文档库 最新最全的文档下载
当前位置:文档库 › 铁路货车制造技术

铁路货车制造技术

铁路货车制造技术
铁路货车制造技术

铁路货车制造技术

一、前言

二、制造技术的发展

三、制造技术的主要创新

1.铸钢摇枕侧架整体芯铸造

2.不锈钢焊接和整体锻造技术

3. 制动系统模块化组装

4.制造专用生产线

一、前言

铁路货车制造技术包括制造铁路货车产品时所需的各种工艺方法,是保证产品质量和生产效率的重要手段。铁路货车制造是一门较为综合的机械制造技术,在专业上涵盖了铸造、锻造、冲压、机械加工、焊接、装配等工艺方法,另外还涉及到了自动测量、无损检测、自动化等相关技术。

铁路货车数量大、品种多,因此,铁路货车制造多为流水式作业方式、大量采用了柔性生产线,主要有轮轴生产线、转向架生产线、下料生产线、中梁生产线、底架生产线、端侧墙生产线、车体生产线、车体油漆喷涂线等。

产品的升级换代,新材料、新结构的应用,也推动了制造技术不断改进和提高,形成了一些独有的制造工艺,譬如“制动系统模块化组装、不锈钢焊接、整体芯铸造”等三大工艺。

针对铁路货车要求可靠性高、互换性好、检修方便的特点,制造过程中的质量保证手段和控制手段在不断提升,焊接基本为自动化焊接,制动阀和转向架实行的是精益制造模式;生产过程中大量采用了在线检测、数据可实时采集、工序共享、动态监控;超声波检测、高能射线DR成像及工业CT检测等无损检测技术广泛应用在铁路货车生产的关键工序中。

一、制造技术的发展

铁路货车制造技术的发展,经历了从作坊式生产到专业化生产的过程;从手工操作、单机作业方式发展到了大规模机械化、自动化作业,逐步具备了工艺合理、设备齐全、功能完备的制造系统,形成了产研结合、具有中国铁路特点的铁路货车制造技术体系。

解放前我国没有铁路货车制造企业,只有为数不多的修理厂,而且规模小、设备少,只能从事简单的修理工作。新中国成立后,为迅速改变旧中国依赖进口的状况,解放初期的铁路货车制造是采用了非常规的方法,因陋就简,基本上是属于手工制造。在“一五”期间,对一些修理厂开始进行扩建,改造成为制造厂。

1958年以后,又陆续新建了一批制造厂,逐步满足了铁路发展的需求。早期铁路货车制造厂虽具备了一定的生产规模,但在制造技术发展上还相对落后且很不均衡。铁路货车主要是铆接钢底架、钢骨木板车体结构,大量采用热铆接工艺。此阶段,铁路货车制造的主要任务是提高生产能力,因此,只是在铸造和锻造技术上有所发展,制造技术总体上比较落后,仅是达到了生产铁路货车的基本要求。

从20世纪60年代开始,铁路货车逐步开始了以钢代木的过程,全钢结构铁路货车带动了冲压技术和焊接技术的发展。冲压技术在板材及型钢的剪切下料、校平及压型方面得到了突破;焊接技术也得到了极大的发展,因其经济性较好,绝大数的铆接结构均被焊接结构所取代,而且在中梁等部件上还开始应用了埋弧自动焊等先进的焊接技术。在加工方面,各制造厂大量使用了自制的专机,满足了生产效率的要求,但普遍精度不高,柔性也差,限制了产品的多样性。

20世纪80年代,铁路专用耐候钢和滚动轴承等开始在铁路货车产品上应用,推动了相应的制造技术的发展。耐候钢焊材、车轴专用磨床等的出现,标志着铁路货车制造技术有

了相对的独立性。到20世纪末,铁路货车制造技术已基本具备了完整的体系,冲压工艺实现了机械化和模具化,焊接方面也逐步从手工电弧焊为主发展为大量采用气体保护焊,其他各相关技术也都达到了大批量生产的要求。

除能生产各种通用、专用铁路货车外,还能生产适应货物装车形体的凹底、长大、双联等特殊平车以及新型的家畜家禽车、活鱼车和机械保温车等。对于铸锻件方面,不断有先进的生产线及设备应用于生产中,特别是自20世纪90年代开始,树脂自硬砂生产线、潮模砂气冲造型生产线、迪砂线等铸造生产线的应用,改变了原铸造单机的生产模式,大规模机械化生产方式初具规模。

进入新世纪,铁路货车提速重载开始在全路推广,对制造技术提出了更高的要求。针对铁路货车制造技术的提升,提出了“以工装保工艺、以工艺保质量、以质量保安全”的指导思想。在此指导思想下,开始进行了建设主要部件的生产工艺线的工作,至2002年,在全路大面积推广了建设铁路货车生产工艺线的成功经验。通过建线工作,不但提高了铁路货车制造的整体水平和质量保证能力,而且制造所需的工艺装备实现了专业化生产,提高了工艺装备的制造水平,解决了以往铁路货车制造厂自制工艺装备水平低下,重复设计浪费资源的问题。

2004年,根据基础工艺线建设工作中出现的具体问题,各制造单位对各工艺线中关键工序的设置、关键设备的功能等达成了共识,进一步规范了各工艺线的建设工作。此后,机器人和焊接专机等自动化焊接技术在铁路货车制造中被大量采用,生产线的柔性增强,适应了多品种小批量的市场需求。通过稳步推进建线工作,使制造水平有了极大的提高,完善了生产线的功能,保证了制造质量,铁路货车建线工作取得了可观的经济和社会效益。

2005年以后,铁路货车制造技术的研究工作开始向纵深发展,按照“设计工艺一体化”的要求,各制造厂深入探索设计工艺并行的方式和方法,使工艺部门能提前介入设计过程,大大缩短了新产品的研发周期,满足了市场需求。工艺部门还超前进行制造新技术的研制工作,攻克了冷弯型钢制造工艺、高强度耐侯钢及不锈钢的焊接技术及摇枕和侧架整体芯铸造工艺、车钩连续热处理工艺等制造新技术,应用了射线探伤、超声波探伤以及DR、工业CT检测技术,提高了产品制造的可靠性,这些也为铁路货车产品轻量化设计提供了条件。

随着提速重载工作的不断深入,铁路货车制造技术也逐渐暴露出在设计制造理念、工艺技术水平、配套技术性能和综合管理模式等方面还存在诸多不适应。为了不断提高制造质量,各制造厂在生产实践中不断创新,提炼并推广了很多先进的工艺理念和工艺方法,形成了以制动系统模块化组装、摇枕侧架整体芯铸造工艺、不锈钢焊接等典型工艺为代表的铁路货车制造工艺技术体系及强有力的产品质量保障能力。

20世纪80年代,铁路专用耐候钢和滚动轴承等开始在铁路货车产品上应用,推动了相应的制造技术的发展。耐候钢焊材、车轴专用磨床等的出现,标志着铁路货车制造技术有了相对的独立性。到20世纪末,铁路货车制造技术已基本具备了完整的体系,冲压工艺实现了机械化和模具化,焊接方面也逐步从手工电弧焊为主发展为大量采用气体保护焊,其他各相关技术也都达到了大批量生产的要求。

二、制造技术的主要创新

近十年来,为满足国民经济快速增长对铁路运输装备的需求,我国铁路货车制造系统以“以工装保工艺、以工艺保质量、以质量保安全”为指导思想,推进工艺技术创新,促进了制造技术水平的全面提升,铁路货车安全可靠性大幅提高。

工艺技术创新主要体现在以下几个方面:以世界首创的铸钢摇枕侧架整体芯为核心的铸造技术,以提高不锈钢焊接过渡区低温冲击韧性为核心的焊接技术,以制动系统模块化组装为代表的生产管理模式,以钩尾框整体锻造为代表的工艺设计理念,标志着我国铁路货车制造技术进入了历史新阶段。

1.铸钢摇枕侧架整体芯铸造

近几年来,各铁路货车制造企业联合攻关,以摇枕、侧架的制造技术和产品质量达到世界领先水平为目标,对摇枕、侧架的制造技术进行系统研究,推进摇枕、侧架工艺上水平、材质上等级、检测上台阶、实物上档次,取得了11项技术创新成果,产品质量和安全可靠性大幅度提高。

