文档库 最新最全的文档下载
当前位置:文档库 › 张力结构—讲义color

张力结构—讲义color

张力结构—讲义color
张力结构—讲义color

新型分离式张力腿平台概念设计

第12卷第8期2012年3月1671—1815(2012)08-1724-09 科学技术与工程 Science Technology and Engineering Vol.12No.8Mar.2012 2012Sci.Tech.Engrg. 地球科学 新型分离式张力腿平台概念设计 闫功伟 1 欧进萍 1,2 (哈尔滨工业大学土木工程学院1,哈尔滨150090;大连理工大学建设工程学部2,大连116024) 摘要通过对张力腿平台型式、特点及发展历程的分析,提出张力腿平台型式创新及性能优化应遵循主体集中布置、延伸 式系泊、最小水线面等趋势;进而提出了新型的张力腿平台概念。该新型平台主体在垂向自平衡与系泊系统分离,且具有最小化的水线面和延伸式系泊等特性。最小化的水线面的概念可以最大限度减小平台在水线面处所受环境载荷。主体垂向分离且自平衡的概念可以同时保证平台的静水回复刚度,并解除平台纵、横荡与垂荡的耦合效应,减小张力腿的“疲劳效应”。主体垂向可以在底部附加垂荡板以控制垂荡。延伸式系泊可以增加平台在纵、横摇方向上的刚度。之后又给出了此种平台概念设计的具体流程和要点,并概念设计了一座新型平台。关键词 张力腿平台 分离自平衡 最小水线面 延伸系泊 概念设计 中图法分类号 P751; 文献标志码 A 2011年12月15日收到国家重点基础研究发展计划 (2011CB013702;2011CB013703)资助 第一作者简介:闫功伟(1983—),男,安徽人,博士生,研究方向:深水海洋平台的动力响应, E-mail :yangongwei@foxmail.com 。随着陆地及近海油气资源的日益枯竭,深海油气钻采技术的需求越来越紧迫。目前张力腿平台以其成熟的技术和优良的工作性能, 广泛应用于世界海上各个知名油气田,已超有24座,新型张力腿平台的设计应用水深已超过2500m (Atlantia 公司的Seastar 在西非和巴西海域的研究项目以及墨西哥海湾的应用项目,设计工作水深分别达到了2743m 和2591m )。 张力腿平台在水平方向属于一种顺应式深水平台,在垂向通过平行且张紧的张力腿系统垂直系泊在海底,能够使得平台的各方向运动的固有周期均避开海洋波浪的能量集中区域,具有良好稳定的运动性能。 国内外很多学者对不同型式张力腿平台做了研究,Jagannathan [1] 在1992年提出了一种悬式张 力腿平台的概念,并进行了深入研究。Kobayashi 等 [2] 提出了带有底座的张力腿平台。Wybro 等 [3] 提 出了MOSES TLP 。Kibbee [4] 提出了SeaStar Minimal TLP 。Copple [5]提出了用于深水边际油田的浮力腿结构。Bhattacharyya 等 [6] 等应用数值模拟的方法对 迷你式Seastar TLP 的耦合动力响应进行了分析。Yang 等[7]进行了位于墨西哥湾的延伸式TLP 平台在极端海况下张力腿断开时瞬态效应的数值模拟。 按形式不同可以将张力腿平台分为:(1)传统式张力腿平台(CTLP );(2)海星式张力腿平台(Sea-Star TLP );(3)最小化深海水面设备结构张力腿平台(MOSES TLP );(4)延伸式张力腿平台(ETLP )。不同形式TLP 的特点: (1)传统式张力腿平台(CTLP ),一般主体由3根或者4根立柱及连接它们的浮箱组成。针对此种平台, 各国学者进行了广泛且卓有成效的研究,现存最多的张力腿平台型式; (2)Seastar TLP ,是一种按照mini-TLP 概念进行设计的单柱式张力腿平台,在1992年由Atlantia 公司设计研发,已申请了专利,主要应用于较小储量的油气田开发。它的承载效率较传统式的要高,系泊范围较大,能够提高平台运动响应性能,模块化设计,方案灵活,能够适应不同环境的要求,便于建造和安装。 (3)MOSES TLP 最小化深海水面设备结构, Minimum Offshore

