文档库 最新最全的文档下载
当前位置:文档库 › 机械制造工艺学第三版王先逵第六章习题解答

机械制造工艺学第三版王先逵第六章习题解答

机械制造工艺学第三版王先逵第六章习题解答
机械制造工艺学第三版王先逵第六章习题解答

机械制造工艺学部分习题解答

第六章机器装配工艺过程设计(第3版教材P309)

6-1何谓零件、套件、组件和部件?何谓机器的总装?(P270)

答:零件——组成机器的最小单元,它是由整块金属或者其他材料制成的。套件——在一个零件的基础上,装上一个或若干零件构成的,它是装配的最小单元。组件——在一个零件的基础上,装上若干套件及零件而构成的。部件——在一个零件的基础上,装上若干组件、套件和零件构成的。部件在机器中能完成一定的、完整的功用。总装——把零件和部件装配成最终产品的过程成为总装。

6-2装配工艺规程包括哪些主要内容?经过哪些步骤制定的?(P271-272)

答:装配工艺规程的主要内容:

1)分析产品图样,划分装配单元,确定装配方法;

2)拟定装配顺序,划分装配工序;

3)计算装配时间定额;

4)确定各工序装配技术要求、质量检查方法和检验工具;

5)确定装配时零、部件的输送方法及所需的设备和工具;

6)选择和设计装配过程中所需的工具、夹具和专用设备。

制定装配工艺规程的步骤:

(1)研究产品的装配图及验收技术条件;

(2)确定装配方法与组织形式;

(3)划分装配单元,确定装配顺序;

(4)划分装配工序;(5)编制装配工艺文件。

6-3装配精度一般包括哪些内容?装配精度与零件的加工精度有何区别?它们之间又有何关系?试举例说明。(P277-278)

答:装配精度一般包括:相互位置精度、相对运动精度和相互配合精度。零件加工精度是指一个零件的尺寸精度和形状位置精度,而装配精度是装配以后零件之间的位置或者运动精度。装配精度与零件精度之间的关系是:第一种情况是关键零件的精度直接影响装配精度(单件自保),如P278的图6-17;第二种情况是装配精度与相关零件的加工精度等有关,如P278的图6-18.

6-4装配尺寸链是如何构成的?装配尺寸链封闭环是如何确定的?它与工艺尺寸链的封闭环有何区别?(P278-279)

答:(在机器的装配关系中),装配尺寸链由相关零件的尺寸或相互位置关系构成。装配尺寸链的封闭环就是装配所要保证的装配精度或技术要求。装配精度(封闭环)是零部件装配后才最后形成的尺寸或位置关系。不同点:装配尺寸链—全部组成环为不同零件设计尺寸所形成的尺寸链,即所谓的“一件一环”;而工艺尺

寸链—全部组成环为同一零件工艺尺寸所形成的尺寸链。相同点:装配尺寸链和工艺尺寸链的基本概念和求解方法、计算公式是一样的。

6-5在查找装配尺寸链时应注意哪些原则?(P279-280)

答:(1)装配尺寸链应进行必要的简化。机械产品的结构通常都比较复杂,对装配精度有影响的因素很2多,在查找尺寸链时,在保证装配精度的前提下,可以不考虑那些影响较小的因素,使装配尺寸链适当简化。(2)装配尺寸链组成的“一件一环”。在查找装配尺寸链时,每个相关的零、部件只应有一个尺寸作为组成环列入装配尺寸链,即将连接两个装配基准面间的位置尺寸直接标注在零件图上。这样,组成环的数目就等于有关零、部件的数目,即“一件一环”,这就是装配尺寸链的最短路线(环数最少)原则。(3)装配尺寸链的“方向性”在同一装配结构中。在不同位置方向都有装配精度的要求时,应按不同方向分别建立装配尺寸链。

6-6保证装配精度的方法有哪几种?各适用于什么装配场合?(P281-298)