(1)在世界上首次研究成功了铁路货车摇枕、侧架等长大、薄壁复杂件的整体制芯技术。传统工艺制造的摇枕、侧架内腔砂芯分块多达二十多个,导致铸件关键部位内腔产生披缝、台阶、局部掉砂以及诸多芯撑熔合不良等缺陷,铸件夹杂物和含氧、含气量偏高,造成铸件内部缺陷;摇枕、侧架材质陈旧,强度储备不高。通过采用机械制芯、金属盒内硬化精确成型技术,实现了铸件内腔平顺无披缝、台阶,提高了铸件壁厚尺寸的均一性,减少了芯撑,避免了熔合不良和砂眼等铸造缺陷。采用吹氩、喂丝等钢水精炼工艺,进一步降低钢水有害元素和气体含量,减少非金属夹杂物,铸钢材料性能更优。

(2)配套开展了ZG25MnCrNi冶炼、铸造、热处理和焊修等工艺研究,制订了技术条件、工艺规范、试验检测方法、缺陷等级等一系列技术标准。现有的ZG25MnCrNi改善了凝固结晶方式,奥氏体组织稳定,金相组织临界转变温度降低,使铁素体和珠光体晶粒细化,铸件内部组织致密,力学性能、抗疲劳性能和抗裂能力大幅度提高。

(3)在原有湿法荧光磁粉整体表面的探伤基础上,采用超声波和X射线探伤,检测铸件内部缺陷,消除了铸造工艺所固有的铸件内部缺陷造成的质量安全隐患;采用超声波测厚和三坐标检测,保证壁厚均匀和尺寸精度,产品更加可靠。

现在我国生产的摇枕、侧架,经过抛丸强化处理后,内外表面平整、尺寸精度高,内部缺陷少,经试验检测,产品实物疲劳试验循环次数达到180万次以上,远高于世界其他国家标准要求,使摇枕、侧架的实物质量水平取得了质的飞跃。

2.不锈钢焊接和整体锻造技术

为了满足铁路货车重载并提高耐大气腐蚀性的要求,对TCS345不锈钢焊接进行了攻关,攻克了焊接接头组织晶粒粗大,低温冲击韧性低等技术难题,成功地批量应用在不锈钢运煤敞车上。传统耐候钢制造的铁路货车自重大、耐腐蚀性差,而铁素体不锈钢则因其良好的耐腐蚀性和力学性能,较好地解决了这一问题,目前采用此钢种制造的C80B型运煤专用敞车的运用状况良好,满足了大秦线曲线多、坡道大、2万t编组、高效周转的运用要求。

通过焊接技术的深入研究,全面掌握了铁素体不锈钢的焊接特性,制定了完整的不锈钢材料检验和焊接工艺评定方法;解决了不锈钢焊接热输入敏感性强,焊接时钢水粘度大、流动性差,易造成焊接缺陷。通过配套使用数字化脉冲焊机,长直焊缝采用自动焊接,专用工装实现水平位置焊接等措施,保证了焊缝成型质量,有效控制了焊接热输入量、减少了焊缝缺陷,提高了焊缝疲劳可靠性。

不锈钢焊接技术研究的成果,解决了经济型铁素体不锈钢熔化焊接在铁路货车生产应用中的难题,开创了铁路货车领域铁素体不锈钢生产制造的先例,实现了铁路货车制造钢种的升级,填补了铁路货车制造上铁素体不锈钢焊接工艺的空白,并成功应用于发达国家的出口产品上,其技术达到国际先进水平。

为提高铁路货车关键配件的可靠性,开展了以锻代铸和整体锻造的工艺研究,现在钩尾框、制动梁、支撑座、制动杠杆等部件实现了大吨位精锻机整体锻造、并且配套开发了连续式热处理工艺。与铸造相比,锻造钩尾框具有良好的金属内部组织,避免了砂眼、气孔、缩松等铸造缺陷,疲劳强度提高约80%。整体锻造制动梁架制造工艺的成功,使制动梁成为无焊接结构,疲劳强度较旧型制动梁提高两倍以上,解决了焊接制动梁易脱落和裂损的安全问题。制动杠杆等采用了整体模锻工艺后,不仅重量轻,而且可靠性和使用寿命也有了大幅

提高。

3. 制动系统模块化组装

铁路货车制动系统的零部件多、安装位置分散,导致制动系统组装困难、互换性差、维修不便,而且极易造成空气泄漏,这一度成为影响铁路货车安全的突出问题。2005年开发的制动系统模块化组装工艺,有效地解决了这一问题,这是一种以“设计标准化、工艺规范化、制造商品化,实现零部件互换”为理念的全新制造工艺。

按照标准化、模块化的设计思路,将铁路货车制动系统划分为制动阀、制动缸、脱轨自动制动装置和制动主管四个模块,各模块间和模块内部设计和工艺基准一致,实现设计标准化。零部件制造、组装工艺要求统一,制动附属件采用专用工艺装备整体组装,各模块组装后整体与车体组装。制动管件采用数控切割和折弯、自动焊接、进行三维检测。

制动系统模块化组装工艺,提高了零部件制造和组装精度,实现了不同生产厂家、不同车型主要零部件的互换,方便检修,降低了制动系统漏泄的可能性。制动系统模块化组装工艺的实施,推动了制造标准提升,开创了铁路货车生产管理的新模式。

4.制造专用生产线

现在,铁路货车制造采用了自动化控制、柔性化组装的手段,准时化流水作业生产方式,全面使用材料预处理和制备、轮轴加工和组装、转向架和车体组装等专业化生产线,保证了工业化大批量生产的产品质量。

铁路货车轮轴生产线采用数控加工、在线检测、自动选配,生产过程工艺数据自动采集、网络传递,与全国铁路货车技术管理信息系统自动连接,实现了加工数控化、检测及组装自动化、过程管理信息化。转向架生产线各工序采用U型布置,准时化流水作业,实现了精益制造。车体生产线接口标准化、工装夹具模块化,结构可调,实现装备柔性化,适应系列化产品生产要求。下料生产线全部使用数控剪切设备和数控冲压、折弯设备。制动配件采用数控加工中心和综合性能检测台。车体油漆自动喷涂,强制干燥。专业化生产线覆盖了铁路货车主要生产工序。

为保证制造过程的质量可控,长直焊缝采用了自动化焊接专机焊接,铁路货车关键承载部件和结构复杂部件采用焊接机器人焊接,采用自动化焊接的焊缝已占到铁路货车焊缝总量的85%以上。摇枕、侧架、车钩等大型铸件采用机械制芯,机械制型或真空造型,机械手下芯;在电弧炉内外钢水精炼。车轴、车钩采用电加热连续式热处理,金属晶粒细密,力学性能稳定。

5.在线检测和无损检测技术

近年来,铁路货车的检测技术有了较大的发展,开发了大量铁路货车专用检测设备和性能试验设备,保证了铁路货车的产品质量。各种检测数据能实时采集、工序共享、动态监控、集中处理,对工序间产品质量状态动态分析,减少偶发因素对产品质量的不利影响,进入全国铁路货车技术管理信息系统(HMIS),实现产品质量信息全寿命管理。

轮轴生产线配备车轴检测机和轮对检测机,进行加工、组装在线检测,实现了车轮、车轴、轴承自动选配。转向架生产线配备正位检测台和落成检测机,有效控制影响铁路货车运行性能的关键尺寸。钢结构生产线配备中梁、底架检测台,保证了大型钢结构组装质量。集中控制同时对多个铁路货车制动系统进行制动性能试验,计算机控制检测空气控制阀、空重车阀作用性能,制动管立体尺寸三维检测,保证制动系统组装质量和性能。

摇枕、侧架、车轴、车轮、车钩等影响铁路货车运行安全的关键部件采用荧光磁粉进行表面探伤,相控阵超声波检测技术应用于车轴轮座、轮轴压装部位检测,多探头、大范围扫描,弥补了单探头检测精度低、判断难度大等不足。将高能射线DR成像及工业CT检测技术应用于摇枕、侧架、车钩和尾框等大部件内部缺陷检测,快速、准确地获得工件内部缺陷的二、三维图像。

