

sin 2

x

232

,即tan x =±

32

2

时,函数有最大值22. 答案:22

8.已知x ,y ,z 均为正实数,且x +y +z =1,则1x +4y +9

z

的最小值为________.

解析:利用柯西不等式.

由于(x +y +z )? ??

??1x +4y +9z ≥

?

? x ·1x +y ·2y +

?

??z ·

3z 2

=36,

所以1x +4y +9

z

≥36.

当且仅当x 2

=14y 2=19z 2,即x =16,y =13,z =12时,等号成立.∴1x +4y +9z 的最小值为36.

答案:36 三、解答题

9.已知实数a 、b 、c 满足a +2b +c =1,a 2

+b 2

+c 2

=1. 求证:-2

3

≤c ≤1.

证明:因为a +2b +c =1,a 2

+b 2

+c 2

=1, 所以a +2b =1-c ,a 2

+b 2

=1-c 2

. 由柯西不等式得:

(12

+22

)(a 2

+b 2

)≥(a +2b )2

5(1-c 2)≥(1-c )2

, 整理得,3c 2

-c -2≤0, 解得-23≤c ≤1.∴-2

3

≤c ≤1.

10.已知x ,y ,z ∈R ,且x -2y -3z =4,求x 2

+y 2

+z 2

的最小值. 解:由柯西不等式,得

[x +(-2)y +(-3)z ]2

≤[12

+(-2)2

+(-3)2

](x 2

+y 2

+z 2

), 即(x -2y -3z )2

≤14(x 2

+y 2

+z 2

), 即16≤14(x 2

+y 2

+z 2

).

所以x 2+y 2+z 2≥87,当且仅当x =y -2=z -3,即当x =27,y =-47,z =-67

时,x 2+y 2

z 2的最小值为8

7

.

11.已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2

+2b 2

+3c 2

+6d 2

=5,求a 的最值. 解:由柯西不等式,有

(2b 2+3c 2+6d 2)? ????12+13+16≥(b +c +d )2

即2b 2

+3c 2

+6d 2

≥(b +c +d )2

, 由条件可得,5-a 2

≥(3-a )2

, 解得1≤a ≤2,当且仅当

2b 12=3c 13=6d 16

时等号成立, 代入b =12,c =13,d =1

6时,a max =2,

代入b =1,c =23,d =1

3

时,a min =1.

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

2014年人教A版选修4-5教案 二 一般形式的柯西不等式

二 一般形式的柯西不等式 教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习准备: 1. 练习: 2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++ 二、讲授新课: 1. 教学一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,, ,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++ 讨论:什么时候取等号?(当且仅当 12 12 n n a a a b b b === 时取等号,假设0i b ≠) 联想:设1122n n B a b a b a b =+++, 22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥, 可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+( )(222 12()n b b b +++???+ ,则 2221122()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++ 22212()n b b b +++≤0 即有要证明的结论成立. (注意:分析什么时候等号成立.) ④ 变式:222212121 ()n n a a a a a a n ++ ≥++???+. (讨论如何证明)

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

不等式知识点详解

考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ §06. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达标训练新人教A版选修