答:保证产品装配精度的方法有:互换装配法、选择装配法、修配装配法和调整装配法。互换装配法——是在装配过程中,零件互换后仍能达到装配精度要求的装配方法。根据互换程度不同,互换装配法又可分为完全互换法和大数互换法。完全互换法常用于高精度的少环尺寸链或低精度多环尺寸链的大批大量生产装配中。大数互换法适用于大批大量生产,组成环较多、装配精度要求又较高的场合。选择装配法——是将尺寸链中组成环的公差放大到经济可行的程度,然后选择合适的零件进行装配,以保证装配精度的要求。选择装配法装配方法常应用于装配精度要求高而组成环数又较少的成批或大批量生产中。选择装配法有三种形式:直接选配法不能用于生产节拍要求较严的大批大量流水作业中;分组装配法应用于在大批大量生产中对于组成环数少而装配精度要求又高的部件;复合选配法应用于配合件公差可以不等,装配速度较快、质量高、有一定生产节拍的要求的场合。修配装配法——是将尺寸链中各组成环按经济加工精度制造,装配时,通过改变尺寸链中某一预先确定的组成环尺寸的方法来保证装配精度。装配时进行修配的零件叫修配件,该组成环称为补偿环(或者修配环),该组成环的修配是为补偿其他组成环的累积误差以保证装配精度。常见的修配方法为三种:(1)单件修配法;(2)合并加工修配法;(3)自身加工修配法。调整装配法——在装配时,用改变产品中可调整零件的相对位置或选用合适的调整件以达到装配精度的方法称为调整装配法。常见的调整方法有固定调整法、可动调整法、误差抵消调整法三种。固定调整法多用于大批大量生产中;可动调整法应用于由于磨损、热变形所引起的误差的场合,应用广泛,误差抵消调整法应用于装配精度要求很高的机械设备。

6-7说明装配尺寸链中的组成环、封闭环、协调环、补偿环和公共环的含义,各有何特点?(P281-298)

答:在装配关系中,对装配精度有直接影响的零、部件的尺寸和位置关系,都是装配尺寸链的组成环。装配尺寸链的封闭环就是装配所要保证的装配精度或技术

要求。装配精度(封闭环)是零部件装配后才最后形成的尺寸或位置关系。在进行公差反计算时,由于组成环数量多于封闭环,无法用尺寸链方程确定所有组成环的公差,因此,常选一个组成环,其公差与分布需经计算后最后确定,以便与其他组成环相协调,最后满足封闭环的精度要求。这个事先选定的在尺寸链中起协调作用的组成环,称为协调环。不能选取标准件或公共环为协调环,因为其公差和极限偏差已是确定值。可选取易加工的零件为协调环,而将难加工零件的尺寸公差从宽选取;也可选取难加工零件为协调环,而将易于加工的零件的尺寸公差从严选取。在修配装配法中,装配时进行修配的零件叫修配件,该组成环称为修配环。由于这一组成环的修配是为补偿其他组成环的累积误差以保证装配精度,故又称补偿环。3公共环是在并联尺寸链中出现的。由于该环使得两个以上尺寸链相互联系起来形成并联尺寸链。这些环属于不同尺寸链的共有环称为公共环,公共环可以是各个尺寸链的组成环,也可以在一个尺寸链中是封闭环,而在另一个尺寸链则是组成环。

6-9何谓装配单元?为什么要把机器划分成许多独立的装配单元?

答:(P270)为了保证有效地进行装配工作,将机器划分为若干能独立装配的部分,成为装配单元(如套件、组件和部件)。划分装配单元的原因是(P274):(1)可以组织平行装配作业,各单元装配互不妨碍,能缩短装配周期,组织多方协作;(2)有关装配部件可以预先进行调整和试车,有利于保证机器的装配质量;(3)机器局部结构改进后,只有局部变动,有利于产品的改进和更新换代;(4)有利于机器的维护检修,为重型机器的包装运输带来很大方便。

6-10现有一轴、孔配合,配合间隙要求为0.04~0.26mm,已知轴的尺寸为00.150 mm,孔的尺寸为0.2050mm。若用完全互换法进行装配,能否保证装配精度要求?用大数互换法装配能否保证装配精度要求?

解:

电磁学第二版习题答案2

电磁学第二版习题答案2

电磁学 第二版 习题解答 电磁学 第二版 习题解答 (2) 第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54) 第一章 1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大? 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即

20()04dF Q q q dq r πε--== 得 122 Q q q == 即取 122 Q q q == 时力F 为极值,而 22 2 02 204Q q d F dq r πε== < 故当122 Q q q ==时,F 取最大值。 1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零? 解答: 要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。电荷Q 所受的两个电场力方向相反,但大小相等,即 22 00204()4qQ qQ L x x πεπε-=- 得 22 20x Lx L +-= 舍去0x <的解,得 21)x L =- L x L -q Q 2