铁路货车制动装置检修规则

铁路货车制动装置检修规则(2) 1 总则 制动装置是铁路货车的重要组成部分,是铁路货物运输秩序和安全的重要保障。货车制动装置检修的目的是恢复制动装置的性能。为满足铁路运输提速、重载的需要,保证运用货车制动装置的技术状态,适应制动新材料、新技术、新工艺、新结构的发展,统一制动装置检修技术要求和质量标准,根据《铁路技术管理规程》、《铁路货车厂修规程》、《铁路货车段修规程》、《铁路货车站修规程》、《铁路货车运用维修规程》以及国家、铁路专业技术管理标准有关要求和铁路货车制动技术发展趋势,特制订本规则。 本规则是对货车各级检修规程中涉及到制动装置零部件检修及试验部分内容的细化和补充,是制动装置零部件检修及试验的专业化操作性文件。适用于铁路货车制动装置主要零部件分解后的检修、试验和装车要求。制动装置及其主要零部件在现车上的检查和从车辆上拆下的分解检修范围及要求按《铁路货车厂修规程》、《铁路货车段修规程》、《铁路货车站修规程》、《铁路货车运用维修规程》和铁道部颁发的其他有关文件、电报规定执行。

铁路货车制动装置的检修坚持质量第一的原则,贯彻“以装备保工艺、以工艺保质量、以质量保安全”的指导思想,实现工艺规范、装备先进、质量可靠、管理科学。 铁路货车制动装置检修以状态修为主,逐步扩大换件修、专业化集中修的范围,主要零部件的检修周期与货车检修周期一致。 铁路货车制动装置的检修须在铁道部批准的单位进行,检修单位的工艺条件须符合本规则的要求。货车制动装置检修单位须按本规则制定检修工艺、标准和作业指导书,加强工艺控制,提高工艺水平,建立健全质量保证体系,全面落实质量责任制,严格执行质量检查制度。检修单位应设置制动专职技术人员,技术管理人员和操作人员须掌握本规则和车辆检修的有关规定及技术要求,制动装置检修、试验人员须具备基本的业务知识,经过专门培训,具备上岗资格。铁路货车重要制动零部件实行质量保证、寿命管理和生产资质管理。装车使用的货车空气制动阀、空重车阀、折角塞门、组合式集尘器、制动缸及缸体、编织制动软管总成、闸瓦间隙自动调整器(以下简称闸调器)、脱轨自动制动装置、人力制动机、制动梁、闸瓦、闸瓦托、橡胶密封件等零部件,须由铁道部批准

铁路行车组织

1.铁路行车组织(organization of train operation)铁路行车组织是铁路运输组织的重要组成部分,是铁路综合运用各种技术设备合理组织列车运行以实现旅客和货物运输过程的生产计划与组织工作。它的主内容包括:车站技术作业组织、车流组织、列车运行图和铁路通过能力、铁路运输工作技术计划和调度工作等。 2.铁路技术管理规程(简称《技规》Regulations Governing Railway Technical Operation)《技规》是铁路进行技术管理和从事运输生产的基本法规。它的主要内容包括:铁路技术设备的基本要求和标准,行车组织工作应遵循的基本原则、工作方法和作业程序、信号显示的要求和方法以及铁路运输工作人员的主要职责和必须具备的基本条件。 3.铁路行车组织规则(简称《行规》Rules Governing Organization of Train Operation;operating rules)《行规》是铁路局根据《技规》中行车组织篇规定的原则,结合铁路局管内技术设备的具体条件所制定的一种行车组织的补充规则,作为《技规》的补充。 4.车站行车工作细则(简称《站细》Detailed Instructions Governing Train Operation at Station;technologic instructions of station) 《站细》是根据《技规》和《行规》的有关规定,结合车站技术设备和作业等具体条件所制定的车站技术管理和作业组织的基本技术文件。 5.列车(train)按照规定条件把车辆编挂成的车列,并挂有机车及规定的列车标志时,称为列车。单机、动车

大铁路货车制动装置

大铁路货车制动装置 基础制动装置 车辆制动装置包括三个部分,即制动机(空气制动部分)基础制动装置和人力制动机,这三部分有机的组成车辆制动装置的整体。 基础制动装置是指从制动缸活塞推杆到闸瓦之间所使用的一系列杠杆、拉杆、制动梁、吊杆等各种零部件所组成的机械装置。 它的用途是把作用在制动缸活塞上的压缩空气推力增大适当倍数以后,平均的传递给各块闸瓦,使其变为压紧车轮的机械力,阻止车轮转动而产生制动作用。因此,可以把基础制动装置的用途归结为: 1、制动缸所产生的推力至各个闸瓦; 2、推力增大一定的倍数; 3、各闸瓦有较一致的闸瓦压力。 一、基础制动装置的形式: 基础制动装置的形式:按设置在每个车轮上的闸瓦块数及其作用方式,可分为:单侧闸瓦式、双侧闸瓦式、多闸瓦式和盘形制动装置等。新型提速车辆按制动梁下拉杆安装的形式,又可分为中拉杆式基础制动装置和下拉杆式基础制动装置。 制动梁下拉杆从摇枕侧壁椭圆孔穿过,将两个制动梁连接在一起的结构,称为中拉杆式基础制动装置;制动梁下拉杆从摇枕下方通过,将两个制动梁连接在一起的结构,称为下拉杆式基础制动装置。新型提速车辆多数采用中拉杆式基础制动装置。 (一)单侧闸瓦式:

单侧闸瓦式基础制动装置,简称单式闸瓦,也称单侧制动。即只在车轮一侧设有闸瓦的制动方式,我国目前绝大多数货车都采用这种形式。 单侧闸瓦式基础制动装置的组成:由组合式制动梁、中拉杆、固定杠杆、游动杠杆、新型高摩合成闸瓦、固定支点、移动杠杆组成。 货车制动机结构示意图

单侧闸瓦式基础制动装置的结构简单,节约材料,便于检查和修理。但制动时,车轮只受一侧的闸瓦压力作用。使轴箱或滚动轴承的附属配件承载鞍偏斜,易形成偏磨,引起热轴现象的产生。此外由于制动力受闸瓦面积和闸瓦承受压力的限制,制动力的提高也受到限制。若闸瓦单位面积承受的压力过大,轮瓦摩擦系数下降,影响制动效果。不仅会加剧闸瓦的磨耗,而且还会磨耗闸瓦托,使制动力衰减,影响行车安全。 (二)双侧闸瓦式 双侧闸瓦式基础制动装置,简称双闸瓦式或复式闸瓦,也称双侧制动,即在车轮两侧均有闸瓦的制动方式。 复式闸瓦结构示意图 一般客车和特种货车的基础制动装置大多采用这种形式。双侧制动装置,在车轮两侧都装有闸瓦,所以闸瓦的摩擦面积比单闸瓦式增加一倍。闸瓦单位面积承受的压力较小,这不但能提高闸瓦的摩擦系

