文档库 最新最全的文档下载
当前位置:文档库 › SATWE参数的设置原理

SATWE参数的设置原理

SATWE参数的设置原理
SATWE参数的设置原理

SATWE参数的设置原理

[本文由老庄结构院收集了众多资料汇编整理而成,版权归原作者所有!] 5 结构整体的计算分析

5.1 建筑结构计算分析的步骤

1 建立正确的计算模型

2 合理正确设置计算参数

计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义

的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几

个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结

果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,

在计算前很难估计,需要经过试算才能得到。

(1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映

模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使

计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型

数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一

般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚

度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。

振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于

0.9。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有

效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。

(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。

(3)结构基本周期是计算风荷载的重要指标。设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。

上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。

3 确定整体结构的合理性

整体结构的科学性和合理性是新规范特别强调内容。新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。

(1)周期比是控制结构扭转效应的重要指标。它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。也就是说,周期比不是要求就构足够结实,而是要求结构承载布局合理。《高规》第4.3.5条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比的要求给出了规定。如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员需要增加结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。

设计软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转(平动)周期。以下介绍实用周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的平动周期,按周期值从大到小排列。同理,将所有平动系数大于0.5的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动周期即可。

(2)位移比(层间位移比)是控制结构平面不规则性的重要指标。其限值在《建筑抗震设计规范》和《高规》中均有明确的规定,不再赘述。需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的,如果在结构模型中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。

此外,位移比的大小是判断结构是否规则的重要依据,对选择偶然偏心,单向地震,双向地震下的位移比,设计人员应正确选用。

(3)刚度比是控制结构竖向不规则的重要指标。根据《抗震规范》和《高规》的要求,软件提供了三种刚度比的计算方式,分别是剪切刚度,剪弯刚度和地震力与相应的层间位移比。正确认识这三种刚度比的计算方法和适用范围是刚度比计算的关键:1)剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;

2)剪弯刚度主要用于底部大空间为多层的转换结构;3)地震力与层间位移比是执行《抗震规范》第3.4.2条和《高规》4.3.5条的相关规定,通常绝大多数工程都可以用此法计算刚度比,这也是软件的缺省方式。

(4)层间受剪承载力之比也是控制结构竖向不规则的重要指标。其限值可参考《抗震规范》和《高规》的有关规定。

(5)刚重比是结构刚度与重力荷载之比。它是控制结构整体稳定性的重要因素,也是影响重力二阶效的主要参数。该值如果不满足要求,则可能引起结构失稳倒塌,应当引起设计人员的足够重视。

(6)剪重比是抗震设计中非常重要的参数。规范之所以规定剪重比,主要是因为长期作用下,地震影响系数下降较快,由此计算出来的水平地震作用下的结构效应可能太小。而对于长周期结构,地震动态作用下的地面加速度和位移可能对结构具有更大的破坏作用,但采用振型分解法时无法对此作出准确的计算。因此,出于安全考虑,规范规定了各楼层水平地震力的最小值,该值如果不满足要求,则说明结构有可能出现比较明显的薄弱部位,必须进行调整。

除以上计算分析以外,设计软件还会按照规范的要求对整体结构地震作用进行调整,如最小地震剪力调整、特殊结构地震作用下内力调整、0.2Q0调整、强柱弱梁与强剪弱弯调整等等,因程序可以完成这些调整,就不再详述了。

4 对单构件作优化设计

前几步主要是对结构整体合理性的计算和调整,这一步则主要进行结构单个构件内力和配筋计算,包括梁,柱,剪力墙轴压比计算,构件截面优化设计等。

(1)软件对混凝土梁计算显示超筋信息有以下情况:1)当梁的弯矩设计值M大于梁的极限承载弯矩M

u

时,提示超筋;2)规范对混凝土受压区高度限制:

四级及非抗震:ξ≤ξ

b

二、三级:ξ≤0.35( 计算时取A

S ’=0.3 A

S

一级: ξ≤0.25( 计算时取A

S ’=0.5 A

S

当ξ不满足以上要求时,程序提示超筋;3)《抗震规范》要求梁端纵向受拉钢筋的最大配筋率2.5%,当大于此值时,提示超筋;4)混凝土梁斜截面计算要满足最小截面的要求,如不满足则提示超筋。

(2)剪力墙超筋分三种情况:1)剪力墙暗柱超筋:软件给出的暗柱最大配筋率是按照4%控制的,而各规范均要求剪力墙主筋的配筋面积以边缘构件方式给出,没有最大配筋率。所以程序给出的剪力墙超筋是警告信息,设计人员可以酌情考虑;2)剪力墙水平筋超筋则说明该结构抗剪不够,应予以调整;3)剪力墙连梁超筋大多数情况下是在水平地震力作用下抗剪不够。规范中规定允许对剪力墙连梁刚度进行折减,折减后的剪力墙连梁在地震作用下基本上都会出现塑性变形,即连梁开裂。设计人员在进行剪力墙连梁设计时,还应考虑其配筋是否满足正常状态下极限承载力的要求。

(3)柱轴压比计算: 柱轴压比的计算在《高规》和《抗震规范》中的规定并不完全一样,《抗震规范》第6.3.7条规定,计算轴压比的柱轴力设计值既包括地震组合,也包括非地震组合,而《高规》第6.4.2条规定,计算轴压比的柱轴力设计值仅考虑地震作用组合下的柱轴力。软件在计算柱轴压比时,当工程考虑地震作用,程序仅取地震作用组合下的的柱轴力设计值计算;当该工程不考虑地震作用时,程序才取非地震作用组合下的柱轴力设计值计算。因此设计人员会发现,对于同一个工程,计算地震力和不计算地震力其柱轴压比结果会不一样。

(4)剪力墙轴压比计算:为了控制在地震力作用下结构的延性,新的《高规》和《抗震规范》对剪力墙均提出了轴压比的计算要求。需要指出的是,软件在计算断指剪力墙轴压比时,是按单向计算的,这与《高规》中规定的短肢剪力墙轴压比按双向计算有所不同,设计人员可以酌情考虑。

(5)构件截面优化设计:计算结构不超筋,并不表示构件初始设置的截面和形状合理,设计人员还应进行构件优化设计,使构件在保证受力要求的德条件下截面的大小和形状合理,并节省材料。但需要注意的是,在进行截面优化设计时,应以保证整体结构合理性为前提,因为构件截面的大小直接影响到结构的刚度,从而对整体结构的周期、位移、地震力等一系列参数产生影响,不可盲目减小构件截面尺寸,使结构整体安全性降低。

5 满足规范抗震措施的要求

在施工图设计阶段,还必须满足规范规定的抗震措施要求。《混凝土规范》、《高规》和《抗震规范》对结构的构造提出了非常详尽的规定,这些措施是很多震害调查和抗震设计经验的总结,也是保证结构安全的最后一道防线,设计人员不可麻痹大意。

(1)设计软件进行施工图配筋计算时,要求输入合理的归并系数、支座方式、钢筋选筋库等,如一次计算结果不满意,要进行多次试算和调整。

(2)生成施工图以前,要认真输入出图参数,如梁柱钢筋最小直径、框架顶角处配筋方式、梁挑耳形式、柱纵筋搭接方式,箍筋形式,钢筋放大系数等,以便生成符合需要的施工图。软件可以根据允许裂缝宽度自动选筋,还可以考虑支座宽度对裂缝宽度的影响。

(3)施工图生成以后,设计人员还应仔细验证各特殊或薄弱部位构件的最小纵筋直径、最小配筋率、最小配箍率、箍筋加密区长度、钢筋搭接锚固长度、配筋方式等是否满足规范规定的抗震措施要求。规范这一部分的要求往往是以黑体字写出,属于强制执行条文,万万不可以掉以轻心。

(4)最后设计人员还应根据工程的实际情况,对计算机生成的配筋结果作合理性审核,如钢筋排数、直径、架构等,如不符合工程需要或不便于施工,还要做最后的调整计算。

5.3 SATWE在结构计算分析中的应用

SATWE是SPACE ANALYSIS OF TALL-BUILDINGS WITH WALL-ELEMENT的词头缩写,这是应现代多、高层建筑发展要求专门为多、高层建筑设计而研制的空间组合结构有限元分析软件。SATWE的多层版记为SAT-8,适用于8层及8层以下的多层结构。SATWE 采用空间杆单元模拟梁、柱及支撑等杆件,用在壳元基础上凝聚而成的墙元模拟剪力墙。墙元是专用于模拟多、高层结构中剪力墙的,对于尺寸较大或带洞口的剪力墙,按照子结构的基本思想,由程序自动进行细分,然后用静力凝聚原理将由于墙元的细分而增加的内部自由度消去,从而保证墙元的精度和有限的出口自由度。这

种墙元对剪力墙的洞口(仅考虑矩形洞)的大小及空间位置无限制,具有较好的适用性。墙元不仅具有墙所在的平面内刚度,也具有平面外的刚度,可以较好地模拟工程中剪力墙的实际受力状态。对于楼板,SATWE 给出了四种简化假定,即楼板整体平面内无限刚、分块无限刚、分块无限刚带弹性连接板带和弹性楼板。在应用中,可根据工程实际情况和分析精度要求,选用其中的一种或几种简化假定。SATWE作为PKPM系列CAD软件的一模块,其前处理工作主要由PMCAD完成。对于一个工程,经PMCAD 的1、2、3项菜单后,生成如下数据文件(假定工程文件名为AAA):AAA.*和*.PM。这些文件是进行SATWE计算所必需的。SATWE的第一项主菜单(即“接PM生成SATWE数据”菜单)的主要功能就是在PMCAD生成的上述数据文件的基础上,补充高层结构分析所需的一些参数,并对一些特殊结构(如多塔、错层结构)、特殊构件(如角柱、非连梁、弹性楼板等)作出相应设定,最后将上述所有信息自动转换成高层结构有限元分析及设计所需的数据格式,生成几何数据文件STRU.SAT、竖向荷载数据文件LOAD.SAT和风荷载数据文件WIND.SAT,供SATWE的第二、三项主菜单调用。