第二章分子结构与性质单元测试

第二章分子结构与性质单元测试 一、选择题(本题包括18小题,每小题4分,共72分,每小题有一个或两个选项符合题意, 选错不得分,如果有两个正确选项,选对一个得 2分) 1?有关乙炔分子中的化学键描述不正确的是( ) C ?每个碳原子都有两个未杂化的 2p 轨道形成n 键 D.两个碳原子形成两个 n 键 2?膦(PH 3)又称膦化氢,在常温下是一种无色、有大蒜臭味的有毒气体,电石气的杂质中常 含有膦化氢。它的分子构型是三角锥形。以下关于 PH 3的叙述正确的是( ) A. PH 3分子中有未成键的孤对电子 B PH 3是非极性分子 C. PH 3是一种强氧化剂 D. PH 3分子的P — H 键是非极性键 3?实现下列变化时,需要克服相同类型作用力的是( ) A.水晶和干冰的熔化 B.食盐和醋酸钠的熔化 C.液溴和液汞的汽化 D.HCl 和NaCI 溶于水 4. 下列指定粒子的个数比为 2: 1的是( ) A.Be 2+中的质子数 B.I 2H 原子中的中子和质子 C.NaHCQ 晶体中的阳离子和阴离子 D.BaQ (过氧化钡)晶体中的阴离子和阳离子 5. 在有机物分子中,当碳原子连有 4个不同的原子或原子团时,这 种碳原子称为“手性碳原 子”,凡具有一个手性碳原子的化合物一定具有光学活性。例如下图表示的有机物中含有一 个手性碳原子,具有光学活性。当发生下列变化时,生成的有机物无光学活性的是( ) A.与新制的银铵溶液共热 B.与甲酸酯化 C.与金属钠发生置换反应 D.与 H 2加成 6. 关于氢键的下列说 法中正确的是( ) A.每个水分子内含有两个氢键 B.在水蒸气、水、冰中都含有氢键 C 分子间能形成氢键使物质的熔沸点升高 D.HF 的稳定性很强,是因为其分子间能形成氢键 7. 下列说法正确的是( ) A.n 键是由两个p 电子“头碰头”重叠形成的 B y 键是镜像对称,而 n 键是轴对称 C 乙烷分子中的键全是 y 键,而乙烯分子中含 y 键和n 键 D.H 2分子中含y 键,而C 2分子中还含有n 键 8. 在BrCH=CHBr 分子中,C — Br 键采用的成键轨道是( ) 2 2 3 A.sp —p B.sp — s C.sp — p D.sp — p 9. 下列物质的杂化方式不是 sp 3杂化的是( ) A.CO 2 B.CH C.NH 3 D.H 2O O O CHb — C —O -CH -C -H CH2OH

2020高考化学 考题 分子结构与性质

分子结构与性质 1.三硫化磷(P4S3)是黄绿色针状晶体,易燃、有毒,分子结构之一如下图所示,已知其燃烧热△H= -3677kJ/mol(P被氧化为P4O10),下列有关P4S3的说法中不正确的是 A.分子中每个原子最外层均达到8电子稳定结构 B.P4S3中硫元素为-2价,磷元素为+3价 C.热化学方程式为P4S3(s)+8O2(g)=P4O10(s)+3SO2(g);△H=-3677kJ/mol D.一个P4S3分子中含有三个非极性共价键 【答案】B 【解析】A、P原子最外层有5个电子,含3个未成键电子,S原子最外层有6个电子,含2个未成键电子,由P4S3的分子结构可知,每个P形成3个共价键,每个S形成2个共价键,分子中每个原子最外层均达到8电子稳定结构,A正确;B、由P4S3的分子结构可知,1个P为+3价,其它3个P都是+1价,正价总数为+6,而S为-2价,B错误;C、根据燃烧热的概念:1mol可燃物燃烧生成稳定氧化物放出的热量为燃烧热,则P4S3(s)+8O2(g)=P4O10(s)+3SO2(g);△H= -3677kJ/mol,C正确;D、由P4S3的分子结构可知,P-P之间的键为非极性键,P-S之间的键为极性键,一个P4S3分子中含有三个非极性共价键,D正确。 2.常温下三氯化氮(NCl3)是一种淡黄色的液体,其分子结构呈三角锥形,以下关于NCl3说法正确的是()A.该物质中N-C1键是非极性键 B.NCl3中N原子采用sp2杂化 C.该物质是极性分子 D.因N-C1键的键能大,所以NCl3的沸点高 【答案】C 【解析】A、N和Cl是不同的非金属,则N-Cl键属于极性键,故A错误;B、NCl3中N有3个σ键,孤 电子对数531 2 -? =1,价层电子对数为4,价层电子对数等于杂化轨道数,即NCl3中N的杂化类型为sp3, 故B错误;C、根据B选项分析,NCl3为三角锥形,属于极性分子,故C正确;D、NCl3是分子晶体,NCl3沸点高低与N-Cl键能大小无关,故D错误。 3.二氯化二硫(S2Cl2),非平面结构,常温下是一种黄红色液体,有刺激性恶臭,熔点80℃,沸点135.6℃,对干二氯化二硫叙述正确的是

人教版高中化学物质结构与性质第二章《分子结构与性质》单元测试卷

第二章《分子结构与性质》单元测试卷 一、单选题(共15小题) 1.通常把原子总数和价电子总数相同的分子或离子称为等电子体.人们发现等电子体的空间结构相同,则下列有关说法中正确的是() A. CH4和NH4+是等电子体,键角均为60° B. B3N3H6和苯是等电子体,1molB3N3H6和苯均有6mol非极性键 C. NH3和PCl3是等电子体,均为三角锥形结构 D. BF3和CO32﹣是等电子体,均为平面正三角形结构 2.硫化氢(H2S)分子中两个共价键的夹角接近90°,其原因是() ①共价键的饱和性①S原子的电子排布①共价键的方向性①S原子中p轨道的形状A. ①① B. ①① C. ①① D. ①① 3.某物质的实验式为PtCl4·2NH3,其水溶液不导电,加入AgNO3溶液反应也不产生沉淀,以强碱处理并没有NH3放出,则关于此化合物的说法中正确的是() A.配合物中中心离子的电荷数和配位数均为6 B.该配合物可能是平面正方形结构 C. Cl-和NH3分子均与Pt4+配位 D.配合物中Cl-与Pt4+配位,而NH3分子不配位 4.下列物质的分子中,没有π键的是() A. CO2 B. N2 C. CH≡CH D. HClO 5.电子数相等的粒子叫等电子体,下列粒子不属于等电子体的是() A. CH4和NH4+ B. NO和O2 C. HCl和H2S D. NH2﹣和H3O+ 6.若AB n分子的中心原子上没有孤对电子,应用价层电子对互斥模型理论,判断下列说法正确的是()