现代电子线路基础(新版教材)-- 第六章习题答案

第六章习题答案 6.1 在题图 6.1所示调谐放大器中,工作频率f o =10.7MHz,L 1-3=4μH,Q o =100, N 1-3=20匝, N 2-3=5匝, N 4-5=5匝,晶体管3DG39在f o =10.7MHz 时测得g ie =2860μS,C ie =18pF, g oe =200μS, C oe =7pF,|y fe |= 45mS,y re =0,试求放大器的电压增益A vo 和通频带BW 。 解: 25.020 53~13~21=== N N P , 25.02053~15~42===N N P 总电容pF 4.55)L *)f 2/((1C 20==∑π LC 振荡回路电容pF 8.53C p C p C C ie 22oe 2 1=--=∑ LC 振荡回路固有谐振频率'0f ==10.85(MHz) 固有损耗电导:'' 6 00036.710()0011g S Q L 2Q f L ωπ-= = =? 2226266 1200.25200100.2528601036.710 0.228()oe ie G P g P g g mS ---∑=++=??+??+?= 116.32L 0Q G L ω∑== )KHz (6563 .167 .10Q f B L 0W === , 1210 228.0104525.025.0G |y |P P A 6 3fe 210 V -=????-=-=--∑ 注:由上述计算可以看出,' 0f 和0f 相差不大,即部分接入后对谐振频率影响较小,但概念要清楚。另外,这里给出了fe y (即认为是m g )不要通过EQ I 来计算m g 。 6.2 题图6.2是某中放单级电路图。已知工作频率f o =30MHz,回路电感L =1.5μH, Q o =100,N 1/N 2=4,C 1~C 4均为耦合电容和旁路电容。晶体管在工作条件下的y 参数为 ie (2.8j3.5)mS y =+; re 0y ≈ fe (36j27)mS y =- oe (0.2j2)mS y =+ 试解答下列问题: (1) 画出放大器y 参数等效电路; (2) 求回路谐振电导g Σ; (3) 求回路总电容C Σ; (4) 求放大器电压增益A vo 和通频带BW ; (5) 当电路工作温度或电源电压变化时, A vo 和BW 是否变化? 解:(1) y 参数等效电路如上图: (3) 由0f = 得2226212 01118784431415103010C .(pF )Lf ..∑π-===????? (2) 11=P , 25.04 1 122===N N P 由y 参数得)(58.1810302105.363pF C ie =???=-π,)(6.1010 3021026 3 pF C oe =???=-π