5.2.1SATWE计算分析参数的意义及输入

采用SATWE进行结构整体计算分析,需要输入很多参数,如何正确输入参数直接关系到结构计算结果的正确与否,因此必须深刻理解每个输入参数的意义并且按照实际情况正确输入。

1 总信息(见图1)

(1)水平力与整体坐标角:

通常情况下,对结构计算分析,都是将水平地震沿结构X、Y两个方向施加,所以一般情况下水平力与整体坐标角取0度。由于地震沿着不同的方向作用,结构地震反应的大小一般也不同,结构地震反应是地震作用方向角的函数。因此当结构平面复杂(如L型、三角型)或抗侧力结构非正交时,根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。

(2)混凝土容重:

由于建模时没有考虑墙面的装饰面层,因此钢筋混凝土计算重度,考虑饰面的影响应大于25,不同结构构件的表面积与体积比不同饰面的影响不同,一般按结构

类型取值:

结构类型 框架结构 框剪结构 剪力墙结构

重度 25.5 26 27

(3)钢材容重:一般取78,不必改变。

(4)裙房层数:

按实际情况输入。高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。因此该数必须给定。

图1 总信息 图2 风荷载信息

(5)转换层所地层号:

按实际情况输入。该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。(6)地下室层数:

程序据此信息决定底部加强区范围和内力调整。当地下室局部层数不同时,以主楼地下室层数输入。地下室一般与上部共同作用分析;地下室刚度大于上部层刚度的2倍,可不采用共同分析;地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。当相对刚度为负值,地下室完全嵌固。根据程序编制专家的解释,填3大概为70%~80%的嵌固,填5就是完全嵌固,填在楼层数前加“-”,表示在所填楼层完全嵌固。到底怎样的土填3或填5,完全取决于工程师的经验。

(7)墙元细分最大控制长度:可取1~5之间的数值,长度控制越短计算精度越高,但计算耗时越多,一般取2就可满足计算要求,框支剪力墙可取1或1.5。

(8)墙元侧向节点信息:

a.内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点。

b.外部节点:按外部节点处理时,耗机时和内存资源较多。

(9)恒活荷载计算信息:

a.一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。

b.模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。于是就有了下一种竖向荷载加载法。

c.模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算。采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不和理情况。由于竖向构件的刚度放大,使得水平梁的两端的竖向位移差减少,从而其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近手工计算。

但是我认为这种方法人为的扩大了竖向构件与水平构件的线刚度比,所以它的计算方式值得探讨。所以,专家建议:在进行上部结构计算时采用“模拟施工方法1”;在基础计算时,用“模拟施工方法2”的计算结果。这样得出的基础结果比较合理。

(10)结构材料信息与结构体系:

规范规定不同结构体系的内力调整及配筋要求不同;同时,不同结构体系的风振系数不同;结构基本周期也不同,影响风荷计算。宜在给出的多种体系中选最接近实际的一种,当结构体系定义为短肢剪力墙时,对墙肢高度和厚度之比小于8的短肢剪力墙,其抗震等级自动提高一级。

2 风荷载信息(见图2)

该栏目的数值直接决定了结构所受风荷载的大小。

(1)地面粗糙类别:

该选项是用来判定风场的边界条件,直接决定了风荷载的沿建筑高度的分布情况,必须按照建筑物所处环境正确选择。相同高度建筑风荷载A>B>C>D。

A类:近海海面,海岛、海岸、湖岸及沙漠地区。

B类:指田野、乡村、丛林、丘陵及中小城镇和大城市郊区。

C类:指有密集建筑群的城市市区。

D类:指有密集建筑群且房屋较高的城市市区。

(2)体型系数:

根据建筑平面形状按《荷载规范》取值,如果建筑沿高度平面形状改变,则可以沿高度方向根据建筑平面形状设置不同的体型系数。

(3)结构的基本周期:

第一次计算时可以根据经验输入一个大概的数值,计算出结构的基本周期后,再用计算值代回重新计算。

(4)修正后的基本风压:

新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。

3 地震信息

图3 地震信息 图4 活荷信息

(1)结构规则性性息:

根据结构的规则性选取。

(2)扭转耦联信息:

a.对于耦联选项,建议总是采用;

b.质量和刚度分布明显不对称的结构,楼层位移比或层间位移比超过1.2时,应计入双向水平地震作用下的扭转影响。

(3)地震烈度:根据建筑所处场地按《抗规》附录取值。

(4)设计地震分组:根据建筑所处场地按《抗规》附录取值。

(5)场地土类型:根据《地质勘测报告》测试数据计算判定。

地震烈度、设计地震分组、场地土类型三项直接决定了地震计算所采用的反应谱形状,对水平地震力的大小起到决定性作用。

(6)偶然偏心:验算结构位移比时,总是考虑偶然偏心

A)位移比超过1.2时,则考虑双向地震作用,不考虑偶然偏心。

B)位移比不超过1.2时,则考虑偶然偏心,不考虑双向地震作用。 (7)计算振型个数:

地震力振型数至少取3,由于程序按三个阵型一页输出,所以振型数最好为3的倍数。一般计算阵型数应大于9,多塔结构计算阵型数应取的更多些。但也要注意一点:此处的阵型数不能超过结构的固有阵型的总数,比如说,一个规则的两层结构,采用刚性楼板假定,整个结构共6个有效自由度,这时阵型个数最多取6个,否则会造成地震力计算异常。对于复杂、多塔以及平面不规则的建筑就要多选,一般要求“有效质量数大于90%就可以,证明我们的阵型数取的足够的多了。一般情况例如20层的高层建筑取9个振型就可以满足。

(8)活荷载质量折减系数:

计算地震作用时,建筑结构的重力荷载代表值应取永久荷载标准值和可变荷载组合值之和。可变荷载的组合值系数应按下列规定采用:一般取0.5(对于藏书库、档案库、库房等建筑应特别注意,应取0.8)。调整系数只改变楼层质量,从而改变地震力的大小,但不改变荷载总值,即对竖向荷载作用下的内力计算无影响。 (9)周期折减系数:

计算各振型地震影响系数所采用的结构自振周期应考虑非承重填充墙体对结构刚度增强的影响,采用周期折减予以反应。因此当承重墙体为填充砖墙时,高层建

可按下列规定取值:

筑结构的计算自振周期折减系数ψ

T

框架结构可取0.6-0.7;

框架剪力墙结构可取0.7-0.8;

剪力墙结构可取0.9-1.0。

具体折减数值应根据填充墙的多少及其对结构整体刚度影响的强弱来确定。

(10)结构阻尼比:

对于一些常规结构,程序给出了结构阻尼的隐含值。除有专门规定外,钢筋混凝土高层建筑结构的阻尼比应取0.05;钢结构在多遇地震下的阻尼比,对不超过12层的钢结构可采用0.035,对超过12层的钢结构可采用0.02;在罕遇地震下的分析,阻尼比可采用0.05;对于钢-混凝土混合结构则根据钢和混凝土对结构整体刚度的贡献率取为0.025~0.035。

(11)特征周期、多遇地震影响系数最大值、罕遇地震影响系数最大值:

可通过抗震规范规定,也可根据具体需要来指定。

建筑结构的地震影响系数应根据烈度、场地类别、设计地震分组和结构自振周期及阻尼比确定。其水平地震影响系数最大值αmax 应按表3.3.7-1采用;特征周期应根据场地类别和设计地震分组按表3.3.7-2采用,计算8、9度罕遇地震作用时,特征周期应增加0.05s。

注:1、周期大于6.0s 的高层建筑结构所采用的地震影响系数应做专门的研究;

2、已编制抗震设防区划的地区,应允许按批准的设计地震动参数采用相应的地震影响系数。

表3.3.7-1 水平地震影响系数最大值αmax 地震影响

6度 7度 8度 9度 多遇地震

0.04 0.08(0.12)0.16(0.24)0.32 罕遇地震 - 0.50(0.72)0.90(1.20)

1.40

注:7、8度时括号内数值分别用于设计基本地震加速度为0.15g 和0.30g 的地区。

表3.3.7-2 特征周期值T g (s)

第二组 0.30 0.40 0.55 0.75

第三组 0.35 0.45 0.65 0.90

(12)斜交抗侧力构件方向附加地震数,相应角度

可允许最多5组多方向地震。附加地震数在0-5之间取值。相应角度填入各角度值。该角度是与X轴正方向的夹角,逆时针方向为正。SATWE参数中增加“斜交抗侧力构件附加地震角度”与填写“水平与整体坐标夹角”计算结果有区别:水平力与整体坐标夹角不仅改变地震力而且改变风荷载的作用方向,而斜交抗侧力构件附加地震角度仅改变地震力方向。《抗规》5.1.1、各类建筑结构的地震作用,应符合下列规定:对于有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用。

4 活载信息

(强规)4.1.2、设计楼面梁、墙、拄及基础时,表4.1.1中楼面活荷载标准值载下列情况下应乘以规定的折减系数。

1设计楼面梁时的折减系数:

1)第1(1)项当楼面梁从属面积超过25m2时,应取0.9;

2)第1(2)-7项当楼面梁从属面积超过50m2时应取0.9;

3)第8项对单向板楼盖的次梁和槽型板的纵肋应取0.8;对于单向板楼盖的主梁应取0.6;对双向板楼盖的梁应取0.8;

4)第9-12项应采用与所属房屋类别相同的折减系数。

2设计墙、柱和基础时的折减系数

1)第1(1)项应按表4.1.2规定采用;

2)第1(2)-7项应采用与其楼面梁相同的折减系数;

3)第8项对单向板应采取0.5,对双向板楼盖和无梁楼盖应取0.8;

4)第9-12项应采用与所属房屋类别相同的折减系数。

注:楼面梁的从属面积应按梁两侧各延伸1/2梁间距的范围内的实际面积确定。

表4.1.2活荷载按楼层的折减系数

墙拄基础计算截面以上

1 2-3 4-5 6-8 9-20 20以上

的层数

计算截面以上各楼层活 1.00 0.85 0.70 0.65 0.60 0.55

荷载总和的折减系数 (0.90

注:当楼面梁的从属面积超过25m2时,应采用括号内的系数。

1)说明:

1、计算楼面梁时荷载折减系数的设置在“PMCAD>楼面荷载传导计算>荷载倒算选择>考虑活荷载折减的设置折减系数”的选项中。梁活荷载折减是根据梁的受荷面积而确定的,这样就会造成比较复杂的折减方式,且可能每根梁不同。

2、PMCAD在处理这个问题时,采用了折减楼面荷载的方式。

3、建议在选择梁活荷载折减时,应慎重考虑。在使用PKPM系列的软件中,活荷载折减最好不要重复使用,如在PM中考虑了梁的活荷载折减,则在SATWE、TAT、PMSAP 中最好不要选择“柱墙活荷载折减”,以避免活荷载折减过多。反之亦然。

条文说明4.1.2、作用在楼面上的活荷载不可能以标准值的大小同时布满在所有的楼面上,因此在设计梁、墙、柱和基础时,还要考虑实际荷载沿楼面分布的变异情况。考虑活荷不利布置的最高层号:在恒荷载与活荷载分开算的前提下,若将此参数填0,表示不考虑梁活荷不利布置作用;若填大于零的数NL,则表示1-NL各层考虑梁活荷载的不利布置,而NL+1层以上则不考虑活荷不利布置。

5.1.8、高层建筑结构内力计算中,当楼面活荷载大于4kN/m2时,应考虑楼面活荷载不利布置引起的梁弯矩的增大。

该选项与“调整信息”中的“梁设计弯矩放大系数”不能同时采用。梁弯矩放大系数起源于梁的活荷载不利布置。当不考虑活荷载不利布置时,梁活荷载弯矩偏小,程序试图通过梁弯矩放大系数来调整梁的弯矩。在程序处理时,最终弯矩弯矩放大系数是乘在组合设计弯矩上(弯矩包络图上)的,这样组合中的恒、地震、风荷载也相应放大了,会导致梁的主筋量有较大的增加。所以用户应选用“梁活载不利布置”选项来考虑活荷载的不利布置。

5 调整信息:

图5 调整信息 图6 设计信息

(1)中梁刚度增大系数:

装配式楼板取1.0;现浇楼板取值1.3-2.0,一般取2.0。

(2)梁端弯矩调幅系数:

现浇框架梁0.8-0.9;装配整体式框架梁0.7-0.8。

(3)梁设计弯矩增大系数:

放大梁跨中弯矩,取值1.0-1.3;已考虑活荷载不利布置时,宜取1.0。

(4)连梁刚度折减系数:

一般工程取0.7,位移由风载控制时取≥0.8;

(5)梁扭矩折减系数:

现浇楼板(刚性假定)取值0.4-1.0,一般取0.4;现浇楼板(弹性楼板)取1.0。 (6)全楼地震力放大系数:

用于调整抗震安全度,取值0.85-1.50,一般取1.0。

6 设计信息:

(1)结构重要性系数:

安全等级二级,设计使用年限50年,取1.00

(2)柱计算长度计算原则:

(3)是否考虑 P-Delt 效应:

1)据有关分析结果,7度以上抗震设防的建筑,其结构刚度由地震或风荷载作用的位移限制控制,只要满足位移要求,整体稳定自然满足,可不考虑

P-DELT效应。

2)对6度抗震或不抗震,且基本风压小于等于0.5㎏/M2的建筑,其结构刚度由稳定下限要求控制,宜考虑。

3)考虑后结构周期一般会加长。

4)考虑后应按弹性刚度计算的,因此,柱计算长度系数应按正常方法计算。 6配筋信息:

图7 配筋信息 图8 荷载组合

8 荷载组合:

9 地下室信息:

图9 地下室信息 图10 SATWE计算控制参数

(1)回填土对地下室约束相对刚度比:Esol = -X

该参数的含义是基础回填土对结构约束作用的刚度与地下室抗侧移刚度的比值,即反映了地下室的侧向嵌固程度,该值越大,对地下室的侧向约束就越大。若取为0,则表示不考虑回填土的约束刚度;若取为3,则表示70%~80%的嵌固;

若取为5或更大,则表示上部结构的嵌固端在地下室顶板处;若填一负数m(m小于或等于地下室层数m),则认为有m层地下室无水平位移,即所填楼层完全嵌固。分析经验表明,取相对刚度比在2~4之间变化对计算结果影响并不敏感。本参数不影响设计内力调整系数的作用位置。一般工程可取3。当判断地下室顶板能否作为上部结构的嵌固端时,可通过查看刚度比的计算结果确定,但要注意应严格采用“剪切刚度”计算层刚度,且注意不要计入地下室的基础回填土的约束刚度。

(2)外墙分布筋保护层厚度(mm)= 50

根据《砼规》表9.2.1(强条)选择,环境类别见表3.4.1。

(3)回填土容重(kN/m3):Gsol = 18.0

一般取18.0 kN/m3。

(4)室外地坪标高(m):Hout = -0.45

此处是指以建筑室内地坪±0.000标高为准而确定的差值。单建式地下室的±

0.000指地下室顶板标高(有待进一步印证)。

(5)回填土侧压力系数:Rsol = 0.50

回填土侧压力系数可取0.5(考虑为静止土压力)。根据《民用建筑技术措施》中2.6.2条,“地下室侧墙承受的土压力宜取静止土压力”,而静止土压力的系数可近似按K0=1-sin j `(j `为土的有效摩擦角)计算。手工计算时,回填土的侧压力按恒载考虑,分项系数可按1.2或1.35取用。

(6)地下水位标高(m):Hwat = -X.XX

此处是指以建筑室内地坪±0.000标高为准而确定的差值。地下水位标高与此±0.000标高相比,高则填正值,低则填负值。

(7)室外地面附加荷载(kN/m2):Qgrd = X.XX

室外地面附加荷载根据实际工程确定。一般工程可取10.0 kN/m2。

(8)人防设计等级:Mars = 0,4,5,6

根据实际工程选择人防设计等级。

(9)人防地下室层数:Mair = X

对于有些工程,地下室层数和考虑人防设计的地下室层数有时是不相同的,应根据实际工程填写。

(10)顶板人防等效荷载(kN/m2):QE1 = X.XX

顶板人防等效荷载根据《人防设计规范》选取。

(11)外墙人防等效荷载(kN/m2):QE2 = X.XX

外墙人防等效荷载根据《人防设计规范》选取。注:临空墙的水平等效均布静荷载Qc由程序内定:六级人防时Qc=110 kN/m2;五级人防时Qc=210 kN/m2。

注:SATWE 并未在平面配筋简图中给出地下室外墙在平面外受力的配筋,故外墙最好采用手算为好。外墙手算可按下端固接、上端铰接的单向板模型来进行。

10 SATWE计算控制参数:

(1)层刚度比计算:

a.“剪切刚度”:按《高规》附录E.0.1建议的方法;

b.“剪弯刚度”:按《高规》附录E.0.2建议的方法;

c.“地震剪力与地震层间位移的比值”:按《抗规》3.4.2和3.4.3条文说明中建议的方法。

对于大多数一般的结构应选择“地震剪力与地震层间位移的比值”算法;对于多层结构可以选择“剪切刚度”算法;对于有斜支撑的钢结构可以选择“剪弯刚度”算法。一般按“地震剪力与地震层间位移的比值”计算刚度比最容易通过。当转换层位于1层时,用户应该采用“剪切刚度”算法来计算层刚度;当转换层位置大于1层时,用户应该采用“剪弯刚度”算法计算层刚度,来求转换层上部与下部结构的等效侧向刚度比和判断其比值是否满足《高规》的要求;若采用“地震剪力与地震层间位移的比值”算法计算层刚度,所得的转换层上部与下部结构的刚度比结果明显偏小,是偏于不安全的。对于转换层设置在3层及3层以上时,除了采用“剪弯刚度”算法处,用户还要采用“地震剪力与地震层间位移的比值”算法再计算一次层刚度,从而进行转换层本层侧向刚度不应小于相邻上一层楼层侧向刚度的60%的下限控制。目前程序未输出超下限的警告提示。

(1)地震剪力与地震层间位移的比值

根据《抗规》3.4.2条和3.4.3条及《高规》4.4.2条均规定:其楼层侧向刚度不宜小

于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。当此条不满足时,根据《高规》3.3.4条3款应做弹性时程分析法补充计算。按照上述规范相应的条文说明中建议的方法,侧向刚度可取地震作用下的层剪力与层间位移的比值计算。其刚度计算公式为:Ki =