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达 标训练新人教A 版选修 基础·巩固 1.如下图所示,矩形OPAQ 中,a 1≤a 2,b 1≤b 2,则阴影部分的矩形的面积之和_________空白部分的矩形的面积之和. 思路分析:这可沿图中线段MN 向上翻折比较即知.当然由图我们可知,阴影面积=a 1b 1+a 2b 2,而空白面积=a 1b 2+a 2b 1.根据顺序和≥反序和可知答案. 答案:≥ 2.设a 、b 、c 为某一三角形三边长,求证: a 2(b+c-a)+ b 2(c+a-b)+ c 2(a+b-c)≤3abc. 思路分析:运用排序原理,关键是弄出有序数组,通常从函数的单调性质去寻找,如f(x)=x 2在R +单调递增,f(x)=在R +单调递减. 证明:不妨设a≥b≥c,易证a(b+c-a)≤b(c+a -b)≤c(a+b -c). 由排序原理得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c) ≤a·b(c+a -b)+b·c(a+b -c)+c·a(b+c -a)=3abc. 3.对a,b,c∈R +,比较a 3+b 3+c 3与a 2b+b 2c+c 2a 的大小. 思路分析:将式子理解为积的形式a 2·a+b 2·b+c 2·c,a 2b+b 2c+c 2a,再依大小关系可求解. 解:取两组数a,b,c ;a 2,b 2,c 2. 不论a,b,c 的大小顺序如何,a 3+b 3+c 3都是顺序和,a 2b+b 2c+c 2a 都是乱序和; 故由排序原理可得a 3+b 3+c 3≥a 2b+b 2c+c 2a. 4.求证:正实数a 1,a 2,…,a n 的任一排列为a 1′,a 2′,…,a n ′,则有≥n. 思路分析:本题考查如何将和的形式构造为积的形式,本题关键是将n 理解为n 个1相加,而把1理解为x·的形式.这种方法有普遍的应用,应该加以重视. 证明:取两组数a 1,a 2,…,a n ;,,…,. 其反序和为=n ,原不等式的左边为乱序和,有≥n. 5.已知a,b,c∈R +,求证:≥a 10+b 10+c 10. 思路分析:可以发现左右两边的次数相等,因此,应该进行适当的拼凑,使其成为积的形式. 证明:不妨设a≥b≥c>0,则>0且a 12≥b 12≥c 12>0, 则ab c bc b ab a ab c ca b bc a 12 1212121212++≥++ c c b b a a a c c b b a 11 1111111111++≥++==a 10+b 10+c 10. 6.设a 1,a 2, …,a n 是1,2, …,n 的一个排列,求证: n n a a a a a a n n 1322113221-++≤-+++ .

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

二维形式的柯西不等式知识点梳理

课题:二维形式的柯西不等式 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式. (2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效. 4、容易出现的问题: 在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置易出错。 5、解决方法:

如何进行柯西不等式的教学(含答案)

如何进行柯西不等式的教学 柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用,教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用. 在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式接着借助二维形式的柯西不等式证明了三角不等式,在一般形式的柯西不等式的基础上,教科书安排了—个探究栏目,让学生通过探究得出一般形式的三角不等式. 由上可见,教材编写者对这部分内容的要求以便让学生在大学学习打下坚实的基础,但这部分教与学的难度是显而易见的. 柯西不等式∑∑∑===≥n i i i n i i n i i b a b a 1 21 2 1 2 )(是柯西在1931年研究数学分析中的“留数” 问题时得到的.表面上看,这一不等式并不难理解,也很容易验证它的正确性,特别是它的二阶形式22222)())((bd ac d c b a +≥++,几乎是不证自明的.但是,我们能看出这一平凡无奇的不等式成立,是因为事先已经知道两边是什么式子,而最先发现这样的不等关系,则是一个创造的过程,并不是那么容易的.柯西不等式不失为至善至美的重要不等式,以它的对称和谐的结构,简洁明快的解题方法等特点,深受人们的喜爱.而且和物理学中的矢量、高等数学中的内积空间等内在地联系在一起.柯西不等式的几种形式都有较为深刻的背景和广泛的应用,向量形式αβαβ≥?不仅直观地反映了这一不等式的本质,一般形式

不等式选讲知识点归纳及近年高考真题

不等式选讲知识点归纳及近年高考真题 考点一:含绝对值不等式的解法 例1.(2011年高考辽宁卷理科24)已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 解:(I )3, 2,()|2||5|27,25,3, 5.x f x x x x x x -≤?? =---=-<+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{} 1-≤x x ,求a 的值。