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

电磁学第一章思考题

第一章思考题 1. 1一个点电荷受到另一个点电荷的静电力是否会因其它电荷的移近而改变?当“另一个点电荷”被一个带电导体代替时,情况又如何? 答:根据静电力的叠加原理,一个点电荷受到另一个点电荷的作用力,不论周围是否存在其它电荷,总是符合库仑定律的,如果这两个点电荷都是静止的固定的,则它们间距不发生变化,其相互作用力不会因其它电荷的移近而改变(反之若这两个点电荷是可动的,则当其它电荷移近,此二点电荷因受其它电荷作用而发生移动,其间距离变化,则相互作用力也变) 1. 2有一带电的导体,为测得其附近P 点的场强,在P 点放一试探电荷0q (0q >0),测得它所受的电场力为F 。如果0q 很大,F/0q 是 否等于P 点的场强E ?比E 大还是比E 小? 答:若0q 很大,受它影响,带正电的导体的电荷分布,由于静电感应,导体上的正电荷受到排斥要远离P 点,因此在P 点放上0q 后,场强要比原来小,而测得的F/0q 是导体上电荷重新分布后测得的P 点的场强,故F/0q 要比P 点原来的场强E 小 1、 3场强的定义式为E=F/0q ,可否认为场强E 与F 成正比,与0q 成反比?当0 q →0时,场强是无限大还是为零?还是与0q 无关? 答:不能,电场中某点的场强,它是由产生电场的电荷决定的,电场中某点的电场强度是客观存在的,是具有确定的值,当某点放上0q 后,所受的力F 与0q 成正比,比值F/0q 是个确定的值,其大小与F ,0q 均无关系,成以当0q →0时,其所受的力F →0,其比值→确定 值,与0q 无关 1. 4判断对错。(1)闭合曲面上各点场强为零时,面内必没有电荷;(2)闭合曲面内电量为零时,面上各点场强必为零;(3)闭合曲面 的电通量为零时,面上各点的场强必为零;(4)通过闭合曲面的电通量仅决定于面内电荷;(5)闭合曲面上各点的场强是仅由面内电荷产生的;(6)应用高斯定理求场强的条件是电荷分布具有一定的对称性;(7)如果库仑定律中r 的幂不是-2,则高斯定理不成立 答:(1)(2)(3)(5)(6)不对;(4)(7)对‘ 1. 5一个点电荷放在球形高斯面的球心,试问下列情况下电通量是否改变(1)如果这球面被任意体积的立方体表面所代替,而点电荷仍 位于立方体中心;(2)如果此点电荷被移离原来的球心,但仍在球内;(3)如果此点电荷被放到高斯球面之外;(4)如果把第二个点电荷放到高斯球面外的某个地方;(5)如果把第二个电荷放在高斯球面内 答:(1)与曲面形状无关,所以电通量不改变;(2)与面内电荷所在位置无关,所以电通量不改变;(3)面内电荷改变(减少)所以电通量改变→0;(4)面内电荷不变,所以电通量不改变;(5)面内电荷改变(增加),所以电通量改变→增加 1. 6图中已知S 1面上的电通量为1 S Φ,问S 2面,S 3面及S 4面上的电通量2 S Φ,3 S Φ,4 S Φ各等于多少? 答:S 1面与S 3面组成闭合曲面1 S Φ+3 S Φ= 1 εq ,3 S Φ= 1 εq -1 S Φ; S 4与S 3组成闭合曲面3 S Φ+4 S Φ=0,4 S Φ=-3 S Φ=1 S Φ-0 1 εq ; S 2与S 3组成闭合曲面2 S Φ+3 S Φ= 2 1εq q +;2 S Φ=-3 S Φ+ 2 1εq q +=1 S Φ-0 1 εq + 2 1εq q +=1 S Φ+ 2 εq 1. 7(1)将初速度为零的电子放在电场中时,在电场力作用下,这电子是向电位高处运动,还是向电位低处运动?为什么?(2)说明 无论对正负电荷来说,仅在电场力作用下移动时,电荷总是从电位能高的地方移向电位能低的地方。 答:(1)总是向高电位处运动,受力方向逆着电力线,在初速为零,逆着电力线方向运动,电场中各处的电位永远逆着电力线方向升高。(2)仅在电场力作用下移动时,电场力方向与正负电荷位移方向一致,电场力作正功,使电荷的电位能减小,所以电荷总是从电位能高处向低处移动 1. 8可否任意将地球的电位规定为100伏,而不规定为零?这样规定后,对测量电位,电位差的数值有什么影响? 答:可以,对电位差的数值无影响,对电位的数值有影响,提高了 1. 9判断对错(1)场强大的地方,电位一定高。(2)电位高的地方,场强一定大。(3)带正电的物体的电位一定是正的。(4 )电位等于

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

教材第六章习题解答

第六章化学动力学习题解答 1.回答问题: (1)什么是基元反应(简单反应)和非基元反应(复杂反应)?基元反应和平时我们书写的化学方程式(计量方程式)有何关系? (2)从活化分子和活化能角度分析浓度、温度和催化剂对化学反应速率有何影响。 【解答】(1)化学反应进行时,反应物分子(或离子、原子、自由基)在碰撞过程中,只经过一步直接转化为生成物分子的反应,称为基元反应。由一种基元反应组成的总反应,称为简单反应。由两种或两种以上基元反应所组成的总反应,是非基元反应,称为复合反应。基元反应是反应机理最简单的反应,化学方程式是一个宏观的总反应。 (2)一定温度下,气体分子具有一定的平均能量,具体到每个分子,则有的能量高些有的低些。只有极少数的分子具有比平均值高得多的能量,它们碰撞时能导致原有化学键破裂而发生反应,这些分子称为活化分子。活化分子所具有的最低能量与分子的平均能量之差称为简单碰撞的活化能,简称活化能。 对一定温度下的某一特定反应,反应物分子所占的分数是一定的。因此单位体积内的活化分子的数目与单位体积内反应分子的总数成正比,当反应物浓度增大时,单位体积内分子总数增多,活化分子的数目也相应增多。于是单位时间内有效碰撞次数增多,反应速度加快。 温度升高不仅使分子间碰撞频率增加,更主要的是使较多的分子获得能量而成为活化分子。结果导致单位时间内有效碰撞次数显著增加,从而大大加快了反应速率。升高温度可使活化分子的分数增加。 催化剂能加快化学反应速率的实质,主要是因为它改变了反应的途径,降低了反应的活化能,相应地增加了活化分子的分数,反应速率也就加快。 2.设反应A+3B →3C 在某瞬间时3()3-=?c C mol dm ,经过二秒时3()6-=?c C mol dm ,问在二秒内,分别以A 、B 和C 表示的反应速率A B C υυυ、、各为多少?