,其中Vi为i层剪力;△ui为i层层间位移。

由于绝大多数工程都要执行《抗规》3.4.2 条和3.4.3 条及《高规》4.4.2 条的规定,因此上述公式对绝大多数工程都适用。如果工程中没有单独定义薄弱层的层号,则程序按“地震剪力与地震层间位移的比值”的计算结果就有可能没有将转换层判断为薄弱层,所以对于有转换层的结构,用户应指定转换层为薄弱层。指定薄弱层层号并不影响程序对其它薄弱层的自动判断。用本算法计算层刚度比时,必须采用“刚性楼板假定”。对于有弹性板或板厚为零的工程,应计算两次:在刚性楼板假定条件下计算层刚度比和找出薄弱层;再在真实条件下计算构件内力及配筋,并检查原找出的薄弱层是否得到确当判定地下室能否作为上部结构的嵌固端时,因为用本算法计算所得的刚度比已经考虑了地下室的基础回填土的约束刚度,故不符合规范规定。这种情况下有两种解决办法:1)将地下室信息中“回填土对地下室的约束相对刚度比”填为0,

先算一遍,来判定地下室能否作为嵌固端;2)选用“剪切刚度”来计算刚度比,并进行判定地下室能否作为嵌固端。

(2)剪切刚度

《抗规》6.1.14 条的条文说明中要求采用“剪切刚度”来计算侧向刚度。SATWE 软件在计算剪切刚度比时,是采用了《抗规》公式6.1.14-1和6.1.14-2。按照规范要求,剪切刚度主要用于限制一层转换部位的刚度比和当地下室顶板作为上

部结构的嵌固端时,地下室刚度所应满足的条件。但是由于剪切刚度高度的简化性,《高规》公式E.0.1-1~3不适用于梁式托柱转换层和桁架式转换层结构的刚度比计算。对于上述结构,应该采用转换层上、下层的剪弯刚度进行补充计算。

由《高规》编制组编写的《高层建筑混凝土结构技术规程宣贯培训教材》中除建议采用“剪切刚度比”外,还可采用“地震剪力与地震层间位移的比值”计算。需要指出的是,当用户采用“地震剪力与地震层间位移的比值”计算上层结构与地下室顶板的刚度比时,需要将程序里“地下室信息”中的“回填土对地下室约束相对刚度比”里的值应填“0”。因为该参数的大小对结构的地震力及其相应的位移(尤其

对地下室和首层),均有一定影响。一般来讲,剪切刚度比较严格一些。《上海建筑抗震设计规程》(DGJ08-9-2003)231页6.1.19条的条文说明规定:当进行初步设计时,侧向刚度比可用剪切刚度比估计,并作为计算刚度比的控制指标。对于采用《上海规程》的用户应采用“剪切刚度”来计算刚度比,并作薄弱层判断。

(3)剪弯刚度

按照规范__1_坃0_癬要求,剪弯刚度比主要用于保证高位转换时,转换层部分一定范围内结构刚度的连续性。当转换层设置在大于1层时,按《高规》应采用“剪弯刚度”计算控制;当转换层设置在3层及3层以上时,《高规》规定其楼层侧向刚度比不宜小于相邻上部楼层的70%,且不应小于60%(60%的比值SATWE 程序并没有直接输出结果,需要用户根据程序输出的每一层的刚度单独计算)。此比值的控制需要用“地震剪力与地震层间位移的比值”来计算,故带高位转换层的结构应采用“剪弯刚度”及“地震剪力与地震层间位移的比值”各算一次,才能正确地做好转换层上、下刚度突变的控制。另外,对于有支撑的结构,也用采用“剪弯刚度”来计算。SAWTE 软件在计算剪弯刚度比时,采用刚度串模型来计算的,即先将上部或下部结构各层的侧向刚度求倒数,得出位移后再求和,然后再求倒数得到上部或下部结构的刚度,从而得到上部或下部结构的等效侧向刚度比,这与《高规》附录E.0.2建议的方法有些不同。

(2)地震作用分析方法:[算法1:侧刚分析方法]或[算法2:总刚分析方法]

a.“侧刚分析方法”是一种简化计算方法,只适用于采用楼板平面内无限刚假定的普通建筑和采用楼板分块平面内无限刚假定的多塔建筑。对于这类建筑,每层的每块刚性楼板只有两个独立的平动自由度和一个独立的转动自由度。“侧刚”就是依据这些独立的平动和转动自由度而形成的浓缩刚度阵。“侧刚”的优点是分析效率高,由于浓缩以后的侧刚自由度很少,所以计算速度很快。“侧刚计算方法”的应用范围是有限,对于定义有较大范围的弹性楼板、有较多不与楼板相连的构件(如错层结构、空旷的工业厂房、体育馆所等)或有较多的错层构件的结构,“侧刚分析方法”不适用,而应采用“总刚分析方法”。这是一种采用刚性楼板假定的简化的结构刚度模型,即把房屋理想化为空间梁、柱和墙组合成的集合体,并在楼板平面内无限刚的楼板上互相连接在一起。不管用户在建模中有无弹性楼板、刚性楼板或越层大空间,对于无塔结构的侧刚模型假定每层为一块刚性楼板,而多塔结构则假定一塔一层为一块刚性楼板。每块刚性楼板具有两个独立的水平平动自由度和一

PKPM SATWE参数设置讲解

SATWE参数设置 一:总信息 1水平力与整体坐标夹角(度):一般为缺省。若地震作用最大的方向大 于15度则回填。 2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。 3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。 4、裙房层数:程序不能自动识别裙房层数,需要人工指定。应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。 5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别 转换层,需要人工指定。对于高位转换的判断,转换层位置以嵌固端起算,即 以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。 6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数 +1)。 7、地下室层数:根据实际情况输入。 8、墙元细分最大控制长度(m):一般为缺省值1。 9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加 到薄弱层号中,如不打勾,则需要用户手动添加。此项打勾与在“调整信息” 页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。 10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建 议选择。在进行结构内力分析和配筋计算时不选择。 11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定 时保留弹性板面外刚度考虑。特别是对于板柱结构定义了弹性板3、6情况。但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。 12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。不勾选的话位 移偏小。 13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼 缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。 14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。 15、墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,程 序强制为“出口”,即只把墙元因细分而在其内部增加的节点凝聚掉,四边上 的节点均作为出口节点,使得墙元的变形协调性好,分析结果更符合剪力墙的 实际。 16、结构材料信息:按实际情况填写。 17、结构体系:按实际情况填写。 18、恒活荷载计算信息: 1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2)模拟施工加载1模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;

SATWE参数

1)水平力与整体坐标夹角:采取隐含值0,当大于15°根据《抗规》5.1.1-2重算。 2)混凝土容重:隐含值25。一般按结构类型取值:框架结构25.5;框剪结构26;剪力墙 结构重度27。) 3)钢材容重:隐含值78。 4)裙房层数:根据实际情况。 5)转换层所在层号:按自然层号填输,含地下室的层数。(该指定只为程序决定底部加强 部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。) 6)嵌固端所在层号:1:判断地下一层侧向刚度是否大于地上一层侧向刚度2倍,当满足 顶板嵌固要求可指定地下室顶板为嵌固端,此时一层二层侧向刚度比不宜小于1.5;2:当不满足地下室顶板嵌固时,可指定地下室底板或地下一、二层为嵌固端。实际工程中如实输入地下室层数,嵌固均选地板(输入1结果偏安全)。 7)地下室层数:根据实际情况。 8)墙元细分最大控制长度:可取2.0,对于框支结构和其他复杂结构、短肢剪力墙可取 1.0~1.5。 9)弹性板细分最大控制长度: 10)对所有楼层强制采用刚性楼板假定:计算楼层位移比,结构层间位移比和周期比时应勾 选;计算结构内力与配筋计算时不应勾选。 11)地下室强制采用刚性楼板假定:PKPM2010强制地下室楼面板(包括自定义的弹性板)

为刚性楼板.因此必须勾选此项。 12)墙梁跨中节点作为刚性楼板从节点:因此必须勾选此项。 13)计算墙倾覆力矩时只考虑腹板和有效翼缘:默认不勾选。 14)弹性板与梁变形协调:勾选。 1)结构材料信息:据实填写。 2)结构体系:据实填写。 3)恒活荷载计算信息:一次性加载:整体刚度一次加载,适用于多层结构、有上传荷载的 情况;模拟施工加载1:整体刚度分次加载,可提高计算效率,但与实际不相符;模拟施工加载2:整体刚度分次加载,但分析时将竖向构件的刚度放大10倍,是一种近似方法,改善模拟施工加载1的不合理处,是结构传给基础的荷载比较合理;模拟施工加载3:分层刚度分次加载,比较接近实际情况。一次性加载:主要用于多层结构、钢结构和有上传荷载(例如吊柱)的结构。模拟施工加载1:适用于多高层结构。模拟施工加载2:仅可用于框筒结构向基础软件传递荷载(不要传递刚度)模拟施工加载3:适用于多高层无吊车结构,更复合工程实际情况,推荐使用。 4)风荷载计算信息:计算水平风荷载。 5)地震作用计算信息:计算水平和竖向地震作用。《抗规》3.1.2,“抗震设防烈度为6度时, 除本规范有具体规定外,对乙丙丁类建筑可不进行地震作用计算。”《抗规》5.1.6,“6度时的建筑(不规则建筑及建造于Ⅳ类场地上较高的高层建筑除外),以及生土房屋和木结构房屋等,应允许不进行截面抗震验算,但应符合有关的抗震措施要求。”“6度时不规则建筑及建造于Ⅳ类场地上较高的高层建筑,7度和7度以上的建筑结构(生土房屋和木结构房屋等除外),应进行多遇地震作用下的截面抗震验算。”《抗规》5.1.1,“8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。”《高规》4.3.2,“8度、9度抗震设计时,高层建筑中的大跨度和长悬臂结构应考虑竖向地震作用;”“9度抗震设计时应计算竖向地震作用。”《高规》10.2.6,“8度抗震设计时转换构件尚应考虑竖向地震的影响。”《高规》10.5.2,“8度抗震设计时,连体结构的连接体应考虑竖向地震的影响。”注意事项:8(9)度地区大跨度结构一般指看度不小于24m(18m),长悬臂构件指悬臂板不小于2(1.5)m,悬臂梁不小于6(4.5)m。 6)结构所在地区:全国。 7)规定水平力的确定方式:楼层剪力差方法(规范方法)。