A. n=3时,则分子的立体构型为V形 B. n=2时,则分子的立体构型平面三角形 C. n=4时,则分子的立体构型为正四面体形 D. n=4时,则分子的立体构型为三角锥形 7.下列有关二氯化锡(SnCl2)分子的说法正确的是() A.有一个σ键、一个π键 B.是直线形分子 C.中心原子Sn是sp2杂化 D.键角等于120° 8.下列说法正确的是() A.键能越大,表示该分子越容易受热分解 B.共价键都具有方向性 C.在分子中,两个成键的原子间的距离叫键长 D.H—Cl键的键能为431.8 kJ·mol-1,H—Br键的键能为366 kJ·mol-1,这可以说明HCl比HBr 分子稳定 9.用价层电子对互斥理论判断SO3的分子构型() A.正四面体形 B. V形 C.三角锥形 D.平面三角形 10.已知N—N、N==N、N≡N键能之比为 1.00①2.17①4.90,而C—C,C==C,C≡C键能之比为1.00①1.17①2.34。下列有关叙述,不正确的是() A.乙烯分子中σ键、π键的电子云形状对称性不同 B.乙炔分子中π键重叠程度比σ键小,易发生加成反应 C.氮分子中的N≡N键非常牢固,不易发生加成反应 D.氮气和乙炔都易在空气中点燃燃烧 11.六氧化四磷分子中只含有单键,且每个原子的最外层均满足8电子稳定结构,则该分子中含有的共价键数目为() A. 10 B. 12 C. 24 D. 28

高中化学分子的结构与性质

分子的结构与性质 【知识动脉】 知识框架 产生原因:共价键的方向性 Sp3 决定因素:杂化轨道方式sp2 分子的空间构型sp 空间构型的判断:VSEPR理论 空间构型决定性质等电子原理 手性分子 配合物 一、杂化轨道理论 1. 杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。 思考:甲烷分子的轨道是如何形成的呢? 形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。 根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。 思考: 应用轨道杂化理论,探究分子的立体结构。

C2H4 BF3 CH2O C2H2 思考:怎样判断有几个轨道参与了杂化? [讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为°的直线型杂化轨道,SP2杂化轨道为°的平面三角形,SP3杂化轨道为°′的正四面体构型。 小结:HCN中C原子以sp杂化,CH2O中C原子以sp2杂化;HCN中含有2个σ键和2π键;CH2O中含有3σ键和1个π键 【例1】(09江苏卷21 A部分)(12分)生物质能是一种洁净、可再生的能源。生物质气(主要成分为CO、CO2、H2等)与H2混合,催化合成甲醇是生物质能利用的方法之一。甲醛分子中碳原子轨道的杂化类型为。甲醛分子的空间构型是;1mol甲醛分子中σ键的数目为。 解析与评价:甲醛分子中含有碳氧双键,故碳原子轨道的杂化类型为sp2杂化;分子的空间构型为平面型;1mol甲醛分子中含有2mol碳氢δ键,1mol碳氧δ键,故含有δ键的数目为3N A 答案:sp2平面型3N A 【变式训练1】(09宁夏卷38)[化学—选修物质结构与性质](15分) 已知X、Y和Z三种元素的原子序数之和等于42。X元素原子的4p轨道上有3个未成对电子,Y元素原子的最外层2p轨道上有2个未成对电子。X跟Y可形成化合物X2Y3,Z元素可以形成负一价离子。请回答下列问题: (1)X与Z可形成化合物XZ3,该化合物的空间构型为____________; 2、价层电子对互斥模型 把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO2、CH2O、CH4等分子中的C 原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: ABn 立体结构范例 n=2 直线型CO2 n=3 平面三角形CH2O n=4 正四面体型CH4 另一类是中心原子上有孤对电子 ............)的分子。如 ....(未用于形成共价键的电子对 H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H2O分子呈V型,NH3分子呈三角锥型。 练习2、应用VSEPR理论判断下表中分子或离子的构型。进一步认识多原子分子的立体结构。 化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型 H2S