电磁场与电磁波第一章复习题练习答案

电子信息学院电磁场与电磁波第一章复习题练习 姓名 学号 班级 分数 1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。 8: 解:不总等于,讨论合理即可 9. 已知直角坐标系中的点P 1(-3,1,4)和P 2(2,-2,3): (1) 在直角坐标系中写出点P 1、P 2的位置矢量r 1和r 2; (2) 求点P 1到P 2的距离矢量的大小和方向; (3) 求矢量r 1在r 2的投影; 解:(1)r1=-3a x +a y +4a z ; r2=2a x -2a y +3a z (2)R=5a x -3a y -a z (3) [(r1?r2)/ │r2│] =(17)? 10.用球坐标表示的场E =a r 25/r 2,求: (1) 在直角坐标系中的点(-3,4,-5)处的|E |和E z ; (2) E 与矢量B =2a x -2a y +a z 之间的夹角。 解:(1)0.5;2?/4; (2)153.6 11.试计算∮s r ·d S 的值,式中的闭合曲面S 是以原点为顶点的单位立方体,r 为 空间任一点的位置矢量。 解:学习指导书第13页 12.从P (0,0,0)到Q (1,1,0)计算∫c A ·d l ,其中矢量场A 的表达式为 A =a x 4x-a y 14y 2.曲线C 沿下列路径: (1) x=t ,y=t 2; (2) 从(0,0,0)沿x 轴到(1,0,0),再沿x=1到(1,1,0); (3) 此矢量场为保守场吗? 解:学习指导书第14页 13.求矢量场A =a x yz+a y xz+a z xy 的旋度。 A ??=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。 u ?=x a u x ??+y a u y ??+z a u z ??=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)

动点例题解析及答案

初中数学动点问题及练习题附参考答案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题。 (一)点动问题。(二)线动问题。(三)面动问题。 二、解决动态几何问题的常见方法有: 1、特殊探路,一般推证。 2、动手实践,操作确认。 3、建立联系,计算说明。

磁学练习题

______和______(线圈和磁极) 1.【2017?泰安卷】如图是我国早期的指南针﹣﹣司南,它是把天然磁石磨成勺子的形状,放在水平光滑的“地盘”上制成的.东汉学者王充在《论衡》中记载:“司南之杓,投之于地,其柢指南”.“柢”指的是司南长柄,下列说法中正确的是() ①司南指南北是由于它受到地磁场的作用 ②司南长柄指的是地磁场的北极 ③地磁场的南极在地球地理的南极附近 ④司南长柄一端是磁石的北极. A.只有①②正确 B.只有①④正确 C.只有②③正确 D.只有③④正确 图K27-6 7.如图K27-7所示,开关闭合,小磁铁处于静止状态后,把滑动变阻器的滑片P缓慢向右移动,此时悬挂的小磁铁的运动情况是( ) 图K27-7 A.向下移动B.向上移动 C.静止不动D.无法确定 5.(2015湖南长沙,第25题)法国科学家阿尔贝?费尔和德国科学家彼得?格林贝格尔由于巨磁电阻(GMR)效应而荣获2007年诺贝尔物理学奖。如图是研究巨磁电阻特性的原理示意图。实验发现,在闭合开关S1、S2且滑片 P向右滑动的过程中,指示灯明显变暗,这说明()

A、电磁铁的左端为N极。 B、流过灯泡的电流增大。 C、巨磁电阻的阻值随磁场的减弱而明显减小。 D、巨磁电阻的阻值与磁场的强弱没有关系。 6.(2015浙江嘉兴,第14题)爱因斯坦曾说,在一个现代的物理学家看来,磁场和他坐的椅子一样实在。下图所表示的磁场与实际不相符的是( ) 16.(2015四川遂宁,第9题)如图所示,A是悬挂在弹簧测力计下的条形磁铁,B是螺线管。闭合开关,待弹簧测力计示数稳定后,将滑动变阻器的滑片缓慢向右移动的过程中,下列说法正确的是( ) A.电压表示数变大,电流表示数也变大 B.电压表示数变小,电流表示数也变小 C.螺线管上端是N极,弹簧测力计示数变小 D.螺线管上端是S极,弹簧测力计示数变大 34.(2015山东烟台,第6题)如图4是一种水位自动报警器的原理示意图,当水位升高到金属块A处时() 图4 A.红灯亮,绿灯灭 B.红灯灭,绿灯亮 C.红灯亮,绿灯亮 D.红灯灭,绿灯灭 23.【湖北省荆门市2015年初中毕业生学业水平考试】如图所示,闭合开关S,弹簧测力计