新版本SATWE前处理参数的设置技巧

水平力与整体坐标夹角:PMCAD模型是否在SATWE模型里旋转,风力迎风面积不是最大需旋转。混凝土容重:剪力墙结构取27,框架结构取26. 裙房层数:裙房屋顶层在SATWE模型中的层号,模型第一层为1,无裙房为0。 转换层所在层号:转换层在模型第一层为1,无转换层为0。 嵌固端所在层号:基础嵌固为1;1层地下室,顶板为嵌固部位,填2. 强制刚性楼板假定:位移结果文件,必须选此项;配筋计算,不能选此项。 强制刚性楼板保留抗弯刚度:一般不选;选此项层间位移角会变小。 墙梁跨中节点作为刚性楼板从节点:默认选,影响连梁剪力,选此项连梁剪力会变小。 恒活荷载计算信息:填“模拟施工加载3”;模型有转换桁架时,还需填 “一次性加载”,否则桁架内力偏小。 “规定水平力”的确定方法:选楼层剪力差方法,抗规P272

(1)注意箍筋强度HPB300,HPB235 (2)墙水平分布筋间距:一般200。 (3)墙竖向分布筋配筋率:填~,影响墙暗柱配筋 (4)结构底部NSW层的墙竖向分布配筋率:填~,影响墙暗柱配筋

(1)修正后的基本风压:一般为50年基本风压,荷载规范修正系数 (2)X,Y结构基本周期:大于相对应的平动系数X>,Y>的周期 振型号周期转角平动系数 (X+Y) 扭转系数 1 ( + ) 2 ( + ) (3)风荷载作用下结构的阻尼比:混凝土,房屋钢结构,钢结构混合结构~ (4)承载力设计时风荷载效应放大系数:高规4.2.2,大于60米,取 (5)舒适度验算风压/阻尼比(%):高规3.7.6 10年一遇风压阻尼比混凝土,混合结构~(6)是否考虑风振: 高层考虑,多层按荷载规范7.4.1高度大于30m且高宽比大于的房屋

SATWE参数选取原则(第三版)

SATWE参数选取原则(第三版) SATWE 2010版(2013年10月版本) 一、总信息: 1. 水平力与整体坐标夹角:取0度;(如周期计算结果中显示最大地震力方向与主坐标夹角 大于15°,应在斜交抗侧力构件中输入角度,此处不必改动) 2. 混凝土容重:框架、框架-剪力墙取26;剪力墙及框筒结构取27;计算地下室底板配筋时 取0; 3. 钢材容重:78; 4. 裙房层数:按实际计算层数输入(应计入地下室的层数); 5. 转换层所在层号:此参数为针对“部分框支剪力墙结构”及“底层带托柱转换层的筒体” 而设置。对于部分构件的局部转换,只需要在特殊构件定义中设置转换构件即 可,不必在此设置转换层号;此层号为PMCAD中的自然层号,包括地下室; (转换层自动默认为薄弱层)

6. 嵌固端层号:若嵌固端在基础上就为“1”,若嵌固端为地下室顶板则为“地下室层数+1”。 7. 地下室层数:除了对风荷载作用、地震作用及内力调整有关系外,该参数对高位转换的判 别影响很大,应准确输入该参数(应注意地下室层数的判断); 8. 对所有楼层采用刚性楼板假定:除内力及配筋计算以外,均勾选“是”; 注:进行内力和配筋计算时,部分特殊的结构应在特殊构件定义中修改弹性板的类型,如板柱结构应定义弹性板6、厚板结构应定义弹性板3、楼面开大洞时应 定义弹性膜。 9. 地下室强制采用刚性楼板假定;地下室有跃层构件或开大洞时,可取消勾选; 10.墙梁跨中节点作为刚性楼板从节点:一般勾选,若连梁抗剪超限,可不勾选进行计算; 11.计算墙倾覆力矩时只考虑腹板和有效翼缘:一般应勾选;(砼规中9.4.3条有相关承载力计 算内容,程序参照此条考虑到倾覆力矩上,此条对倾覆力矩比有轻微影响)12.弹性板与梁变性协调:替代上个版本的“强制刚性楼板假定时保留楼板平面外刚度”,应 勾选; 13.结构材料信息:按实际类型填写; 14.结构体系:按实际填写;仅设置少量剪力墙的框架结构应按框架结构填写,底层带托柱转 换层的筒体仍按框筒或筒中筒结构输入,选砌体结构和底框结构无效; 15.恒活荷载计算信息:一般采用模拟施工加载3,如遇到有转换层、跃层柱、长悬挑或吊柱 等情况时,应注意修改加载的次序和层数。有吊柱的结构、钢结构及体育场馆 等应采用模拟施工加载1。计算基础时,尤其是框剪、框筒结构时,采用模拟 施工加载2;(如有特殊结构,勾选“自定义施工顺序”进行人工排序) 16.风荷载计算信息:一般结构选择“计算水平风荷载”即可,对于一些空旷建筑、体育馆及 轻钢屋面等结构选择“计算特殊风荷载”; 17.地震作用计算信息:一般建筑“计算水平地震作用”即可。对于规范规定的需要考虑竖向 地震的建筑按以下原则选择:多层建筑选择“计算水平和规范简化方法竖向地 震”,高层建筑选择“计算水平和反应谱方法竖向地震”; 18.特征值求解方式:在选择“计算水平和反应谱方法竖向地震”时此项方可激活,一般情况 不需考虑。“整体求解”考虑三向振动的耦联,但有效质量系数不易达到90%, 应增加振型数;“独立求解”不能体现耦联关系,但易满足有效质量系数的要 求; 19.“规定水平力”的确定方式:一般工程均选择“楼层剪力差方法”; 20.结构所在地区:按项目所在地区填写,分为全国、上海和广东;

pkpm及SATWE参数设置个人总结

一、pkpm参数设置 1、材料信息的定义 本层信息里设置混凝土钢筋的强度等级,局部不同的可以在材料强度里特殊定义(也可以在后续SATWE里定义特殊构件的时候定义) 2、设计参数 注意:

(1)、有地下室的按地下室情况如实填写,当无地下室的时候,第一层为地梁,柱子像下伸,这一层计算的时候也定义为地下室(2)、计算指标的时候地下室一般不组装,计算地下室的梁柱配筋的时候再组装 (1)、混凝土容重:如果输楼板荷载的时候没有考虑抹灰找平层等,此处一般输27,若输荷载时考虑了,则可输25; (2)、钢截面净毛面积比值:钢构件截面净面积与毛面积的比值。净面积是构件去掉螺栓孔之后的截面面积,毛面积就是构件总截面面积。软件默认取值为0.5,经验值0.85,轻钢结构最大可以取到0.95,框架的可以取到0.9(当然这些和钢材的厚度负差、钢构件上面的开孔面积、焊接质量等等都有关系)

(1)计算阵型个数,取3的倍数,一般取楼层数的3倍;也可以在后续SATWE参数里不按阵型个数计算,按达到有效质量系数多少来计算(规范规定至少90%) (2)周期折减系数,考虑隔墙对刚度的影响,隔墙越多,对刚度贡献越大,周期越小,折减系数就越小,根据《高规》第4章最后一页确定 其他参数如实填写

二、SATWE参数设置(V3.2为例) 前面pkpm设置了的参数会自动读取到SATWE里,因此可以在这里设置前面未设置的参数,检查前面已经设置了的参数。 1、总信息 (1)水平力与整体坐标夹角:第一次计算不输入,计算后,地震作用最大的方向角度大于15°后,填入该度数再重新计算。

(2)如实填写

Satwe参数的设置--绝对很详细_史上最全

最全Satwe参数设定 1、总信息: 水平力与整体坐标系夹角:0 根据抗规(GB50011-2001)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。 当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。同时,该参数不仅对地震作用起作用,对风荷载同样起作用。 通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。 混凝土容重:26 本参数用于程序近似考虑其没有自动计算的结构面层重量。同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。 通常对于框架结构取25-26;框架-剪力墙结构取26;剪力墙结构,取26-27。 1.3钢容重:78 一般情况下取78,当考虑饰面设计时可以适当增加。 1.4裙房层数:按实际填入 混凝土高规(JGJ3-2002)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。 同时抗规(GB50011-2001)6.1.10条条文说明要求:带有大底盘的高层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸一层,大底盘顶板以上至少包括一层。裙房与主楼相连时,加强部位也宜高出裙房一层。 本参数必须按实际填入,使程序根据规范自动调整抗震等级,裙房层数包括地下室层数。 1.5转换层所在层号:按实际填入