柯西不等式教学设计

3.1 二维形式的柯西不等式(一)教学设计 一、设计思想: 本节乃至本讲的编写意图不是仅仅介绍经典不等式及其证明方法,而是更希 望能通过分析和解决问题,讨论经典不等式的简单应用,提高学生运用重要数学 结论进行推理论证的能力,即在理解重要数学结论的基础上,能够发现面临的具 体问题与重要数学结论之间的内在联系,并善于利用这样的联系,应用重要数学 结论及其所反映的数学思想方法解决具体问题。 二、教材分析: 二维形式的柯西不等式是人教A 版教材选修4-5第三讲第一节的内容,是学生 继学习均值不等式之后学习的又一个经典不等式,它在教材中起着承前启后的作 用,一方面巩固了前面证明不等式及求最值的基本方法,另一方面与后面学习的 三维形式的柯西不等式及一般形式的柯西不等式有着相通的研究方法,是从特殊 到一般的研究过程。本节教学的核心是二维形式的柯西不等式、几何意义以及它 的简单应用。 三、学情分析: 学生不仅掌握了不等式的基本证明方法,还具备了一定的观察、分析、逻辑推 理能力,学生对柯西不等式的向量形式也有了一定的认识,这是学生知识的“最 近发展区”。另外授课班级是高二年级(4)班,学生基础较好,学习积极性较高。 四、教学目标 1、知识与技能目标 (1)认识二维柯西不等式的几种不同形式,理解其几何意义。 (2)能用二维柯西不等式解决简单的证明问题及求最值问题。 2、过程与方法目标 通过创设情境提出问题,然后探索解决问题的方法,培养学生 独立思考能力和逻辑推理能力及数形结合能力。 3、情感态度与价值观 简单介绍法国数学家柯西,渗透数学史和数学文化。 五、教学重难点 (1)教学重点 二维形式的柯西不等式 ; 二维形式的柯西不等式的向量形式 (2)教学难点 数形结合的认识两种形式的等价关系;应用柯西不等式求最值 六、教学过程 (一)定理探究 设α ,β 为平面上以原点O 为起点的两个非零向量,它们的坐标α =(b a ,) β =(d c ,)那么它们的数量积为ac bd αβ→→?=+而22||a b α→=+,22||c d β=+ ||||cos αβαβθ?=?? ,cos 1θ≤ ||||||αβαβ∴ ?≤? ,其中等号当且仅当两个向量共线时成立。 定理:(二维柯西不等式的向量形式)设α ,β 为平面上的两个向量,则 ||||||αβαβ?≤? ,当且仅当β 是零向量或存在实数k ,使k αβ= 时等号成立。 用向量坐标表示不等式||||||αβαβ?≤? ,得2222||d c b a bd ac +?+≤+

高中数学知识点精讲精析 排序不等式

2 排序不等式 先来看一个问题: 设有10个人各拿一只水桶去接水,若水龙头注满第i 个人的水桶需要i a 分钟,且这些i a 各不相同。那么,只有一个水龙头时,应如何安排10个人接水的顺序,才能使它们等待的总时间最少?这个最少的总时间等于多少? 解决这一问题,就需要用到排序不等式的有关内容。在没有找到合理的解决办法之前,同学们可以猜测一下,怎样安排才是最优的接水顺序? 为了解决这一问题,先来了解排序不等式。 一般地,设有两组正数n a a a ,,,21 与n b b b ,,,21 ,且n a a a ≤≤≤ 21,n b b b ≤≤≤ 21. 若将两组中的数一对一相乘后再相加, 则其和同序时最大,倒序时最小.即 (倒序)(乱序)(同序)1 12121221121b a b a b a b a b a b a b a b a b a n n n i n i i n n n +++≥+++≥+++- 其中n i i i ,,,21 是n ,,2,1 的任一个排列,等号当且仅当n a a a === 21或 n b b b === 21时成立。 下面采用逐步调整法证明排序不等式。 证明:考察任意和式n i n i i b a b a b a s +++= 2121。 若1i b 是1b ,则转而考察2i b ; 若1i b 不是1b ,而某一k i b 是1b 。将1i b 与k i b 调整位置,得 n k i n i k i i b a b a b a b a s +++++=' 1221 则 0))(()()(111111≥--=-+-=-'i k i i k i i b b a a b b a b b a s s k k 这就是说,当把第一项调整为11b a 后,和不会减少。同样,可将第二项调整为22b a ,…,