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学篇第一章《静电场》课后习题 1-1设两个小球所带净电荷为q,距离为l,由库仑定律: 由题目,设小球质量m,铜的摩尔质量M,则有: 算得 1-2 取一小段电荷,其对应的圆心角为dθ: 这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T: 解得 1-3(1)设地月距离R,电场力和万有引力抵消: 解得: (2)地球分到,月球分到,电场力和万有引力抵消: 解得:

1-4 设向上位移为x,则有: 结合牛顿第二定律以及略去高次项有: 1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间: 先由库仑定律写出静电力标量式: 有几何关系: 联立解得 由库仑定律矢量式得: 解得 1-6(1)对一个正电荷,受力平衡:

解得,显然不可能同时满足负电荷的平衡 (2)对一个负电荷,合外力提供向心力: 解得 1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势 能: 对势能求导得到受力: 小量近似,略去高阶量: 当q>0时,;当q<0时, (2)由上知 1-8设q位移x,势能: 对势能求导得到受力: 小量展开有:,知

1-9(1)对q受力平衡,设其横坐标的值为l0:,解得 设它在平衡位置移动一个小位移x,有: 小量展开化简有: 受力指向平衡位置,微小谐振周期 (2) 1-10 1-11 先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ. 有: 显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等. 利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0. 1-12(1)

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位 置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.

(2)双动点模型 P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点 M 、N 即为所求. O B P P' P''M N 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )

物化教材习题解答(人卫版)第6章习题

第六章 化学动力学习题答案 1. (1)一级反应 kt c c ln 0= 20 k 32 100100ln ?=- k=0.01928 min –1 (2)r = k ?c r 0=0.01928?0.03=0.005784 mol –1?l –1?min –1 r 20=0.01928?0.03?(1–32%)=0.003933 mol –1?l –1?min –1 (3)设水解百分数为x ,40 01928.0x 11ln ?=- x=53.75% 2. (1)s 144410 8.42ln k 2ln t 4 2 1=?= = - (2)kt p p ln 0 = t=10s 时 10 108.4p 60.66ln 4 ??=- p=66.34 kPa t=600s 时 600 10 8.4p 60.66ln 4 ??=- p=49.98 kPa 总压计算: N 2O 5 → 2NO 2 + 2O 21 t=0 p 0 t=t p 2(p 0–p) ())p p 2 1 - 2 p 35p p 0-= 总 ∴t=10 s 时, p 总 =67.14 kPa t=600 s 时, p 总 =91.68 kPa 3. 从表中数据看,反应物无吸收度,吸收度A 表征产物的浓度。 t=∞ 时,反应完全,(A ∞–A )表征反应物浓度。 一级反应,kt A A A ln c c ln 0=-=∞∞ ln(A ∞–A)=-kt+lnA ∞ , t(s) 0 300 780 1500 2400 3600 ∞ ln(A ∞–A) -1.390 -1.546 -1.743 -2.048 -2.442 -2.996 其回归方程为:ln(A ∞–A)=-4.409?10–4?t –1.397( r=0.9998 n=6 ) ∴k=4.409?10–4 s –1 4. r=kc kt c c ln r r ln 00== k 12010 1104ln 3 3=??-- (1) k=0.01155 min –1 (2)min 60k 2ln t 2 1== (3)1 -3 00 L mol 3463.001155 .010 4k r c ?=?==- 5. 初浓度相等的二级反应速率方程为 0 c 1kt c 1+ = t ~c 1的回归方程为: 91 .98t 79.11c 1+= (r=0.9999 n=7) (1) k=11.79 mol –1 ?L ?min –1 (2) 91.98c 10 = c 0=0.01011 mol ?L –1 (3) 0 c 1kt c 05.01+ = t=159 min

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10- 9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10- 5 J ,粒子动能的增量为4.5×10- 5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为 R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10- 12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10- 6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. E ? q L q P

电磁学练习题积累(含部分答案)