张力结构的型式及发展

张力结构的型式及发展 徐宗美,张华,陈礼和 南京河海大学土木工程学院 ( 210098) E-mail:xuzongmei_1999@https://www.wendangku.net/doc/f08602870.html, 摘 要:张力结构涉及诸如基础理论研究、应用技术、材料科学、建筑设计与施工等内容,它的分析、设计与施工反映了一个国家多种先进的科学技术水平。由于张力结构充分发挥了材料强度,造型优美且具有很高的结构效率,在大跨度空间结构及中小跨度结构中得到了广泛应用。随着张力结构的不断发展,目前出现了许多新型结构型式。本文结合大量科技文献,对张力结构进行了分类并阐述了各型式的机理和特点,对其重点研究领域进行了描述,最后对张力结构的发展前景作了展望。 关键词:张力结构;悬索结构;张力集成体系;膜结构 1概述 张力结构从满足一定拓扑关系的几何构造和外形中,通过预应力过程获取刚度,从而使结构具有满足功能要求的建筑造型和承载能力。因此张力结构的分析、设计与施工的过程紧紧围绕结构的拓扑、外形及刚度展开。在当前的工程中,张力结构一般都不是一种简单的型式,而是多种型式的集成,因此各文献对其分类也不尽相同,本文取长补短,对张力结构作出如下分类:悬索结构,张力集成体系和膜结构。 2张力结构的分类 2.1悬索结构 悬索结构形式多样,布置灵活,自重轻,施工简单。它以一系列受拉的索作为主要承重构件,这些索按一定规律组成各种不同形式的体系,并悬挂在相应的支承结构上。悬索结构仅通过索的轴向拉伸来抵抗外荷载的作用,结构中不出现弯矩和剪力效应,可充分利用钢材的强度[1]。悬索结构按受力特点,一般可分成单层悬索体系、双层悬索体系、索网结构、张弦梁、组合悬索结构及斜拉结构等类型。 2.1.1单层悬索体系 单层悬索体系根据索的布置方式分为平行布置方式、辐射布置方式和网状布置方式。 平行布置方式即单向索系结构,它由许多平行单根拉索组成,拉索之间可以设置横向加劲构件,拉索两端悬挂在稳定的支承结构上,也可设置专门的锚索或端部的水平结构来承受悬索的拉力。横向加劲构件可以传递荷载并均匀地分配到各平行索上;另外通过下压横向加劲构件的两端到预定位置或通过张拉索使整个体系产生预应力,提高屋盖的刚度。上海杨浦体育馆、安徽体育馆等工程采用了设置横向加劲梁(或桁架)的方法。横向加劲的单层悬索体系施工方便,系统几何外形简单,用料经济,是一种成功的创造[2-3]。 辐射布置方式中悬索常沿辐射方向布置,适用于圆形、椭圆形平面。用于屋盖结构时,整个屋面形成下凹的旋转曲面,悬索支承在周边构件-受压圈梁上,中心可设置受拉的内环, - 1 -

(完整版)人教版高中化学选修3第二章《分子结构与性质》单元测试题(解析版).docx

第二章《分子结构与性质》单元测试题一、单选题(每小题只有一个正确答案) 1.下列叙述正确的是() 32- 中硫原子的杂化方式为sp 2 B 2 2 分子中含有 3个σ键和 2 个π键 A. SO.C H C. H2O分子中氧原子的杂化方式为sp2D. BF3分子空间构型呈三角锥形 2.氯的含氧酸根离子有ClO ---- 等,关于它们的说法不正确的是、 ClO 2、 ClO 3、 ClO 4 () A. ClO4-是 sp3 杂化B. ClO3-的空间构型为三角锥形 C. ClO2-的空间构型为直线形D. ClO-中 Cl 显 +1价 3.下列描述中正确的是() 2 V 形的极性分子 A. CS 为空间构型为 B.双原子或多原子形成的气体单质中,一定有σ 键,可能有π 键 C.氢原子电子云的一个小黑点表示一个电子 2﹣3 杂化 D. HCN、SiF 4和 SO3的中心原子均为 sp 4.水是生命之源,下列关于水的说法正确的是() A.水是弱电解质B.可燃冰是可以燃烧的水 C.氢氧两种元素只能组成水D.0℃时冰的密度比液态水的密度大 5.电子数相等的微粒叫做等电子体,下列各组微粒属于等电子体是()A. CO和 CO2B. NO和 CO C . CH4和 NH3D. OH-和 S2- 6.下列分子或离子中, VSEPR模型为四面体且空间构型为V 形的是 A. H2S B . SO2 2-C . CO2 D . SO4 7.下列分子中只存在σ键的是 () A. CO2B.CH4C.C2H4D.C2H2 8. HBr 气体的热分解温度比HI 热分解温度高的原因是() A. HBr 分子中的键长比HI 分子中的键长短,键能大 B. HBr 分子中的键长比HI 分子中的键长长,键能小 C. HBr 的相对分子质量比HI 的相对分子质量小 D. HBr 分子间作用力比HI 分子间作用力大 9.表述 1 正确,且能用表述 2 加以正确解释的选项是() 表述1表述2 A在水中,NaCl 的溶解度比I 2的溶解度大NaCl晶体中Cl ﹣与Na+间的作用力

分子结构与性质教案

第二章分子结构与性质 第一节共价键 【学习目标】 1、了解共价键的形成过程。 2、知道共价键的主要类型δ键和π键。 3、能用键参数――键能、键长、键角说明简单分子的某些性质 4、知道等电子原理,结合实例说明“等电子原理的应用” 【学习重点】 1、δ键和π键的特征和性质 2、用键能、键长、键角等说明简单分子的某些性质。 【学习难点】 1、δ键和π键的特征; 2、键角 【教学过程】 复习引入: 1.NaCl、HCl的形成过程 2.离子键:阴阳离子间的相互作用。 3.共价键:原子间通过共用电子对形成的相互作用。 4.使离子相结合或原子相结合的作用力通称为化学键。 一、共价键 1、定义:原子间通过共用电子对形成的相互作用。 2、练习:用电子式表示H2、HCl、Cl2的形成过程 H2 HCl Cl2 思考:为什么H2、Cl2 是双原子分子,而稀有气体是单原子分子? 3、形成共价键的条件:两原子都有单电子 讨论(第一组回答):按共价键的共用电子对理论,是否有H3、H2Cl、Cl3的分子存在? 4、共价键的特性:饱和性 对于主族元素而言,内层电子一般都成对,单电子在最外层。 如:H 1s1 、Cl 1s22s22p63s23p5 H、Cl最外层各缺一个电子,于是两原子各拿一电子形成一对 共用电子对共用,由于Cl吸引电子对能力稍强,电子对偏向Cl(并非完全占有),Cl略带部分负电荷,H略带部分正电荷。