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

基本不等式柯西不等式知识点复习

基本不等式及应用 一、考纲要求: 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 3.了解证明不等式的基本方法——综合法. 二、基本不等式 三、常用的几个重要不等式 (1)a 2+b 2 ≥2ab (a ,b ∈R) (2)ab ≤(a +b 2)2(a ,b ∈R) (3)a 2 +b 2 2≥(a +b 2)2(a ,b ∈R) (4)b a +a b ≥2(a ,b 同号且不为零) 上述四个不等式等号成立的条件都是a =b. 四、算术平均数与几何平均数 设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的 算术平均数不小于它们的几何平均数. 四个“平均数”的大小关系; a , b ∈R+: 当且仅当a =b 时取等号. 五、利用基本不等式求最值:设x ,y 都是正数. (1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P. (2)如果和 x +y 是定值S ,那么当x =y 时积xy 有最大值14 S 2 . 强调:1、 “积定和最小,和定积最大”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件. 正:两项必须都是正数; +≤≤2 a b ≤+2ab a b

定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。 等:等号成立的条件必须存在. 2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性.) 想一想:错在哪里? 3、已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1 y )的最小值为________. 解一:因为对a>0,恒有a +1a ≥2,从而z =(x +1x )(y +1 y )≥4,所以z 的最小值是4. 解二:z =2+x 2y 2 -2xy xy =(2 xy +xy)-2≥2 2 xy ·xy -2=2(2-1),所以z 的最小值是2(2-1). 【错因分析】 错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的. 【正确解答】 z =(x +1x )(y +1y )=xy +1xy +y x +x y =xy +1xy +x +y 2 -2xy xy =2 xy +xy -2, 令t =xy ,则0-+ =x x x x f 33 ()222 23326f x x x x x x x x x =+ ≥? -->?? =?=?-? 解:当且仅当即时,函数 的最小值是23x =+大家把代入看一看,会有 什么发现?用什么方法求该函数的 最小值?

《二 一般形式的柯西不等式》教案

《二 一般形式的柯西不等式》教案 教学目标 1.认识柯西不等式的几种不同形式,理解其几何意义; 2.通过运用这种不等式分析解决一些问题,体会运用经典不等式的一般方法 教学重、难点 重点:一般形式柯西不等式的证明思路,运用这个不等式证明不等式. 难点:应用一般形式柯西不等式证明不等式. 教学过程 一、复习引入: 定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则 22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立. 定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα?≥?,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 二、讲授新课: 类似的,从空间向量的几何背景业能得到?αβαβ≤将空间向量的坐标代入,可得到 2222222123123112233()()()a a a b b b a b a b a b ++++≥++ 当且仅当,αβ共线时,即0,β=或存在一个数k ,使得(1,2,3)i i a kb i ==时,等号成立. 这就是三维形式的柯西不等式. 对比二维形式和三维形式的柯西不等式,你能猜想出一般形式的柯西不等式吗? 定理(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任 意实数,则:22222212121122()()()n n n n a a a b b b a b a b a b ++++≥++L L L 即 2 11212)(∑∑∑===≥n i i i n i i n i i b a b a ,其中等号当且仅当1212n n b b b k a a a ====L 时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n ). 证明:构造二次函数:2222211)()()()(n n b x a b x a b x a x f -++-+-=Λ

(新)高中数学柯西不等式与排序不等式

1 3.1 3.2 柯西不等式 1.二元均值不等式有哪几种形式? 答案:(0,0)2 a b a b +≥>>及几种变式. 2.已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 定理:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 2 22|| c d ac bd +≥+ 或222||||c d ac bd +≥+ 22c d ac bd +≥+. 定理:设1212,,,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++ (当且仅当12 12 n n a a a b b b === 时取等号,假设0i b ≠) 变式: 2222 12121 ( )n n a a a a a a n ++ ≥++???+. 定理:设,αβ是两个向量,则||||||αβαβ≤. 等号成立?(β是零向量,或者,αβ共线) 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 三角不等式: ① 定理:设1122,,,x y x y R ∈ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 例1:求函数y = 分析:如何变形? → 构造柯西不等式的形式 变式:y =→ 推广:,,,,,)y a b c d e f R +=∈

相关文档
相关文档 最新文档