PKPM-SATWE参数信息设置

SATWE 计算参数选择 总信息 1水平力与整体坐标夹角(度):0 初始值为0,satwe可以自动计算出这个最不利方向角,并在wzq.out中输出。如果这个角大于15度,可根据把这个角度作为地震作用的方向角重新进行计算,以体现最不利地震作用的影响。 地震沿着不同的方向作用,结构地震反应的大小一般也不同。结构地震反应是地震作用方向角的函数(逆时针为正)。 2混凝土容重:26kN/m2 在自重荷载有利的情况下,要取25kN/m2 3钢材容重:78 kN/m2 4裙房层数:按实际情况。 高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。 5转换层所在层号:按实际情况。 抗规3.4.3规定;高规10.2.6规定 6地下室层数:按实际情况。 7墙元细分最大控制长度:1 程序限定1.0-5.0之间,隐含值为2.0,该值对分析精度略有影响,但不敏感,对于一般工程,可取隐含值,对于框支剪力墙结构,可取的略小一些,取1.5或1.0。 8对所有楼板采用刚性楼板假定: 位移计算(周期计算)必须在刚性楼板假定条件下计算得到,而构件设计(配筋)应采用弹性楼板计算。9后面三个基本按默认

10结构体系:按实际情况。 剪力墙结构与框剪结构细分要看规定水平力框架柱及短肢墙地震倾覆力矩百分比(抗规)是否大于50% 11恒活荷载计算信息:一般选择“模拟施工方法3” 当计算框架-剪力墙等柱墙混用的结构的基础时选择“模拟施工方法2”。如有竖吊构件(如吊柱),必须选择“一次性加载。 5.1.9、高层建筑进行重力荷载作用效应分析时,柱、墙轴向变形宜考虑施工过程的影响。施工过程的模拟可根据需要采用适当的简化方法。 “模拟施工方法1”加载:就是按一般的模拟施工方法,对于高层结构一般都采用这种方法计算。但这是在"基础嵌固约束"假定前提下的计算结果,未能考虑基础的不均匀沉降对结构构件内力的影响。若结构地基无不均匀沉降,上述分析结果更能较准确地反映结构的实际受力状态,但若结构地基有不均匀沉降,上述分析结果会存在一定的误差,尤其对于框剪结构,外围框架柱受力偏小,而剪力墙核心筒受力偏大,并给基础设计带来一定的困难。 “模拟施工方法2”加载:在模拟施工方法1的基础上将竖向构件(墙、柱)的侧向刚度增大10倍的情况下,再进行结构计算,采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不合理的情况,由于竖向刚度放大,使水平梁的两端的竖向位移差减少,从而使其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近于手算。 12风荷载计算信息:选择“计算风荷载”。 13地震作用计算信息:一般选择“计算水平地震力”。 当满足下面规定时,选择“计算水平与竖向地震力”。多层建筑: 《抗规》5.1.1.4、8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。 高层建筑: (强规)3.3.2、高层建筑结构应按下列原则考虑地震作用:…… 3、8度、9度抗震设计时,高层建筑中的大跨度和长悬臂结构应考虑竖向地震作用; 4、9度抗震设计时应计算竖向地震作用。

结构设计之SATWE参数设置

前处理注意事项 1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。 2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。PMCAD的数据检查要通过。SATWE数据报告提示的问题要消除。 3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。范例外的自重需用户输入。 4、板―柱结构输入:柱网需输入截面为100X100的虚梁。 5、厚板转换层输入:柱网需输入截面为100X100的虚梁。层高以板厚的1/2划分。 6、错层结构输入: A、框架错层:在PM中调整梁端高,含斜梁。 B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。 C、多塔层高不同:把形成的塔虚层中楼板去掉。 关于整理SATWE设计参数便览的说明 设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。论坛里也有许多帖子,但总觉得系统性、实用性有些不足。 SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。 由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。更欢迎参与。 SATWE参数便览之总信息 1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算 值重算。 2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。 3、钢材容重:隐含值78。可行。 4、裙房层数:指地上的周边都有的群房。当主体一面或多面无裙房时,风荷载需个案处理。 5、转换层所在层号:按自然层号填输,含地下室的层数。 6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。 7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。 8、对所有楼层采用刚性楼板假定:位移计算时,不论是否开大洞或不规则,必须是刚性板假定。内力计算时,则在任何情况下均不能设为刚性板。 9、墙元侧向节点信息:一般工程选“出口”,剪力墙数量多的高层结构宜选“内部”。选“内部”时,计算精度会有一点点降低,但速度要快很多。 10、结构材料信息:共5个选项:钢筋砼结构;钢与砼混合结构;有填充墙钢结构;无填充墙钢结构;砌体结构。按含义选取,砌体结构用于底框结构。 11、结构体系:按结构布置的实际状况确定。共分:框架结构、框剪结构、框筒结构、筒中筒结构、板柱剪力墙结构、剪力墙结构、短肢剪力墙结构、复杂高层结构、砖混底框结构、共9种类型。确定结构类型即确定与其对应的有关设计参数。 12、恒、活载计算信息:“不计算恒、活荷载”即计算竖向力。“一次性加载”可用于多层。“模拟施工荷载1”用于高层结构计算,“模拟2”仅用于高层基础计算。 13、地震作用计算信息:共3个选项:不计算地震作用,很少出现;计算水平地震作用,用于6-8度区;计算水平和竖向地震作用,用于九度区。 SATWE参数便览之风荷载信息

【设计必看】PKPM satwe参数详解及设置

目录 SATWE参数设置篇 (4) 一、总信息 (4) 01.水平力与整体坐标夹角 (4) 02.混凝土和钢材容重 (4) 03.裙房层数 (4) 04.转换层所在层号 (4) 05.地下室层数 (5) 06.嵌固端所在层号 (5) 07.墙元细分最大控制长度 (5) 08.对所有楼层强制采用刚性楼板假定 (5) 09.地下室强制采用刚性楼板假定 (6) 10.墙梁跨中节点作为刚性楼板从节点 (6) 11.结构材料信息 (6) 12.结构体系 (6) 13.恒活荷载计算信息 (6) 14.施工次序 (6) 15.风荷载计算信息 (6) 16.地震作用计算信息 (6) 17.结构所在地区 (7) 二、风荷载信息 (7) 01.地面粗糙度类别 (7) 02.修正后的基本风压 (7) 03.结构基本周期 (7) 04.风荷载作用下结构的阻尼比 (7) 05.承载力设计时风荷载效应放大系数 (8) 06.用于舒适度验算的风压、阻尼 (8) 07.顺风向风振 (8) 08.水平风体型系数 (8) 09.特殊风体型系数 (8) 10.设缝多塔背风面体型系数 (8) 三、地震信息 (9) 01.结构规则性信息 (9) 02.设计地震分组、设防烈度、设计基本地震加速度 (9) 03.场地类别 (9) 04.混凝土框架、剪力墙、钢框架抗震等级 (9) 05.抗震构造措施的抗震等级 (9) 06.中震(或大震)设计 (11) 07.考虑偶然偏心 (11) 08.考虑双向地震作用 (11) 09.振型数 (11)

10.重力荷载代表值的活载组合值系数 (12) 11.周期折减系数 (12) 12.结构的阻尼比 (12) 13.特征周期、地震影响系数最大值、用于12层以下...影响系数最大值 . (13) 14.斜交抗侧力构件方向附加地震数、相应角度 (13) 四、活荷信息 (14) 01.柱、墙设计时活荷载、传给基础的活荷载 (14) 02.梁活荷不利布臵最高层号 (14) 03.柱、墙、基础活荷载折减系数 (15) 04.考虑结构使用年限的活荷载调整系数 (15) 五、调整信息 (15) 01.梁端负弯矩调幅系数 (15) 02.梁活荷载内力放大系数 (15) 03.梁扭矩折减系数 (15) 04.托墙梁刚度放大系数 (15) 05.实配钢筋超配系数 (16) 06.连梁刚度折减系数 (16) 07.中梁刚度放大系数 (16) 08.部分框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级 (17) 09.调整与框支柱相连的梁内力 (17) 10.指定加强层个数及相应的各加强层层号 (17) 11.按抗震规范(5.2.5)调整各楼层地震内力 (17) 12.指定薄弱层个数、各薄弱层层号 (17) 13.薄弱层地震内力放大系数 (17) 14.全楼地震作用放大系数 (18) 15.顶塔楼地震作用放大起算层号及放大系数 (18) 16.0.2V0调整 (18) 六、设计信息 (18) 01.结构重要性系数 (18) 02.钢构件截面净毛面积比 (18) 03.考虑P-△效应 (18) 04.按高规或者高钢规进行构件设计 (19) 05.钢柱计算长度系数按有侧移计算 (19) 06.框架梁端配筋考虑受压钢筋 (19) 07.结构中框架部分轴压比按照纯框架的规定采用 (19) 08.剪力墙构造边缘构件的设计执行高规7.2.16-4条 (19) 09.当边缘构件轴压比小于抗规(6.4.5)条规定时,一律设臵构造边缘构件 (20) 10.指定的过渡层个数及层号 (20) 11.柱配筋计算原则 (20) 12.保护层厚度 (20) 13.梁柱重叠部分简化为刚域 (20) 七、配筋信息 (21) 01.边缘构件箍筋强度: (21) 02.墙水平分布筋间距 (21)