讨论(第二组回答):共用电子对中H、Cl的两单电子自旋方向是相同还是相反? 设问:前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠? 例:H2的形成 1s1 相互靠拢1s1 电子云相互重叠形成H2分子的共价键 (H-H)由此可见,共价键可看成是电子云重叠的结果。电子云重叠程度越大,则形成的共价键越牢固。 H2里的共价键称为δ键。形成δ键的电子称为δ电子。 5、共价键的种类 (1)δ键:(以“头碰头”重叠形式) a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。 讲:H2分子里的δ键是由两个s电子重叠形成的,可称为S-Sδ键。 下图为HCl、Cl2中电子云重叠: 未成对电子的电子云相互靠拢电子云相互重叠形成的共价单 键的电子云图 像 未成对电子的电子云相互靠拢电子云相互重叠形成的共价 单键的电子 云图像 HCl分子里的δ键是由H的一个s电子和Cl的一个P电子重叠形成的,可称为S-P δ键。 Cl2分子里的δ键是由Cl的两个P电子重叠形成的,可称为P-P δ键。 b、种类:S-S δ键 S-P δ键 P-P δ键

索杆张力结构基本理论综述

索杆张力结构的基本理论综述 夏巨伟 (浙江大学空间结构研究中心) 摘要:对应索杆张力结构的预张力加工、施工和使用状态,此类结构的分析设计主要落实到零状态、初始态和荷载态三个阶段。零状态为结构不受预张力作用时的平衡形态,初始态为结构在自重和预张力作用下的平衡状态,而荷载态则为结构在初始态的基础上承受其他外荷载的受力状态。本文针对这三个状态对索杆张力结构的基本理论进行综述。关键词:索杆张力结构;初始态分析;荷载态分析;零状态分析;找形;找力;平衡矩阵理论; 1.1初始态分析理论 从索杆张力结构的设计过程看,结构的初始态分析是整个设计过程的起点,是荷载态和零状态(施工成形态)分析的基本依据。初始态分析主要以下几个方面内容:(1) 体系的静动特性分析,即考察体系是否为机构和体系是否能维持预应力。(2) 预应力的可行性分析,即考察体系中维持的预应力是否能够刚化机构。(3) 初始形态的稳定性,考察体系是否能够维持初始平衡形状。(4) 找形分析,即确定初始态的几何。 Timosheko和Young[1]指出决定铰接杆系结构静动特性的两个重要参数s(自应力模态数)和m0(机构数或独立机构位移模态数)与其平衡矩阵A的秩r有关。若确定了平衡矩阵A的秩r,则s和m0可以分别表示为 s=b-r(1.1) m=m-r(1.2) 式中,m为结构的自由度数,b为结构的杆件数。文献根据s、m0的取值情况将铰接杆件体系分成了静定(s=0,m0=0)、静定动不定(s=0,m0>0)、超静定(s>0,m0=0)、静不定动不定(s>0,m0>0)四类,通常情况下索杆张力结构属于第四类。 Pellegrino和Calladine将矩阵的奇异值分解(SVD)技术和矩阵空间的解析相结合,给出了一个分析铰接杆系结构静动特性的方法[2]。该方法不仅能够有效地得到结构的静动特性,还能将许多具有物理意义的结构属性揭示出来。铰接杆件体系的平衡方程和协调方程可以写作为 At p(1.3)

(完整版)人教版高中化学选修3第二章《分子结构与性质》单元测试题(解析版)

第二章《分子结构与性质》单元测试题 一、单选题(每小题只有一个正确答案) 1.下列叙述正确的是() A.SO32-中硫原子的杂化方式为sp2 B.C2H2分子中含有3个σ键和2个π键C.H2O分子中氧原子的杂化方式为sp2 D.BF3分子空间构型呈三角锥形 2.氯的含氧酸根离子有 ClO-、 ClO2- 、 ClO3-、 ClO4- 等,关于它们的说法不正确的是() A.ClO4-是 sp3 杂化 B.ClO3- 的空间构型为三角锥形 C.ClO2-的空间构型为直线形 D.ClO- 中 Cl 显+1 价 3.下列描述中正确的是() A.CS2为空间构型为V形的极性分子 B.双原子或多原子形成的气体单质中,一定有σ键,可能有π键 C.氢原子电子云的一个小黑点表示一个电子 D.HCN、SiF4和SO32﹣的中心原子均为sp3杂化 4.水是生命之源,下列关于水的说法正确的是() A.水是弱电解质 B.可燃冰是可以燃烧的水 C.氢氧两种元素只能组成水 D.0℃时冰的密度比液态水的密度大 5.电子数相等的微粒叫做等电子体,下列各组微粒属于等电子体是() A.CO和CO2 B.NO和CO C.CH4和NH3 D. OH- 和S2- 6.下列分子或离子中,VSEPR模型为四面体且空间构型为V形的是 A.H2S B.SO2 C.CO2 D.SO42- 7.下列分子中只存在σ键的是 ( ) A.CO2 B.CH4 C.C2H4 D.C2H2 8.HBr气体的热分解温度比HI热分解温度高的原因是() A.HBr分子中的键长比HI分子中的键长短,键能大 B.HBr分子中的键长比HI分子中的键长长,键能小 C.HBr的相对分子质量比HI的相对分子质量小 D.HBr分子间作用力比HI分子间作用力大 9.表述1正确,且能用表述2加以正确解释的选项是()