铁路货车检修过程中常见问题的处理

铁路货车检修过程中常见问题的处理 发表时间:2018-06-22T15:12:12.930Z 来源:《防护工程》2018年第4期作者:向飞 [导读] 社会经济的不断发展不仅带动了各行各业的全面发展,同时也为铁路运输行业的发展提供了新的发展机遇 向飞 中国铁路济南局集团有限公司济南西车辆段山东济南 250117 摘要:社会经济的不断发展不仅带动了各行各业的全面发展,同时也为铁路运输行业的发展提供了新的发展机遇。随着社会各界对铁路货车安全运输问题重视程度的不断提高,因此必须加大铁路货车短检修质量的监督管理力度,才能确保铁路运输的安全稳定进行。本文主要是就铁路货车检修过程中的常见问题进行了分析与探讨。 关键词:货车检修;检修问题;铁路货车 引言 根据铁路货车运输的特点,铁路货车在检修的过程中主要涉及到货车槽钢制动梁、车钩、摇枕、侧架、制动阀等各方面的检查,如果在检修过程中发现部件出现裂纹现象的话,那么对货车的安全使用必然会产生严重的危害。同时,我国制定的铁路货车检修制度大多都是以时间标准为基础的,以车辆出厂的日趋和检修时间,制定下一阶段的货车检修计划,以确保铁路货车运输的安全进行。另外,随着科学技术的不断发展和进步,铁路货车运输的负荷不断的增加,传统的铁路货车检修制度已经无法满足铁路货车检修的要求。 1、铁路货车的槽钢制动梁在检修过程中存在的问题及策略分析 1.1问题分析 经过调查研究发现,我国的铁路货车使用的制动梁主要有槽钢制动梁、LA、LB、LC型制动梁、转K3型制动梁、2TN型制动梁等几种型号[1]。由于制动梁大多采取的完全焊接结构,这样不仅降低了槽钢制动梁的刚度,同时也增加了槽钢制动梁在使用过程中发生裂缝现象的几率。因此在进行铁路货车检测的过程中,必须根据实际的情况及时的更换制动梁配件,才能确保铁路货车运输的安全稳定进行。铁路货车检修过程中常见的滚子轴和柱杠杆孔上下弯角处的裂缝没达到是由制动梁滚子轴内部完全焊接结构所引起的。虽然我国现阶段采取的磁粉探伤法进行铁路货车各部件缺陷以及裂缝的坚持非常有效,但是这一方法最大的缺点就是其在应用过程中只能探测出部件表面存在的裂纹以及缺陷,而无法对制动梁滚子轴根部、铸造件的内部结构变化进行探测。 1.2策略分析 为了促进铁路货车检修质量与效率的稳步提升,研究人员必须根据滑槽制动梁检修的实际情况,采取以下处理措施:(1)多点检修法的应用。也就是在日常检修过程中,对焊接点、构建部分等进行重点检查,以确保检修效率的有效提升;(2)内部检查技术的应用。在铁路货车检修过程中采用X光机等先进的内部检修技术,加大制动梁内部检测的力度,才能避免因为内部裂缝问题而发生制动梁安全事故。 2、铁路货车检修过程中问题及处理措施 2.1问题分析 首先,避免铁路货车检修过程中出现钩腔内跳台部位检修不彻底的现象出现。在铁路货车检修过程中,如果钩腔上防跳台磨损超过磨损设定值的话,大多采取堆焊的方式予以解决,而针对钩腔下防跳台出现的超过磨损设定值的现象,通常都会因为没有专业焊接工具而无法及时的予以修复,因此钩腔上下防跳台磨损的修复往往被忽略,而这也为货车的安全使用埋下了绝大的隐患;其次,铁路货车检修过程中采用的锁铁移动量测量方法的准确性相对较低。按照规定在进行铁路货车检修时,针对车钩防跳闸间隙的检修必须使用钩锁托举检查锁钩铁的移动量。利用钩锁托具将钩锁铁的底部托起,然后进行钩锁铁移动量的检查。由于在检修工程必须重复多次的将钩锁铁托起,才能确保防跳闸符合要求。但是由于在实际检查过程中智能使用防跳检查样板托起钩锁铁,所以不仅导致了车辆检修过程中防跳闸误差的出现,同时也对车辆的安全使用造成了不利的影响。 2.2策略分析 为了有效的解决铁路货车检修过程中出现的技术问题,技术人员在检修过程中必须采用相应的技术手段:(1)严格的按照检修流程的要求开展检查工作。在检修铁路货车时,技术人员必须严格的按照检修图纸的内容,才能避免出现检修不彻底的现象出现[2]。尤其是针对特殊设备、检修忙去的检修,必须在检修流程图中进行详细的标注,同时将检修内容落实到实际责任人,才能确保检修工作的顺利进行;(2)加大检修测量准确度控制的力度。为了促进车辆检修准确度的提高,技术人员必须采取积极有效的措施,加大检修准确度控制的力度,才能从根本上降低检修误差出现的几率,促进检修测量准确度的有效提升。 3、铁路货车检修中单车试验存在的问题以及策略分析 3.1问题分析 由于大多数检修人员过于依赖微机控制单车试验器进行铁路货车的单车试验,而导致货车检修过程中经常出现闸瓦间隙调整器、空气系统故障、空重车自动调整装置等检修不彻底的现象,最终对货车的安全使用埋下了巨大的隐患。 3.2策略分析 技术人员必须充分发挥微机试验器的优势,建立完善的铁路货车检修制度,不仅有助于铁路货车检修效率的提升,同时根据试验过程中环境对试验结果产生的影响,采取积极有效的措施促进铁路货车检修准确度的进一步提高。 4、铁路货车检修中制动阀检修存在的问题以及策略分析 经过调查发现,我国铁路货车所使用的制动闸主要有GK型三通阀、103型分配阀、120型控制阀等几种类型。虽然用于制动阀维修清洗时使用的洗涤剂种类繁多,但是并没有根据洗涤剂的效果制定统一的标准[3]。所以,相关部门已经制定并出台了相关的规定,要求针对制动阀的清洗必须使用专业的金属洗涤剂,以达到促进制动阀维修与清洗能力的目的。但是,相关制度在实际执行的过程中仍然存在着很多的问题,而这些问题不仅增加了制动阀维修清洗的难度,同时也增加了制动阀生锈现象发生的几率,对制动阀的机械能力造成了严重的影响。另外,为了促进制动阀维修与清洗效率的进一步提高,研究部门必须加强制动阀配件清洗介质可行性分析与研究的力度,并以此

铁道部《铁路行车设备故障调查处理办法》

铁路行车设备故障调查处理办法 第一章总则 第一条为及时准确调查处理铁路行车设备故障(以下简称设备故障),加强设备质量管理,防止和减少设备故障的发生,保障铁路运输安全畅通,根据《铁路技术管理规程》(铁道部令第29号)、《铁路交通事故调查处理规则》(铁道部令第30号)及有关规定,制定本办法。 第二条本办法适用于铁路局、铁路专业运输公司以及铁路局直接管理或者受委托管理的其他铁路。其他合资铁路、地方铁路等应比照本办法制定本单位设备故障调查处理办法。 第三条因违反作业标准、操作规程及养护维修不当或设计制造质量缺陷、自然灾害等原因,造成铁路机车车辆(包括动车组、自轮运转特种设备)、铁路轮渡、线路、桥隧、通信、信号、供电、信息、监测监控、给水、防护设施等行车设备损坏,影响正常行车,危及行车安全,均构成设备故障。 第四条铁道部、铁路局专业部门是行车设备的主管部门,负责组织设备故障的调查处理,应建立设备质量管理制度和设备故障管理办法。 第五条发生设备故障时,应迅速组织抢修,减少对运输生产安全的影响,尽快恢复铁路运输正常秩序。 第六条设备故障的调查处理,应以事实为依据,以规章规

程、技术标准、维修标准为准绳,认真调查分析,查明原因,分清责任,吸取教训,制定对策,实行责任追究和经济考核。 第七条铁道部、铁路局安全监察部门应加强对设备故障管理的监督检查,掌握设备故障信息及调查处理情况,监督落实设备故障考核和责任追究制度,必要时组织或参与设备故障的调查处理。 第八条设备故障升级为铁路交通事故时,按《铁路交通事故调查处理规则》有关规定办理。 第二章设备故障分类 第九条发生耽误列车、危及行车安全或影响列车正常运营的下列情形之一,但未构成铁路交通事故的,为行车设备故障:G1.机车故障。 G2.车辆故障。 G3.动车组故障。 G4.铁路轮渡设备故障。 G5.自轮运转特种设备故障。 G6.线路、桥隧设备故障。 G7.信号设备故障。 G8.通信设备故障。 G9.供电设备故障。

列尾装置

列尾装置 列尾主机 列尾装置全称:列车尾部安全防护装置,是用于货物列车取消守车后,在尾部无人职守情况下为提高铁路运输的安全性而研制的专用运输安全装置,设备应用计算机编码、无线遥控、语音合成、计算机处理技术,保证列车运行安全而设计生产的安全防护设备,也是重要的铁路行车设备。 一、系统构成 列车尾部安全防护装置主要由以下三部分构成: 1.列车机车部分:列尾装置司机控制盒(简称司机控制盒)。 2.列车尾部部分:列尾装置尾部主机(简称列尾主机)。列尾主机的附属设备包括,列尾主机检测台、无线确认仪、列尾主机电池、列尾主机电池充电器、简易场强计、屏蔽室。 3.列车尾部安全防护装置数据处理系统。 二、主要功能 1、列车尾部风压查询; 2、列车尾部低风压告警; 3、列车尾部排风制动; 4、列尾主机电池电量不足告警; 5、列车尾部标识; 6、黑匣子记录功能。 三、工作原理 机车乘务员操作司机控制盒功能键,首尾以无线数据传输方式传递信令(编码信息),其信令通 过机车列调电台(或列尾专用机车电台)发送出去,列尾主机接收到司机控制盒发送的信令后,其 响应信息再以同样的方式返回司机控制盒,司机通过司机控制盒合成的语音信息来了解列车尾部风 压及列尾主机的工作状态等情况。 1.列尾主机的工作原理 列尾主机内设有本机出厂ID 编号,安装于列车尾部车钩或提钩杆上,与列车尾部制动软管连接。 主要用于时时监测列车尾部风压、实现列车尾部排风制动、尾部标识(白天用红白相间斜彩条标识, 夜间用红色发光管组闪光标识)。