SATWE参数设置

一.总信息 1.水平力与整体坐标角 通常,水平地震沿结构XY两个方向施加,所以一般情况下取0度.当结构平面复杂(如L型、三角形)或抗侧力结构非正交时,据《抗规》5.1.1,有斜交抗侧力构件的结构,当相交角度大于15度,应分别计算各抗侧力构件方向的水平地震作用。 <技巧>可先取初始值为0,SATWE计算后在计算书WZQ.OUT里输出结构最不利方向角,如果与主轴夹角大于正负15度,应将该角度输入重新计算。 2混凝土容重框架26剪力墙27框剪也可以输入26 3裙房层数 《高规》3.9.6与主楼连为整体的裙房的抗震等级,除应按裙房本身确定外,相关范围不低于主楼抗震等级;主楼结构在裙房顶板上、下各一层应适当加强抗震构造措施。裙房与主楼分离时,应按裙房本身确定抗震等级 程序对带裙房的塔楼结构剪力墙底部加强区高度进行判断,按规范求,取到裙房屋面上一层。该参数的加强措施仅限于剪力墙加强区,程序没有对裙房顶部上下各一层及塔楼与裙房连接处的其他构件采取加强措施。 <注意>裙房层数应从结构最底层起算(包括地下室),例如:地下室3屋,地上裙房4层,则应输入7. 4转换层所在层号 《抗规》3.4.4平面规则而竖向不规则的建筑,刚度小的楼层的地震剪力应乘以不小于1.15的增大系数。竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25~1.5的增大系数。 程序根据层号实现构件地震内力放大。可以输入多个转换层号 《高规》10.2规定了两种带转换层的结构:部分框支剪力墙结构及底部带托柱转换层的筒体结构。 应按楼层组装中的自然层号填写,如:地下室3层,转换层位于地上2层,转换层所在层号应输入5. 5.嵌固端所在层号 指上部结构的计算嵌固端,当地下室顶板作为嵌固部位时,那么嵌固端所在层为地上一层,即地下室层数+1,而如果在基础顶面嵌固时,嵌固端所在层号为1.程序缺省的嵌固端所在层号为“地下室层数+1”,如果修改了地下室层数,注意确认嵌固端所在层号是否需修改。 6.墙元细分最大控制长度 程序隐含值为Dmax=1.0 7.转换层指定为薄弱层

PKPM参数设置教程

1.1.1 水平力与整体坐标夹角(度) 规范规定:《抗震规范》,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进形抗震验算”。 程序实现:该参数为地震作用力方向或风荷载作用方向与结构整体坐标的夹角,逆时针方向为正,如地震沿着不同方向作用,结构地震反映的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向称为最不利地震作用方向,从严格意义上讲,规范中所讲的主轴是指地震沿该轴方向作用时,结构只发生沿该轴方向的侧移而不发生扭转位移的轴线,当结构不规则时,地震作用的主轴方向就不一定时0°或90°,如最大地震力方向与主轴夹角较大时,可以输入该角度考虑最不利作用方向的影响。 操作要点:由于设计人员事先很难估算结构最不利地震作用方向,因此可以先取初始值0°,SATWE计算后在计算书WZQ.OUT中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,应将该角度重新计算,以考虑最不利地震作用方向的影响。 注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。 (2)本参数不是规范要求的,供设计人员选用。 (3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。 1.1.2 混凝土容重(kN/m3) 规范规定:参看《荷载规范》附录A常用材料和构件的自重表。容重是用来计算梁、柱、墙、板重力荷载用的。 操作要点:初始值钢筋混凝土容重为25.0 kN/m3,这适合于一般工程情况,若采用轻只混凝土或需要考虑构件装饰层重量时,应按实际情况修改此参数。 注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。 1.1.3 对所有楼层强制采用刚性楼板假定 规范规定:《高规》,“进行高层建筑内力与位移计算时,可假定楼板在其自身平面内均无限刚性” 程序实现:选择该项后,程序可以将用户设定的弹性楼板强制为刚性楼板参与计算。 操作要点:初始值为不选择该项。 (1)在计算位移、周期等控制参数时,应选择该项,将弹性楼板强制为刚性楼板参与计算,以满足规范要求的计算条件,计算完成后应去掉此项选择,以弹性楼板方式进行配筋和其他就算分析。 注意事项:对于复杂结构,如不规则坡屋顶、体育馆看台、工业厂房,或者柱、墙不在同一标高,或者没有楼板等情况,如果采用强制刚性楼板假定,结构分析会严重失真。对这类结构可以查看位移的<详细输出>,或观察结构的动态变形图,考察结构的扭转效应。 (2)对于错层或带夹层的结构,总是伴有大量的越层柱,如采用强制刚性楼板假定,所有越层柱将受到楼层约束,造成计算结构失真。 操作要点:按工程实际情况设定结构材料信息 操作要点:按工程实际情况确定结构体系 规范规定:《高规》,柱、墙轴向变形宜考虑施工过程的影响,施工过程的模拟可根据需要采用适当的简化方法。”

SATWE参数设置详解

SATWE参数设置详解 一、总信息 ?水平力与整体坐标夹角(度) 《抗震规范》5.1.1条和《高规》4.3.2条规定“一般情况下,应至少在结构两个主轴方向分别计算水平地震作用;有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。” 该参数为地震作用方向或者风荷载作用方向与结构整体坐标的夹角,逆时针方向为正。如地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为最不利地震作用方向。 从严格意义上讲,规范中所讲的主轴是指地震沿该轴方向作用时,结构只发生沿该轴方向的侧移而不发生扭转位移的轴线。当结构不规则时,地震作用主轴方向就不一定是0°和90°。如最大地震方向与主轴夹角较大时,可以输入该角度考虑最不利作用方向的影响。操作要点:设计人员事先很难估算结构的最不利地震作用方向,因此可以先取初始值0°,SATWE计算后在计算书WZQ.OUT中输出最不利方向角,如果这个角度与主轴角度大于±15°,应该将角度输入重新计算,以考虑最不利地震作用方向的影响。 注意事项:1、为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入;2、本参数不是规范要求的,仅供设计人员选用;3、本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结果取最不利值。 ?混凝土容重 主要用于求梁、柱、墙自重,初始值容重为25,适合于一般工程。如果要考虑梁柱墙上的抹灰层、装修层等荷载时,可以采用加大容重的方法近似考虑,以避免繁琐的荷载导算,一般框架取25,框剪取26,剪力墙取27。 ?钢材容重 初始值为78,适合于一般工程情况,若要考虑构件表面装饰和防火涂层重量时,应按照实际情况修改此参数。 ?裙房层数 《高规》10.6.3条规定:“塔楼中与裙房相连的外围柱、剪力墙,从固定端至裙房屋面上一层的高度范围内,柱纵向钢筋的最小配筋率宜适当提高,剪力墙宜按本规程第7.2.15条的规定设置约束边缘构件,柱箍筋宜在裙楼屋面上、下层的范围内全高加密;当塔楼结构相对于底盘结构偏心收进时,应加强底盘周边竖向构件的配筋构造措施。” 《高规》3.9.6条规定:“抗震设计时,与主楼连为整体的裙房的抗震等级,除应按裙房本身确定外,相关范围不应低于主楼的抗震等级;主楼结构在裙房顶板上、下各一层应适当加强抗震构造措施。

史上最全PKPM SATWE参数设置介绍

总信息 (5) 水平力与整体坐标夹角 (5) 混凝土容重 (5) 钢材容重 (5) 裙房层数 (5) 转换层所在层号 (6) 嵌固端所在层号 (6) 地下室层数 (8) 墙元细分最大控制长度 (8) 弹性板细分最大控制长度 (9) 转换层指定为薄弱层 (9) 对所有楼层强制采用刚性楼板假定 (9) 地下室强制采用刚性楼板假定 (10) 墙梁跨中节点作为刚性楼板从节点 (10) 计算墙倾覆力矩时只考虑腹板和有效翼缘 (11) 弹性板与梁变形协调 (12) 采用自定义构件施工次序 (13) 结构材料信息 (14) 结构体系 (14) 恒活荷载计算信息 (14) 施工次序 (17) 风荷载计算信息 (17) 地震作用计算信息 (17) 结构所在地区 (18) 特征值求解方式 (18) “规定水平力”的确定方式 (18) 墙元侧向节点信息 (19) 风荷载信息 (20) 地面粗糙度类别 (20) 修正后的基本风压 (20) X、Y向结构基本周期 (22) 风荷载作用下结构的阻尼比 (23) 承载力设计时风荷载效应放大系数 (24) 用于舒适度验算的风压 (24) 用于舒适度验算的结构阻尼比 (25) 顺风向风振 (25) 横风向风振 (25) 扭转风振 (26) 水平风体型系数 (26) 设缝多塔背风面体形系数 (27) 特殊风体型系数 (28) 地震信息 (29) 结构规则性信息 (29) 设防地震分组 (29)