一.选择题(本大题15小题,每题2分) 第一章、第二章 1.在静电场中,下列说法中哪一个是正确的 [ ] (A)带正电荷的导体,其电位一定是正值 (B)等位面上各点的场强一定相等 (C)场强为零处,电位也一定为零 (D)场强相等处,电位梯度矢量一定相等 2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[] (A)通过封闭曲面的电通量仅是面内电荷提供的 (B) 封闭曲面上各点的场强是面内电荷激发的 (C) 应用高斯定理求得的场强仅是由面内电荷所激发的 (D) 应用高斯定理求得的场强仅是由面外电荷所激发的 3.关于静电场下列说法中正确的是 [ ] (A)电场和试探电荷同时存在和消失 (B)由E=F/q知道,电场强度与试探电荷成反比 (C)电场强度的存在与试探电荷无关 (D)电场是试探电荷和场源电荷共同产生的 4.下列几个说法中正确的是: [ ] (A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同 (C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负, F为试验电荷所受的电场力 (D)以上说法全不对。 5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。已知介 质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电 场强度的大小为 [ ]

(A) 0εσ' (B) 02εσ' (C) 0εεσ' (D) ε σ' 6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、 E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同 (D) E 与P 方向一致,与D 方向相反 7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分 布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变 8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过 图中一半径为R 的半球面的电场强度通量为 [ ] (A) 2R E π;(B) 21 2 R E π; (C) 22R E π;(D ) 0。 9. 在静电场中,电力线为均匀分布的平行 直线的区域内,在电力线方向上任意两点的电场强度E 和电势U 相比较 [ ] (A) E 相同,U 不同 (B) E 不同,U 相同 (C) E 不同,U 不同 (D) E 相同,U 相同

圆的动点问题--经典习题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. A B C P E M 第25题图1 D A B C M 第25题图2 N

25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. A B E F C D O A B E F C D O

25.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y. (1)求y关于x的函数解析式,并写出它的定义域; (2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1 的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.

胡乾斌教材部分习题解答

第一章 1.5 129=10000001B=81H;253=11111101B = FDH; 21.125=10101.001B=15.2H 18.6=10010.1001,1001,1001……B=12.999……H (无限循环小数,根据精度确定需要的位数) 1.12 由题得三者均为正数,所以原码、反码、补码相同,故 x1= x2= x3=0101,0111B=57H=87 1.13 该题与上题不同在均是负数,故原码、反码、补码相同的情况下,原数并不相同。 第二章 2.6最后一问: 如果CPU使用两组寄存器,一般使用第0与第1组,那么剩下的寄存器组对应的地址单元可作一般缓冲用,第0与第1组已用掉地址:00H—0FH, 故而堆栈SP的初值可设定在0FH或以上。 第三章 3.6 (1) A=57H, Cy=1(在符号位产生进位, 进位标志位Cy=1),进位的1是丢掉,累加器只能存8位信息。有同学写成A=157H, Cy=0. (2) A=3BH, Cy=0 3.8 SP=2FH, DPH=01H, DPL=23H, A=20H 注意SP在每次的POP减一,故最终SP=2FH.(30H单元的前一单元不是29H) 3.9 堆栈(0AH)=34H, (0BH)=12H, SP=0BH 有的同学仅写DPTR的内容,是不够的,这里是将DPTR的内容压入栈中,但DPTR本身不代表堆栈。

3.24 Loop循环完成的是24位的加法,每步将带进位位Cy相加,同时影响进位位。故经过loop循环后R0指向22H单元,结果送原R0指向的地址单元。 原来: (22H)=A0H (27H)=76H (21H)=90H (26H)=6FH (20H)=80H (25H)=A0H Loop循环: (22H)=17H Cy=1 (21H)=00H Cy=1 (20H)=20H Cy=1 之后,R0=23H, R1=28H。因Cy=1, 故(23H)=01H。 所有地址单元只可存八位数,不可(21H)=160H. 3.25A=10001100=8CH,执行乘以10的功能,因为A*2+A*2*2*2=A*10 有的同学没有写出是乘以10的功能。 3.26实现的如下逻辑运算[(P1.0∨P1.1)∧P1.2]∧(P1.3∨P1.4),其中以用户标志位 F0来存储[(P1.0∨P1.1)∧P1.2]的结果。 第四章 4.5略 有的同学有这样的指令:MOV R0, #2100H. R0只能存八位,故只能指向低位的地址区。有的同学逻辑搞反,不为零应该继续循环,故:DJNZ R2, LOOP就可以了,不需要太复杂。还有的同学传送方向搞反了,程序写成: MOVX A, @DPTR MOV @R0, A 计数器初始值应该为21H. 补充习题,有的同学忘做,可以简单回答:LJMP与LCALL的主要区别是未发生保护现场、恢复现场操作。