张力结构体系设计的关键问题(1)

张力结构体系设计的关键问题(1) 摘要:介绍张拉膜这种张力结构来说明张力结构设计的关键问题,总结了其在荷载、受力、分析等方面有别于一般建筑结构的特点。 关键词:张力结构索膜结构张拉膜结构找形 一、张力结构设计的一般原则 张力结构体系的分析设计应分为三个状态:初始几何态、预应力(初)态和荷载(终)态。虽然,在张力结构体系的初始几何态分析时也需考虑预应力,但是,初始几何态的预应力分析仅是为了张成曲面几何外形,而预应力态时的预应力分析才是结构的刚度分析。应该说刚度设计是结构设计的主要内容,通过调整预应力来改变结构刚度,从而改变结构的力流,改变结构性能。在设计中增加截面并不是一种好的方法,改变形态、改变刚度可以收到事半功倍的效果。荷载态的分析主要是进行强度校核。 在刚性结构设计中,结构的几何外形是已定的,结构的变形也不影响结构的刚度特征。然而在张力结构设计中,寻求初始几何外形的分析和设计是十分重要的。如果结构的几何外形设计好,不是使结构处于病态,就是使结构产生过大的张

力而导致下部结构或边缘构件的设计产生困难。对于复杂体形的张力结构,其几何外形的设计伴随着维持其曲面张成所需的预应力设计。张力结构的初始几何外形设计的难度和分析设计重要性均甚于荷载态时的分析设计。 在张力结构的设计中,要保证能施加足够的预应力,必须有合适的节点构造。张力结构的节点除了具有一般节点的设计要求以外,还有区别于传统结构节点的显著特点,即该类节点具有互索的功能。例如,与节点相连的索单元拉力和杆单元压力使得节点的刚度得到加强。张力结构的节点刚度是与体系的应力水平相适应的,这也是与传统的结构体系的重要区别。 二、索膜结构的设计 张拉膜结构是膜结构中最常见的一种形式,即通过对膜材内部施加一定的预张力,使其具备了抵抗外荷载能力,从而充当结构材料的一种结构体系。张拉膜结构是通过给膜材及加劲索施加预张力使之具有刚度并承担外荷载的结构,又称之为索-膜结构。这种形式能够充分利用膜材的受力性能,形成轻巧、美观、具有现代感的空间大跨曲面结构,并且施工简单、快捷,成本低,在国外已经被广泛应用于商业建筑、体

张力腿平台简介

张力腿平台简介 一.第一代张力腿平台总述 第一代张力腿平台,即传统类型的张力腿平台,应用时间长、分布范围广、平台数量多、设计理论成熟,在张力腿平台发展的历史中占有很重要的地位。 从1984年至今,世界上建成投入生产的传统类型张力腿平台共有11座,尚未发生过倾覆、沉没等重大事故,拥有优良的工作记录,由此坚定了业界对TLP这种新兴海洋平台结构的信心。在其发展的20年时间里,世界各国的研究者和工程技术人员积累了丰富的设计应用经验和技术数据,为以后张力腿平台的发展打下了坚实的基础。 在已建成的11座传统类型的张力腿平台中,Shell石油公司在1994—2001年7年间连续建造的5座张力腿平台具有一定的代表性,分别为Auger、Mars、Ram、Ursa和Brutus。 通过第一代张力腿平台的生产实践,进一步证明了张力腿平台在深海域半刚性半柔性的优良运动性能和经济性,但是同时亦发现传统的张力腿平台结构形式仍存在着一定的 不足。 ①在水深超过1200m的极深水水域,随着张力筋腱长度的增加,出现了张力腿自重过大的问题,并且由于张力筋腱在深水中的受力情况发生改变,因此影响了平台的定位性能。

②在降低造价、改善受力情况和运动性能的方面,传统类型张力腿平台的本体结构仍需要进一步改进。 ③差频载荷是一个缓慢变化的力,它将和同样缓慢变化的张力腿平台平面内的运动发生共振。另外,风的激振力也在这个差频范围内,必然会加剧这种慢漂运动。 ④波浪的高频分量和高频水动力会引起张力腿平台平面外的共振,通常称为Springing和Ringing。张力腿平台结构这两个问题随着水深的增加而加剧,对结构的安全性有很大的影响。 ⑤传统的张力腿平台是通过海底基础固定入位的,随着水深的增加,海底基础的设计、施工变得十分复杂。 因此,张力腿平台所具有的经济、安全和良好的动力特性在更深水域中均不能得到充分的发挥,传统类型的张力腿平台结构已经不能很好地适应更深的水域。各国学者对张力腿平台结构形式的不断改进完善非常重视,因此,混合式张力腿平台及悬式张力腿平台等新型的张力腿平台便应运而生二.张力腿平台的工作原理及性能 张力腿平台设计最主要的思想是使平台半顺应半刚性。它通过自身的结构形式,产生远大于结构自重的浮力,浮力除了抵消自重之外,剩余部分就称为剩余浮力,这部分剩余浮力与预张力平衡。预张力作用在张力腿平台的垂直张力腿系统上,使张力腿时刻处于受张拉的绷紧状态。较大的张力