设防烈度 (29) 场地类别 (30) 砼框架、剪力墙、钢框架抗震等级 (30) 抗震构造措施的抗震等级 (32) 中震(或大震)设计 (33) 按主振型确定地震内力符号 (33) 按抗规(6.1.3-3)降低嵌固端以下抗震构造措施的抗震等级 (33) 程序自动考虑最不利水平地震作用 (34) 斜交抗侧力构件方向附加地震数,相应角度 (34) 考虑偶然偏心 (34) 考虑双向地震作用 (35) 计算振型个数 (36) 重力荷载代表值的活载组合值系数 (36) 周期折减系数 (37) 结构的阻尼比 (37) 特征周期、地震影响系数最大值、用于12层以下规则砼框架结构薄弱层验算的地震影响系数最大值(罕遇地震) (38) 竖向地震参与振型数 (38) 竖向地震作用系数底线值 (38) 自定义地震影响系数曲线 (38) 活荷信息 (39) 柱墙、基础设计时活荷载 (39) 梁活荷不利布置最高层号 (40) 柱墙基础活荷载折减系数 (40) 考虑结构使用年限的活荷载调整系数 (40) 梁楼面活荷载折减设置 (40) 调整信息 (41) 梁端负弯矩调幅系数 (41) 梁活荷载内力放大系数 (42) 梁扭矩折减系数 (42) 托墙梁刚度放大系数 (42) 连梁刚度折减系数 (43) 支撑临界角 (44) 柱/墙实配钢筋超配系数 (44) 中梁刚度放大系数 (44) 梁刚度放大系数按2010规范取值 (44) 砼矩形梁转T形(自动附加楼板翼缘) (45) 部分框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级 (45) 调整与框支柱相连的梁内力 (46) 框支柱调整系数上限 (46) 抗规(5.2.5)调整 (46) 弱/强轴方向动位移比例 (47) 按刚度比判断薄弱层的方式 (48) 指定薄弱层个数及相应的各薄弱层层号 (48)

SATWE参数设置(巨详细)分析

SATWE参数设置 重要提示:新版本PKPM系列软件对全部数据在存储、各模块之间的传输过程中,采用了新的加密、验证机制,如果您的工程计算结果数据产生异常,请首先核实您的模型数据在建立、传输以及协同合作修改的过程中,所有过程是否全部使用了PKPM正版软件! 一、新版设计参数的技术条件 新版本《砼规》、《高规》、《抗规》对设计参数有重大调整,本模块按最新规范要求进行了调整,“设计参数”对话框内多处内容(文字及含义)有重大变化,请核实以下设计参数的理解及取值是否正确。 1. 增加“考虑结构使用年限的活荷载调整系数Lγ” 新版《高规》5.6.1条,增加了“考虑结构使用年限的活荷载调整系数Lγ”,本模块中“总信息”选项卡中此项为新增,默认值取“1.0”(按设计使用年限为50年取值,100年对应为1.1),取值可由用户自行设置,取值区间为[0,2]。2. 新旧规范“混凝土保护层”概念有所不同 新版《砼规》条文说明8.2.1第2条明确提出,计算混凝土保护层厚度方法:“不再以纵向受力钢筋的外缘,而以最外层钢筋(包括箍筋、构造筋、分布筋)的外缘计算混凝土保护层厚度”。本模块采用新版《砼规》的概念取值,“梁、柱钢筋的砼保护层厚度”默认值均取20mm。 注意:打开旧版模型数据时,需要按《砼规》表8.2.1重新调整保护层厚度值,计算结果方可满足新规范要求。 3. 钢筋类别的增减 新版《砼规》4.2.3条,增加500MPa级热轧带肋钢筋(该级钢筋分项系数取1.15)和300MPa级钢筋,取消HPB235级钢筋,并增加了其它多种类别钢筋,修改了受拉、受剪、受扭、受冲切的多项钢筋强度限制规则。 为此,本模块增加了HPB300、HRBF335、HRBF400、HRB500、HRBF500共5种钢筋类别。但仍保留了HPB235级钢筋,放在列表的最后,由用户指定。 注意:打开旧版模型数据时,或者新建工程数据时,如果用户执意选用HPB235级钢筋进行计算,配筋结果将不符合新版规范要求。 4. I类场地拆分成两个亚类I0、I1

SATWE基本参数设置

Pkpm参数说明cyh-15第一部分 SATWER参数说明 1、凝土容重 混凝土需考虑粉刷层重量,故一般取26~28。 2、墙元细分最大控制长度(m) 一般取1.0~5.0,越小精度越高;一般工程取 2.0;框支剪力墙取 1.0或1.5。 3、对所有楼层强制采用刚性楼板假定 计算结构位移比时,选择此项;其它的结构分析、设计不应选择此项。 4、墙元侧向节点信息 高层剪力墙:内部节点;多层剪力墙:出口节点。 5、恒活荷载计算信息 选加载1或加载2,加载2更合理。 6、地震作用计算信息

Pkpm参数说明cyh-16 ▲ 8度抗震设计时转换构件尚应考虑竖向地震的影响。 ▲ 8度抗震设计时,连体结构的连接体应考虑竖向地震的影响。 ▲ 8度和9度时,大跨度结构、长悬臂结构及箱(筒)形井塔、双 曲线冷却塔、电视塔和石油化工塔型设备基础等高耸构筑物,应 计算竖向地震作用。 ▲ 8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算 竖向地震作用。 1、修正后的基本风压 ▲荷载规范:对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。 ▲高混规范:基本风压应按照现行国家标准《建筑结构荷载规范》GB 50009的规定采用。对于特别重要或对风荷载比较敏感的高层 建筑(大于60m),其基本风压应按100年重现期的风压值采用。

Pkpm参数说明cyh-17 ▲高钢规范:高层建筑的基本风压ω0,应按现行国家标准《建筑结构荷载规范》(GBJ9)图6.1.2《全国基本风压分布图》 中的数值乘以系数1.1采用;对于特别重要和有特殊要求的高 层建筑,可按图中数值乘以1.2采用。 2、结构基本周期 缺省时由经验公式确定;若已知道计算周期,可直接填入,风荷载计算更准确。 1、结构规则性信息 结构不规则是指平面或竖向不规则。 2、扭转耦联信息 耦联与非耦联是两种不同的振型组合方法,规则结构可按非耦联组合,但空间结构一般应该选择耦联组合。 3、考虑偶然偏心

Satwe参数的设置绝对很详细例子

S a t w e参数的设置绝对 很详细例子 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

结构专业技术文件(J02-2010) SATWE结构模型输入及参数设置 2010年7月 结构模型输入及参数设置 1、总信息: 1.1水平力与整体坐标系夹角:0 根据抗规(GB50011-2001)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。 当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。同时,该参数不仅对地震作用起作用,对风荷载同样起作用。 通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。 1.2混凝土容重:26KN/m2 本参数用于程序近似考虑其没有自动计算的结构面层重量。同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。

通常对于框架结构取25-26KN/m2;框架-剪力墙结构取26KN/m2;剪力墙结构,取26- 27KN/m2。 1.3钢容重:78KN/m2 一般情况下取78,当考虑饰面设计时可以适当增加。 1.4裙房层数:按实际填入 混凝土高规(JGJ3-2002)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。 同时抗规(GB50011-2001)条条文说明要求:带有大底盘的高层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸一层,大底盘顶板以上至少包括一层。裙房与主楼相连时,加强部位也宜高出裙房一层。 本参数必须按实际填入,使程序根据规范自动调整抗震等级,裙房层数包括地下室层数。 1.5转换层所在层号:按实际填入 该参数为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息。输入转换层号后,程序可以自动判读框支柱、框支梁及落地剪力墙的抗震等级和相应的内力调整。 同时当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级。自动实现0.2Q0或0.3Q0的调整。 本参数必须按实际填入,转换层层号包括地下室层数。指定转换层层号后,框支梁、柱及转换层的弹性楼板还应在特殊构件定义中指定。

SATWE参数设置精讲

SATWE参数设置精讲 1

2

水平力与整体坐标夹角(度) 该参数为地震力、风荷载作用方向与结构整体坐标的夹角。如果地震沿 着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。 SATWE可以自动计算出这个最不利方向角,并在WZQ.OUT文件中输出。 此参数不仅改变地震力而且同时改变风荷载的作用方向。 混凝土容重 考虑抹灰重量,框架:25.5-26;框剪26;剪力墙27 裙房层数 裙房层数应包含地下室层数。自动按照《高规》10.6.3-3条规定。 《高规》3.9.6 条规定,“主楼结构在裙房顶部上、下各一层应适当加强抗震构造措施”。程序中该参数作用暂时没有反映,实际工程中用户可参考《高规》10.6.3-3条,将裙房顶部上、下各一层框架柱箍筋全高加密,适当提高纵筋配筋率,予以构造加强。 3

嵌固端所在层号 地下室层数 当上部结构与地下室共同分析时,通过该参数程序在上部结构风荷载计算时自动扣除地下室部分的高度(地下室顶板作为风压高度变化系数的起算点) 墙元细分最大控制长度 SATWE进行有限元分析时,对于较长的剪力墙,程序要将其细分并形成一系列小壳元。为确保分析精度,要求小壳元的边长不得大于给定的限值,限值范围为1.0~5.0。一般可取默认值1m。 对所有楼层强制采用刚性楼板假定 4

建议一般在进行结构的整体参数控制(如六个比值的计算)时选{是};在计算构件内力和配筋时可勾选或不勾选。 对楼板形状复杂的工程(如有效宽度较窄的环形楼板、有大开洞的楼板、有狭长外伸段的楼板、局部变窄形成薄弱连接部位的楼板、连体结构的狭长连接体楼板等),则应采用“弹性膜”假定。 强制刚性板假定时保留弹性板面外刚度 用于板柱体系 结构材料信息:影响阻尼比 恒活荷载计算信息 施工模拟加载,高层建筑结构的建造是遵循一定的顺序, 建议一般对多、高层建筑首选{模拟施工3};对钢结构或大型体育场馆类(指没有严格的标准楼层概念)结构应选{一次性加载}。 规定水平力的确定方式{楼层剪力差方法(规范算法)}、{节点地震作用CQC组合方法} 5

相关文档
相关文档 最新文档