列尾主机是封装于全封闭壳体内的系统。由高集成微控制器系统、列尾装置运用数据记录、调 制解调器、双余度电磁阀、电池组、电台、压力传感器、主风管等部件组成。 2.司机控制盒工作原理 司机控制盒内设有本务机车的机车号码,有确认(即输号,黑键)、风压查询(绿键)、尾部排 风(红键)、和列尾主机消号(黑键+绿键)等功能键;带有数码显示,待机状态时显示机车号码, 查询时(或低风压告警时)显示列车的尾部风压,2秒钟后又显示机车号码;自带语音系统(即音 频功放、扬声器) 司机控制盒带有列尾装置运用数据记录(俗称,“黑匣子”),可滚动记录4 000 多条数据(即事 件)。 司机控制盒上设置了两个显示灯:一个是电源指示灯;另一个是排风指示灯。 列车尾部安全防护装置的简称。由挂在列车尾部的主机和安装于司机室内的控制盒组成。作用:(1)列车尾部标志;(2)司机可随时检查尾部风压;(3)司机可使列车尾部自动排风,全列制动停车。 吉林铁路分局自2001年5月23日起在铁路分局管内除龙井公司外均开通使用了2C1—H(K)DS型列车尾部安全防护装置(以下简称列尾装置)。共投入运用列尾装置主机(以下简称主机)178台,设列尾装置检测作业点

铁路行车

调车工作 统一领导 统一领导就是在同一时间内一个车站只能由车站调度值班员统一领导车站调度工作,车站的有关调车区长,根据车站调度员布置的调车工作任务,领导本区的调车工作。 单一指挥 单一指挥就是在同一时间内,一台调车机车的调车作业计划的执行,作业方法的拟定和布置以及调车机车的行动,只能由调车长一人单一指挥。 调车工作的“九固定” 1 固定调车作业区域 2 固定线路使用 (1)调车线路固定使用要求 a解体照顾编组,特别要保证干线车流的接替编组。 b车辆重复改编作业要少。 c列车解体编组作业进度要快。 d驼峰和牵出线的作业要配合。 (2)调车线路的使用方法 3固定调车机车 4固定人员 5固定班次 6固定交班时间 7固定交班地点 8固定工具数量 9固定工具存放地点 调车进路的确认制度 1进路的确认 在调车作业中,单机运行或牵引车辆运行时,前方进路的确认有司机负责;推进车辆运行时,前方进路的确认有调车指挥人负责,如调车指挥人所在位置确认前方进路有困难时,可指派调车组其他人员确认。 2信号的显示 推进连挂车辆时,要显示“十五三车”距离信号,没有显示“十五三车”距离信号,不准挂车,没有司机回示,应立即显示停车信号。 3非集中区调车作业时的要道还道 要道还道的程序是:要道由近而远,还道由远而近。 人力制机制动过程及方法 1选闸 (1)选大不选小 (2)选重不选空 (3)选前不选后 (4)选高不选低 (5)选标准不选杂型 (6)选双不选杂 客车(21 22型除外)动车组禁止通过驼峰 禁止安放铁鞋的地点 (1)在钢轨的接头处不能安放铁鞋。

(2)在道岔区不能安放铁鞋。 (3)在曲线的外轨上不能安放铁鞋。 (4)在绝缘体的钢轨接头前不能安放铁鞋。 (5)在覆盖冰雪油渍或盐碱等润滑性物质的钢轨上,不能安放铁鞋。 (6)在钢轨的内侧有飞边或同一条线路轨型不一,以及铁鞋与钢轨的的尺寸不符的线路上不能安放铁鞋。 (7)在调车场以外的线路上不能安放铁鞋。 禁止使用铁鞋的车辆 (1)直径950mm及其以上的大车轮我国的目前使用的铁鞋托座弧面是根据一般轮对直径为340mm制造的。 (2)外闸瓦车 编制调车作业计划的要求 (1)符合列车编组计划列车运行图和《技规》等相关的规定。 (2)合理运用技术设备和组织方法,使接编取送作业密切配合。 (3)及时准确完整 调车作业计划的变更 (1)用书面方式重新按规定程序下达。 (2)变更不超过的三钩的时,允许以口头方式布置,有关人员必须复诵。 (3)变更股道时,必须停车传到。 仅变更作业方法或辆数时,不必口头传达三钩的限制,可不停车传达,但调车指挥人必须向有关人员传达清楚,有关人员必须复诵。 中间站利用本务机车调车时,无论便更钩数多少,都应重新填写附有示意图的调车作业通知单。 调动乘坐旅客或装载爆炸品压缩气体液化气体超限货物的车辆时速度不得超过15km\h 禁止溜放调车的线路 (1)超过千分之二点五坡度的线路(为溜放调车而设的驼峰)。 机车尽量停在坡道下方,不可能时应按规定连接软管。 (2)乘坐旅客的车辆及停有该车辆的线路。 (3)停有正在进行技术检查修理装卸作业的车辆及无人看守道口的线路。 (4)停有装载爆炸品压缩气体液化气体车辆的线路。 (5)停留车辆距离警冲标的长度容纳不下溜放车辆(应附加安全制动距离)的线路。(6)中间站正线到发线及于其衔接而未设隔开设备的线路。 禁止溜放的其他线路 (1)调车组人数不足三人是,禁止溜放作业。 (2)向货场专用线送车,向列车中连挂车辆的调车,禁止溜放作业。 (3)不准采用牵引流放法调车。 除上述情况外,遇到降雾暴风雨雪等不良气候或照明不足,确认信号和停留车位置有困难时;车辆人力制动机失效而又不具备使用铁鞋等制动条件时,制动人员不足或使用人力制动机未配挂安全带时,均不得溜放调车。 调车作业摘挂车及连接软管的规定 (1)调车作业时,应有安全措施。宅车市,必须停妥,采取好防溜措施,方可摘挂车钩;挂车时,没有连挂妥当不得撤出防溜措施。 (2)在一般情况下,调车作业时,车列的减速和停车都是靠机车本身的制动力,不需要连接软管。

铁路货车轮轴组装检修及管理规则(谷风经验)

《铁路货车轮轴组装检修及管理规则》目录 1 总则 (1) 2 基本要求 (3) 3 轮轴新组装 (8) 3.1基本作业条件 3.2车轴加工 3.3车轮加工 3.4车轴、车轮选配 3.5 轮对组装 3.6 轴承压装 4 轮轴检修 (18) 4.1综合要求 4.2一级修 4.3二级修 4.4三级修 4.5四级修 4.6轴承检修 4.7轮对检修限度 4.8轴承检修限度 5 轮轴及零部件标记 (54) 5.1车轴标记

5.2车轮标记 5.3轴承标记 5.4 标志板标记 6 轮轴探伤 (66) 6.1综合要求 6.2探测规定 6.3 轮轴、轮对、车轴手工超声波探伤 6.4 轮轴、轮对自动化超声波探伤 6.5轴承外圈超声波探伤 6.6轮轴、轮对、车轴磁粉探伤 6.7轴承零件磁粉探伤 7 信息化管理 (101) 7.1综合要求 7.2输入、输出数据规范 7.3数据信息管理 7.4信息共享与应用 8 故障轴承鉴定分析 (107) 9 备用轮轴管理 (109) 9.1管理机构及职责 9.2备用轮轴、轮对、车轴、车轮管理 9.3备用轴承管理 10 附则 (117)