化学选修3第二章 分子结构与性质 单元测试

第二章分子结构与性质 单元测试(1) 一.选择题(每题有1~2个正确答案) 1.对δ键的认识不正确的是 A.σ键不属于共价键,是另一种化学键 B.s-s σ键与s-p σ键的对称性相同 C.分子中含有共价键,则至少含有一个σ键 D.含有π键的化合物与只含σ键的化合物的化学性质不同 2.σ键可由两个原子的s轨道、一个原子的s轨道和另一个原子的p轨道以及一个原子的p轨道和另一个原子的p轨道以“头碰头”方式重叠而成。则下列分子中的σ键是由一个原子的s轨道和另一个原子的p轨道以“头碰头”方式重叠构建而成的是 A.H2 B.HCl C.Cl2 D.F2 3.下列分子中存在π键的是 A.H2 B.Cl2 C.N2 D.HCl 4.下列说法中,错误的是 A.键长越长,化学键越牢固 B.成键原子间原子轨道重叠越多,共价键越牢固 C.对双原子分子来讲,键能越大,含有该键的分子越稳定 D.原子间通过共用电子对所形成的化学键叫共价键 5.能用键能知识加以解释的是 A.稀有气体的化学性质很不活泼B.HCl气体比HI气体稳定 C.干冰易升华D.氮气的化学性质很稳定 6.化学反应可视为旧键断裂和新键形成的过程。化学键的键能是形成(或拆开)1 mol化学键时释放(或吸收)的能量。已知白磷(P4)和P4O6的分子结构如下图所示;现提供以下化学键的键能:P—P 198KJ·mol—1、P—O 360kJ·mol—1、O=O 498kJ·mol—1。则关于1mol P4和3mol O2完全反应(P4 + 3O2 = P4O6)的热效应说法正确的是 A.吸热1638 kJ B.放热1638 kJ C.放热126 kJ D.吸热126 kJ 7.下列物质属于等电子体一组的是 A.CH4和NH4+ B.B3H6N3和C6H6 C.CO2、NO2D.H2O和CH4 8.下列物质中,分子的立体结构与水分子相似的是 A.CO2 B.H2S C.PCl3 D.SiCl4 9.下列分子中,各原子均处于同一平面上的是 A.NH3 B.CCl4 C.H2O D.CH2O 10.下列分子中心原子是sp2杂化的是 A.PBr3 B.CH4 C.BF3 D.H2O 11.在乙烯分子中有5个σ键、一个π键,它们分别是 A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键 B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键 C.C—H之间是sp2形成的σ键,C—C之间是未参加杂化的2p轨道形成的π键 D.C—C之间是sp2形成的σ键,C—H之间是未参加杂化的2p轨道形成的π键12.有关苯分子中的化学键描述正确的是 A.每个碳原子的sp2杂化轨道中的其中一个形成大π键 B.每个碳原子的未参加杂化的2p轨道形成大π键

分子结构与性质完美版

分子结构与性质 知识网络: 一、化学键 相邻的两个或多个原子之间强烈的相互作用,通常叫做化学键。例如:水的结构式为 , H -O 之间存在着强烈的相互作用,而H 、H 之间相互作用非常弱,没有形成化学键。 化学键类型: 1.三种化学键的比较: ※ 配位键:配位键属于共价键,它是由一方提供孤对电子,另一方提供空轨道所形成的共价 键,例如:NH 4+的形成 在NH 4+中,虽然有一个N -H 键形成过程与其它3个N -H 键形成过程不同,但是一旦 形成之后,4个共价键就完全相同。

键长、键能决定共价键的强弱和分子的稳定性:原子半径越小,键长越短,键能越大,分子越稳定。例如HF、HCl、HBr、HI分子中: X原子半径:FHCl>HBr>HI H-X分子稳定性:HF>HCl>HBr>HI 判断共价键的极性可以从形成分子的非金属种类来判断。 例1.下列关于化学键的叙述正确的是: A 化学键存在于原子之间,也存在于分子之间 B 两个原子之间的相互作用叫做化学键 C 离子键是阴、阳离子之间的吸引力 D 化学键通常指的是相邻的两个或多个原子之间强烈的相互作用 解析:理解化学键、离子键等基本概念是解答本题的关键。化学键不存在于分子之间,也不仅是两个原子之间的相互作用,也可能是多个原子之间的相互作用,而且是强烈的相互作用。所以A、B都不正确。C项考查的是离子键的实质,离子键是阴、阳离子间通过静电作用(包括吸引力和排斥力)所形成的化学键,故C项也不正确。正确选项为D。 二、分子间作用力 1、分子间作用力 把分子聚集在一起的作用力叫分子间作用力,又称范德华力。分子间作用力的实质是电性引力,其主要特征有:⑴广泛存在于分子间;⑵只有分子间充分接近时才存在分子间的相互作用力,如固态和液态物质中;⑶分子间作用力远远小于化学键;⑷由分子构成的物质,其熔点、沸点、溶解度等物理性质主要由分子间作用力大小决定。 2、影响分子间作用力大小的因素