电磁学练习题

电磁学练习题 8-1 在下列三种情况下,线圈内是否产生感应电动势?若产生感应电动势,其方向如何? (1)一根无限长载流直导线与一环形导线的直径重合,如图(a )所示.若直导线与环形导线绝缘,且后者以前者为轴而转动. (2)A 、B 两个环形导线,如图(b)所示B 环固定并通有电流I ,A 环可绕通过环的中心的竖直轴转动.开始时,两环面相互垂直,然后A 环以逆时针方向转到两环面相互重叠的位置. (3)矩形金属线框ABCD 在长直线电流I 的磁场中,以AB 边为轴,按图(C )中所示的方向转过1800。 答:(1)通电直导线的B 线为圆心在导线上并垂直于导线的同心圆,环形导线以导线为轴转动时,穿过它的B 通量始终不变,故环形导线内无感应电动势产生. (2)B 环电流产生的B 线类似条形磁铁B 线的分布:两侧B 分布不均匀.A 环绕B 环轴转动时,穿过它的B 通量不断变化,故A 环中有感应电动势产生. (3)长通电直导线外B 分布不均匀,线圈ABCD 以AB 为轴转过180o ,穿过它的B 通量不断变化,故ABCD 中有感应电动势产生. 8-2 将磁铁插入闭合线圈,一次是迅速地插入,另一次是缓慢地插入,问: (1)两次插人线圈,线圈中的感应电荷是否相同? (2)两次插人线圈,手推磁铁之力(反抗电磁力)所作的功是否相同? 解: ,故 无论是迅速插入,还是缓慢插入,因为线圈匝数N 、线圈导线总电阻R 和前后穿过线圈磁通量的改变量?Φ都相同,所以两次线圈中的感应电荷量相同. (2)线圈中产生感应电流,手推磁铁之力所作的功转换为电能W E ,由于 ,与磁通量变化率成正比,故快速插人时手推磁铁之力所作功大一些. 8—3 有一无限长螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈、半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dl /dt ,求小线圈中的感应电动势. 解:长螺线管内nI B 0μ=

电磁学第一章

1 第一章基本概念 一.Maxwell 场方程组的表示形式及各方程的物理意义: Maxwell 的贡献在于以静电场与稳恒电磁场为基础,考虑了随时间变化的因素,提出科学的分析与假设,并引入了位移电流概念,从数学上进行高度概括和总结,最终获得时变电磁场的基本方程。揭示了电场与磁场之间以及场与流之间相互联系的规律。它预言了电磁波的存在,是一切 宏观电磁理论的基础。 本章要求:掌握研究电磁场的基本方程、表示形式、物理意义等。

其中,前二个方程为其核心,它显示了场量之间相互制约和相互联系。 2.微分形式和积分形式: 对连续媒质,各场量为连续并有连续导数(即为良态),一般采用微分形式的场方程,求解场分布较容易;积分形式的场方程更具一般性,它对媒质无任何要求,故在出现介质不连续(有介质分界面)时,必须采用积分形式,并用以确定边界条件。 3

4 3.场方程是在已有的电磁定律和大量实验结果的基础上,从数学上对电磁场规律所作的高度概括和总结,并由此断言:任何电磁扰动都将以有限速度向空间传播——即有电磁波存在。这一预言后来为实验所验证,并成功地应用于无线电通信,奠定了无线电技术的基础。 方程是电磁理论的基本规律,具有普遍性,不仅适用于高频(微波与光波);也适用于低频和直流,从中可推出低频电路中的克希霍夫定律。 Maxwell Maxwell

4.时变场:随时间变化的场,即场既为空间坐 标的函数亦为时间的函数。 对于时变场,有: 1)电、磁场是统一的、不可分割的; 2)变化的磁场产生电场;变化的电场产生磁场,相互交连,从而产生电磁波的传播。 5.电磁场特性:电磁场是一种特殊形式的物质,具有电磁能,并遵循能量守恒的普遍规律。这包括电场能与磁场能的相互转换及电磁能与其它形式能量(如热能、机械能等)之间的相互转换。 5

相关文档