TG/CL224—2016 铁路货车轮轴组装检修及管理规则 1 总则 1.1 铁路货车是铁路货物运输的运载工具,轮轴是铁路货车上重要的并且是可互换的部件,其技术状态直接影响到车辆的运行安全。为满足铁路运输提速、重载的要求,体现新材料、新技术、新工艺、新结构的发展,统一铁路货车轮轴造修技术及管理要求,促进铁路货车修程修制发展,根据《铁路运输安全管理条例》《铁路技术管理规程》《铁路货车厂修规程》《铁路货车段修规程》《铁路货车站修规程》《铁路货车运用维修规程》以及国家、铁路专业技术管理标准有关要求和铁路货车轮轴技术发展实际,特制定本规则。 1.2本规则是对货车各级检修规程中涉及到轮轴技术、管理部分内容的细化和补充,是轮轴技术与管理的专业性文件,全面涵盖了铁路货车轮轴及零部件组装、检修、探伤技术和信息化、安全、备用轮轴等管理要求,适用于铁路货车轮轴及零部件造修单位对轮轴的组装、检修、探伤和管理,滚动轴承(简称轴承,下同)的一般检修、大修和压装,车轮、车轴的加工和标记,以及备用轮轴管理、轮轴信息化管理、热轴故障鉴定分析,其他要求仍执行《铁路货车厂修规程》《铁路货车段修规程》《铁路货车站修规程》《铁路货车运用维修规程》、中华人民共和国国家标准、中华人民共和国铁道行业标准和有关文件、电报规定,圆柱滚子轴承检修及组装要求执行《铁路客车轮轴组装检修及管理规则》。 1.3铁路货车轮轴修程分为轮轴一级修、二级修、三级修、四级修,轴承修程分为一般检修和大修,在货车定期检修的框架下,实行以换件修和专业化集中修为主,以状态修为辅的检修管理体制,结合铁路货车检修进行,但又与铁路货车检修相对独立。 1.4铁路货车轮轴组装、检修和管理工作是铁路货车技术管理体系的重要组成部分。铁路货车轮轴新组装的目的是满足新造货车、补充检修货车使用需要,一级修的目的是维护轮轴的基本使用性能,二级修、三级修的目的是维护轮轴的技术性能,四级修的目的是恢复轮轴的技术性能;轴承一般检修的目的是维护轴承的技术性能,轴承大修的目的是恢复轴承的技术性能,加强轮轴管理的目的是保证轮轴满足使用要求,保持运输秩序畅通,实现质量追溯。 1.5铁路货车轮轴组装及检修贯彻“安全第一,预防为主,以质量保安全”的方针,贯彻“以装备保工艺、以工艺保质量、以质量保安全”的指导思想,体现货车轮轴“检修及加工数控化、检测及组装自动化、过程管理信息化、生产组织集约化”的思路,积极推进轮轴技术及管理现代化进程,实现管理规范、工艺科学、装备先进、质量可靠、安全稳定的目标。 1.6铁路货车轮轴造修单位应在满足本规则要求的前提下,规范工艺流程,优化工艺装备,改进作业方式,不断完善轮轴造修基础工艺线,逐步实现工装设备和检测器具的机械化、自动化、智能化、光电化。应根据本规则编制完善的工艺文件或作业指导书,且不得低于本规则相应的技术标准和要求。 1.7按照统一管理,分级负责的原则,总公司、铁路局、车辆段逐级负责铁路货车轮轴的技术管理

铁路货车检修规程(铁运[2002]72号)

铁路货车检修规程(铁运[2002]72号文发布)摘录 1. 总则 1.1 铁路货车是铁路运输的重要装备,是完成铁路货运任务的物质基础,货车厂修须贯彻确保行车安全和为运输服务的方针。货车厂修的任务在于恢复货车的基本性能。近年来,随着铁路运输提速、重载的发展,老、旧型车辆及其零部件被逐步淘汰,新车种、车型不断开发和应用,新技术、新工艺被广泛使用,为了统一厂修技术要求和质量标准,根据货车的实际状况及厂修技术水平和今后发展方向,特制订本规程。 1.2 货车厂修须坚持质量第一的原则,贯彻以上装保工艺、以工艺保质量、以质量保安全的指导思想,实现安全稳定、质量可靠、工艺科学、装备先进、管理规范,检修单位须认真地妓本规程制定工艺文件,完善质量保证体系,全面落实质量责任制,加强质量检查制厦。广泛采用新技木、新工艺,贯彻零部件的标准化、通用化,提高修车质量,延长货车使用寿命。 1.3 要根据铁路货车技术管理信息系统(简称HMIS)的总体设计方案及要求进行信息化建设。凡与货车厂修技木管理有关的信息工作均须符合铁路货车技术管理信息系统技术规范的要求。 1.4 按照统一领导、分级管理的原则,工厂对货车厂修质量负全部责任。要建立健全以总工程师为首的技术责任制,充分发挥工程技术人员的积极性和检查人员的作用,认真负责地处理一切技术问题。对本规程的内容,必须全面落实,严格执行。 1.5 对于规程以外(含新型的零部件)及规程内无明确数据或无具体要求者,工厂应在保证运用安全、可靠,延长使用寿命和方便检修,并且不低于奉规程相应的技术标准和要求的前提下,制订厂级技术标准,并征得铁道部驻厂车辆验收室同意,报部备案,认真执行。 1.6 遇有本规程的规定不明确或与现车实际情况有出入时,由工厂和铁道部驻厂车辆验收室共同研究,实 事求是地予以解决,并在“货车检修记录簿”内注明。 1.7 货车厂修采用定期修为主,状态修为辅的修理制度。本规程既规定了厂修的基本周期,又考虑到货车的实际技术状态,并且逐步扩大抉件修、状态修和专业化集中修的范围,车体部分的修理,应采用标准化模块式检修工艺,进一步提高货车零部件的可靠性。货车各级修程定期检修周期见表1.1。 表1—1 定期检修周期表车种、车型厂修段修轴修棚车P 60、P 13、P 61等型普碳钢车5年1年P 60、P 65S型行包快运车6年1年P 62 6年1.5年其他型耐候钢棚车9年1.5年续上表车种、车型厂修段修辅修敞车C 16、C 16A、C 62A(车号为44字头)5年1年C 61Y、C 63、C 63A、CF、C A12 6年1年C 62A(车号为45字头开始)6年1.5年C 61、C 76A、C 76B、C 76C 8年1年其他型耐候钢敞车9年1.5年罐车碱类罐车、液化石油气罐车、液氯罐车等4年1年其他型罐车5年1年矿石车K 17、K TF、K TRF、KF 60等型普通钢车5年1年其他型耐候钢矿石车8年1年水泥车U 15、U 60、U 60W 5年1年U 61W、U 61 9年1.5年冰冷车普碳钢车4年1年耐候钢车6年1年集装箱平车6年1.5年平车(含NX系列)、家畜车、粮食车、守车、长钢轨车、60 L的凹型车5年1年毒品车10年1年1996年以后生产的D 22C、D 12、D 70、D 10(经轴承密封改造)9年3年厂修、段修周期原分别为9年、1.5年的不常用专用车10年2年其他型不常用专用车、载重90 t以上的车辆8年2年6个月注:1.专用车指:救援车、机械车、线桥工程车、宿营车、发电车、检衡车、磅秤修理车、生活供应车、战备车等。2.滑动轴永车辆轴检周期为3个月。毒品车厂修为扩大段修。3.因裴用转向梁型式的变化而引起约车型变化(在车型编码尾部加注K、T、H的车辆),原检修周期不变。 1.8 须按现丰检修周期标记扣修厂修车,以月为准,不得提前。如确因事故等特殊情况需提前扣修时,须经铁道部批准。 1.9 货车及其主要配件的状态修和寿命管理须符合下列要求:

铁路行车组织名词术语

铁路行车组织名词术语 1.铁路行车组织(organization of train operation) 铁路行车组织是铁路运输组织的重要组成部分,是铁路综合运用各种技术设备合理组织列车运行以实现旅客和货物运输过程的生产计划与组织工作。它的主内容包括:车站技术作业组织、车流组织、列车运行图和铁路通过能力、铁路运输工作技术计划和调度工作等。 2.铁路技术管理规程(简称《技规》Regulations Governing Railway Technical Operation) 《技规》是铁路进行技术管理和从事运输生产的基本法规。它的主要内容包括:铁路技术设备的基本要求和标准,行车组织工作应遵循的基本原则、工作方法和作业程序、信号显示的要求和方法以及铁路运输工作人员的主要职责和必须具备的基本条件。 3.铁路行车组织规则(简称《行规》Rules Governing Organization of Train Operation;operating rules) 《行规》是铁路局根据《技规》中行车组织篇规定的原则,结合铁路局管内技术设备的具体条件所制定的一种行车组织的补充规则,作为《技规》的补充。 4.车站行车工作细则(简称《站细》Detailed Instructions Governing Train Operation at Station;technologic instructions of station) 《站细》是根据《技规》和《行规》的有关规定,结合车站技术设备和作业等具体条件所制定的车站技术管理和作业组织的基本技术文件。 5.列车(train) 按照规定条件把车辆编挂成的车列,并挂有机车及规定的列车标志时,称为列车。 单机、动车及重型轨道车虽未具备列车条件,当指定有列车车次时亦按列车办理。 6.车组(wagon group) 若干车辆连挂在一起,称为车组。 7.车列(train stock;train set) 若干车组连挂在一起,称为车列。分为列车车列和调车车列。 8.旅客列车(passenger train) 旅客列车是以客车(包括代用客车)编组的为运送旅客及行李、包裹、邮件的列车。 9.混合列车(mixed train) 混合列车是以运送旅客的车辆为基本车组,与运送货物的车辆混合编成的列车,或是货物列车中编挂乘有旅客的车辆达到规定辆数的列车。 10.客运列车(passenger train) 旅客列车与混合列车的总称。 11.军用列车(military train;troop train) 军用列车是按规定条件运送军队与军用物资的列车。 12.货物列车(goods train;freight train) 货物列车是以运送货物的车辆编成的列车。 13.快运货物列车(fast goods train) 快运货物列车是快带运送鲜活、易腐及其他急运货物的列车。

铁路货车车辆制动技术

铁路货车车辆制动技术 发表时间:2019-01-08T10:32:59.450Z 来源:《电力设备》2018年第24期作者:赵宏伟 [导读] 摘要:针对铁路货车普遍的闸瓦磨耗不均匀及不易缓解等现象,运用解析法和多体动力学仿真分析法,预测了集成制动系统的制动和缓解性能。 (中车齐齐哈尔车辆有限公司质量管理部高级工程师黑龙江齐齐哈尔 161002) 摘要:针对铁路货车普遍的闸瓦磨耗不均匀及不易缓解等现象,运用解析法和多体动力学仿真分析法,预测了集成制动系统的制动和缓解性能。首先,根据其结构组成和工作原理,计算各闸瓦压力和缓解阻力;然后,在RecurDyn软件中建立虚拟样机,针对制动、缓解两种工况分别进行仿真试验,分析各闸瓦的压力分布、缓解时间、缓解阻力、缓解位移,从而预测制动系统的制动和缓解性能。研究发现集成制动装置制动时,L1位制动力比L2位大8.47%,L1位比R1位大5.51%,可能导致踏面磨耗不均匀;缓解时,各闸瓦缓解时间基本相同,当摩擦系数设为0.15时,可保证缓解时各闸瓦的缓解位移均匀及各轮瓦的间隙相同。预测结果为铁路货车集成制动系统的运用改善及国产化提供理论参考依据。 关键词:集成制动系统;制动和缓解性能预测;多体动力学分析;RecurDyn 引言 通过多年研究与发展,我国货车转向架已基本定型,所以改善制动装置成为铁路货车发展的关键。我国传统的制动装置受结构位置的限制,甚至需要多级杠杆进行传动,制动装置的布局较为复杂,不但降低了传动效率,也降低了制动与缓解的可靠性,不能满足我国货车发展的需求。集成制动系统是指制动缸集成在转向架上,每个转向架可作为独立的制动单元控制车辆制动与缓解的制动系统,由于省去了大量的杠杆结构,具有结构紧凑、传动效率高、安装方便、质量轻等优点。 1结构与工作原理分析 1.1组成结构 集成制动装置主要由主制动梁、副制动梁、主制动杠杆、副制动杠杆、制动缸、推杆、闸瓦间隙调节器(闸调器)、闸瓦等部件组成。制动缸固装在制动梁上,主、副制动杠杆通过制动梁支柱水平安装,缸内推出的制动力通过主制动杠杆、闸调器、副制动杠杆和推杆在同一水平面内传递。 1.2工作原理分析 当车辆实施制动时,压力空气充入制动缸内推动活塞运动,制动力通过活塞杆传出带动主制动杠杆绕制动梁支柱转动,同时主制动梁有向轮对方向的运动趋势。主制动杠杆推动闸调器,将制动力传递到副制动杠杆端,带动副制动梁向车轮方向运动,使闸瓦与踏面接触实施后轮对的制动。副制动杠杆转动的同时带动推杆移动,将力传递到制动缸后侧,推动前制动梁实施前轮对的制动[1]。当车辆实施缓解时,在主、副制动梁自身重力的作用下滑块沿滑槽方向下滑,同时制动缸内的缓解弹簧被压缩后产生回复力,推动活塞反向运动,促使制动梁带动闸瓦与轮对踏面分离,使得制动装置缓解。 2仿真实验方案设计 2.1建立多体动力学模型 首先,建立集成制动装置虚拟样机模型。在Pro-E软件中建立好制动装置的三维模型,保存为SETP格式后导入到RecurDyn软件中。 然后,对虚拟样机进行简化处理。为提高仿真速度,突出研究重点,需简化虚拟样机模型,如删掉虚拟样机中不影响制动缓解运动的固定部件,对理论上不存在相对运动的部件进行合并及布尔加操作等。 最后,对虚拟样机模型添加接触、约束和外载荷。在各接触面间添加接触,定义相应的刚度、阻尼、摩擦因素,对需要限制自由度的部件添加约束,如滑槽、轮对与大地间添加固定副等。外部载荷即制动力与缓解力。在制动试验中,添加由制动缸直接对活塞杆施加的外部载荷—制动力P,按制动缸内压强值和活塞面积计算出P=19445N,由于制动缸内进出气是渐变的过程,所以通过STEP函数控制制动力变化。实际缓解弹簧需提供的缓解力为700N,实验中通过定义弹簧的自由长度、刚度、阻尼等参数来实现[2]。 2.2试验工况设计 (1)制动试验。制动力函数从0逐渐增大到P,然后保持最大值不变,使机构最终达到动态平衡状态。由于制动时,各位闸瓦压力不均会导致车轮轮缘和踏面磨耗不均,甚至轮径超差,影响车辆的正常运行,引发事故,因此以同轴和同侧的闸瓦压差为评价指标,分析闸瓦压力的分布均匀性,从而预测制动装置的制动性能。 (2)缓解试验。制动力函数从0逐渐增大到P,然后逐渐减小到0,缓解弹簧受压缩后施加反向力于活塞杆上实施缓解。缓解时间反映各闸瓦缓解的同步性,缓解阻力反映各闸瓦缓解的难易程度,缓解位移的大小反映各闸瓦的缓解状态。因此以各闸瓦的缓解时间、缓解阻力、缓解位移为评价指标,分析制动装置的缓解性能。实验定义闸瓦与车轮踏面间的接触正压力连续为0时为缓解,考虑滑槽磨耗板与滑块间摩擦系数的改变对机构缓解性能的影响,根据《铁路货车组合式制动梁滑块磨耗套技术条件(试行)》,分别设置0.05、0.07、0.09、0.11、0.13和0.15六种摩擦系数进行对比实验。 3试验结果分析 3.1制动试验结果分析 (1)同侧闸瓦正压力分布情况:L1位比L2位大8.47%,R1位比R2位大3.44%,制动装置L侧轮瓦压差较大,R侧分布较为均匀; (2)同轴两瓦压力分布情况:L1位比R1位大5.51%,L2位比R2位大0.62%,主制动梁轮瓦压差较大,副制动等压力分布均匀。由此可见,集成制动装置轮瓦压力分布不均匀,主制动梁上有制动缸侧L1位闸瓦正压力明显偏大,副制动梁侧两闸瓦正压力大小基本相当。在实际运行时,经过反复多次制动后,易产生车轮踏面不同程度的磨耗现象,导致轮径差超差。 3.2缓解试验结果分析 (1)各位闸瓦的缓解时间:同一制动梁两闸瓦的缓解时间基本相同,副制动梁两闸瓦缓解同步性更好,主制动梁闸瓦R1位的缓解时间比L1位略短;总体上各位闸瓦缓解时间相差甚微,几乎同时缓解; (2)各位闸瓦的缓解阻力:主制动梁的摩擦阻力大于副制动梁,且主制动梁有制动缸端L1位的摩擦阻力略大于无制动缸端R1位,副制动梁R2位摩擦阻力略大于L2位;随着摩擦系数的增大,各制动梁的摩擦阻力基本呈线性增长,且主制动梁比副制动梁增长幅度大,主、