化学选修3第二章-分子结构与性质--教案

化学选修3第二章-分子结构与性质--教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。

《傲慢与偏见》的张力结构

Vol.33No.2 Feb.2012 第33卷第2期2012年2月赤峰学院学报(汉文哲学社会科学版) Journal of Chifeng University (Soc.Sci )简·奥斯汀(1775~1817),一个普通牧师的女儿,在她短暂的人生中,写出了六部小说,生动地描述了18世纪英国乡村中产阶级的生活画面。她的小说简单而平凡,因为它们所描述和涉及的都是普通人的平凡生活。但正是这六部小说使简·奥斯丁成为世界著名的小说家。阅读奥斯汀的作品会给人一种独特的美感。她的作品格调轻松诙谐,富有戏剧性冲突,任何人读了都会忍俊不禁。基于严肃的思考和对小说起源的研究,不难发现其小说的艺术魅力和艺术活力均来源于其小说中无处不在的张力结构,小说《傲慢与偏见》的这种特点最为显著。 一、张力理论简介 张力理论由美国诗人兼文学批评家艾伦·退特(1899~ 1979)于1937年在其力作《论诗的张力》中提出。对张力理论 的研究是退特对新批评美学最重要的贡献。张力理论后来成为该学派美学最重要也是最难把握的理论之一。退特认为,在诗歌语言中有两个经常在发挥作用的因素:外延和内涵。他从语义学的角度指出,外延指的是词的“词典意义”,而内涵则是词的暗示意义、感悟色彩等等。诗的意义就是它的张力,即由诗的外延和内涵组成的有机整体。张力是好诗的共同特点,在好诗中内涵和外延同时存在,相互补充,最深远的比喻意义不会损害文字陈述的外延。他认为最好的张力诗就是玄学派诗歌。他的张力论被其他新批评派理论家扩展到对于诗歌的内容与形式、肌质、韵律与句法等对立因素的研究中。 二、《傲慢与偏见》中的张力结构 《傲慢与偏见》是简·奥斯汀最伟大的小说之一,其艺术魅力来源于其中交织为一个整体的张力结构。理性与情感之间、利己与利他之间张力结构各成一体,又相互交织在一起,产生了这部世界名著的不朽魅力。 (一)理性与情感之间的张力结构 理性与情感之间的关系是一个古老的话题,是西方文学史的长期争论的话题。在古代,西方世界总是重视理性而贬低情感。文学中亦是如此。古典主义与新古典主义都重视理性、明晰、平衡和秩序。亚历山大·蒲柏和塞缪尔·约翰逊都是理性主义的倡导者。文艺复兴后,西方文学出现了两个 引人注目的特点:第一是对古典文学的强烈的好奇心;第二是对人类活动的浓厚兴趣。作家开始表达对人性美和人类的成就新崇拜。这一趋势最终形成了浪漫主义。 简·奥斯汀处于古典主义到浪漫主义的过渡时期,在她的小说里,理性与情感是主导主题。《傲慢与偏见》这一书名本身就代表着理性与情感的对比与较量。这部小说的主题就是在理性与情感的张力结构中得以演绎。 小说是从班纳特先生和夫人之间的对话开始的。班纳特夫人是个以情感为导向的人,缺乏理性。班纳特夫人只有五个女儿没有儿子。根据法律规定,班纳特先生的表侄柯林斯是他的遗产合法继承人:“我死了以后,这位表侄可以高兴什么时候把你们撵出这所屋子,就什么时候撵你们出去。”因此,现实对班纳特夫人和她的五个女儿是残酷的。班纳特夫人“生平的大事就是嫁女儿”。班纳特夫人在她的一生中,总有一个对女儿们完美的婚姻的幻想。她从未意识到现实与她的想象之间的距离。她的生活主题就是由现实和幻想之间的张力结构组成的,这是理性与情感张力结构的具体化表征形式。班纳特夫人的生活就是对理性与情感之间张力结构的阐释。 达西的“傲慢”和伊丽莎白的“偏见”之间的冲突更有趣。达西与伊丽莎白都是理性与情感的混合体。达西的骄傲源于他的社会地位和产业,在某种意义上说,在那个特定社会是很自然的,甚至达西自己都未意识到自己对待他人的“傲慢”态度。他总是冷静地超然于人群之外,这是达西的理性倾向。同时,他也有自己的情感,他渐渐被伊丽莎白吸引,最后几乎完全被爱控制。他两次向伊丽莎白求婚,在第一次求婚失败之后,他开始反省自己并变得越来越成熟。这时,他得到另外一种理性。达西身上体现的理性与情感的统一中,理性占据主导地位。与此同时,理性与情感相互交织、相互影响共同创造了达西的内在张力结构。 伊丽莎白是一个感性的人,她总是根据自己的感觉而不是以事实和冷静的分析为根据去做判断,因此,“偏见”变成了她的一个显著特征。她对达西的偏见源于她与达西的第一次会见并由于韦翰的恶毒谎言而加深,感觉支配着她的世界。然而,正如我们所知道的,伊丽莎白对日常生活中 论《傲慢与偏见》的张力结构 曾 艳 (贺州学院,广西 贺州 542800) 摘要:基于小说《傲慢与偏见》的社会文化背景,从张力理论的视角对《傲慢与偏见》中理性与情感之间、利己与利他之 间张力结构的分析结果认为,在某种意义上,正是这些张力结构为《傲慢与偏见》这部小说的成功提供了一个新的解释。 关键词:张力结构;《傲慢与偏见》;利己与利他;理性与情感中图分类号:I106.4 文献标识码:A 文章编号:1673-2596(2012)02-0146-02 146--

相关文档