铁路货车制动系统分析及检修工艺研究

科技专论 296 铁路货车制动系统分析及检修工艺研究 【摘要】随着我国经济的快速增长,我国的铁路运输业也在飞速发展,铁路货车做为铁路货物运输的工具,承担着完成铁路运输任务的重要职责,而铁路货车的制动系统是铁路货车的实行减速和停车的重要装置,是铁路货车安全的保证。对于现代的火车而言,制动系统不仅仅是安全的保证,更关系到铁路货车的牵引质量问题。因此有必要对铁路货车的制动系统进行研究和探讨。本文主要对现代铁路火车制动系统的现状和存在的问题进行了阐述;然后对铁路火车制动系统检修工艺方面进行了探讨并提出了几点改进建议。 【关键词】铁路货车;制动系统;检修工艺 1、前言 经过多年的发展,我国的铁路货车在快速地进步,制造工艺和运行检修水平都得到了巨大的提升。近年来更是实现了快速和载重的革新换代,已有的列车载重由以前的60吨提高到了现在的70吨,既有列车速度都提升到了120km/h;实现了铁路货车设计、制造、新材料的三大跨越,掌握了高性能转向架、结构可靠性等一系列核心技术,全面推广新型合金材料、非金属材料、不锈钢焊接技术整体新铸造等一系列的新技术和新材料;在核心配件、检修、安全、维护等方面实现了技术上的创新性进步;形成了涵盖了铁路货车运行方方面面的标准体系,走出了独具中国特色的铁路货车发展之路。 同时,作为铁路货车的重要组成部分,制动系统也经历了旧阀改造和自主研发的发展过程,逐步形成了独具特色的、较为完善的制动系统。特别是近年来,制动系统在重载货车和快速列车等诸多方面取得了重大的进步。但是,与发达国家的水平相比还存在这很大的不足。因此,我们仍有必要对制动系统进行研究和探讨,使其日趋完善。 2、高速载重货车制动系统技术分析 随着铁路货车的发展,货车的列车编组、载重和速度都在不断地增长,对货车的制动技术提出了更高的要求,国内外的货车制动技术都在不断地发展。在制动装置上,我国与先进的工业国家相比还是有一定的差距,下面就分高速和载重两个方面对相关制动技术进行了简要分析。 2.1快速货车制动问题随着经济发展,铁路货车的运输量在不断上升,为了使我国的铁路资源得到充分的利用,铁路货运快速化已经成为必然的发展趋势。而制动技术是发展快速货车的关键,制动力必须适应铁路货车的速度。现如今,我国现有的货车制动系统将要不能满足快速列车的需求,因此,我们必须走出去学习国际上先进的铁路货车制动技术。 货车的重车质量为空车的3倍以上,这里就会存在空重车位的问题。当装有不同的制动装置的车辆混合编排时,由于制动方式的差异,导致列车纵向冲动加剧,空车位容易造成车轮擦伤。空重车的自动调整技术是提高运输速度、提升货车制动能力的关键。设计货车的转向架和制动系统时应该重视轻重车自动调整装置的设计,避免由于空重车纵向冲动造成的列车故障。 另外,制动系统的漏泄对制动性能和列车运行也具有重要影响。主要影响缓解和再充气的时间,使列车前后形成压力梯度,导致列车尾部车辆制动力低下,作用迟缓,延长制动距离,也是制动机发生故障的根源之一。列车速度越快,问题越突出,严重时将使司机失去对制动管减压量的控制,也会由于在制动保压过程中的漏泄使列车中的制动力分布不均,因而也相应增加了列车的纵向冲动。 另外,由于我国对制动距离要求与欧洲国家相似,较美国要短,因此,对制动装置的研制可以借鉴欧洲国家的先进技术,既要重视转向架的研制,也要重视制动系统的研制。目前,世界记录有法国的Y37型转向架保持,最高试验速度达到了281.8km/h。 2.2重载货车制动问题 重载货车是为了充分利用现有的铁路线路和装备,提高运输效率,而增加列车的长度和质量。目前载重在5000吨以上的列车称之为重载 列车。开行重载列车的关键在于机车的牵引力和列车的制动能力,其中 货车的制动能力是保证货车安全的关键所在。 增加列车的载重主要有两个途径,一是货车大型化,二是扩大列车编组数量。经过计算表明,将要发展的25吨轴重的列车比既有的20吨轴重列车的闸瓦压力高出20%之多才可以满足制动力要求,制动装置的热负荷以及货车承受的纵向力也相应地增加。虽然经过计算现有设备距离上限值仍然有一定的余量,但是空车位制动力的增加会导致粘滞问题的出现。因此,当前最重要的问题是改进现有的空重车调整装置。 若想改善重载货车的制动性能,可以采用电空制动的方式。我国现如今采用的是空气制动方式,它是靠空气压力的变化来实行制动作用的。由于长大的载重货车各车辆的制动机因受空气流速的限制而不能同步实施制动,会造成列车之间的纵向冲击,另外,在制动缓解之前,制动风缸不能充气,在较长坡道会发生制动的失效现象。若采用电空制动就可以有效地解决上述问题,这种制动方法通过电信号进行控制,可以实现各个列车同步制动和制动风缸的连续充风,并且可以有效地缩短制动距离,从而使列车的的速度可以更高。因此,实行电空制动是重载货车提升制动性能的有效方式。 3、制动系统检修工艺分析 根据有关数据表明,在所有列车故障中,制动系统的故障在90%以上。制动系统故障已经严重影响了列车的正常运行,甚至导致安全事故的发生。根据相关的数据表明,所有制动系统故障中管道泄露占到了74%,缸体泄露占到7%,阀门故障占到了2%,主要故障配件是管道、缸体、120控制阀。故障原因主要是,制动管内壁有污垢、制动缸体内部粗糙度差、120阀配件研磨不良。 3.1设计管内壁清洁装置由于管道内污垢成分复杂,现行的内部吹尘工艺无法达到清理的效果。通过实验,采用美国旋转管路清洗软轴,这种软轴可以在管内随意进行弯曲,不会受管的形状所限,刷头直接装在软轴的顶端,机器将清洁用水送进软轴封套,在清洁水的冲刷下,将污垢去除。使用这种方法后,管道泄露、堵塞等故障的发生数目明显下降。 3.2完善缸体内壁打磨工艺按照国家标准的要求,制动缸体内壁粗糙度为Ra0.4μm,但是实际操作过程中,经过一次打磨后,缸体内部的粗糙度仅为Ra1.6μm。经过研究决定,采用先打磨后抛光的方式对制动缸进行处理,处理之后缸体粗糙度满足要求,大大减少了缸体泄露故障的发生。 3.3 改进120阀门研磨工艺120阀由滑阀、截止阀、滑阀座组成,经过检查后发现各个配件的滑动面有划痕或者接触不严密时会导致油脂泄露,造成制动阀产生故障。因此要对120阀各部件的接触面进行打磨后再进行组装,消除接触面的缺陷。另外,还要对打磨用的油石进行规范,确保所用油石符合规格。最后,在操作过程中发现,机械打磨能够更好地控制研磨精度,并且能减少工作强度、增大工作效率。 4、结语 随着经济发展,必然要求铁路运输力的上升,载重量增大、速度加快是必然趋势,这对铁路的制动系统会有更高的要求。虽然我国在铁路货车制动技术上有了很大的发展,但是相对于发达的工业国家还有很大的进步空间。我们要不断地吸收国外的先进技术,改进制动相关工艺,确保铁路运输的安全,使铁路货运能更好更快的发展。 何靖杰 广深铁路股份有限公司广州北车辆段 510450 参考文献 [1]常崇义,王成国,金鹰.基于三维动态有限元模型的轮轨磨耗数值分析[J].中国铁道科学, 2008, 29. [2]TB/ T 1335-1996.铁道车辆强度设计及试验鉴定规范[S] .

相关文档
相关文档 最新文档