文档库 最新最全的文档下载
当前位置:文档库 › 8k专题:导数与不等式(教师版)

8k专题:导数与不等式(教师版)

8k专题:导数与不等式(教师版)
8k专题:导数与不等式(教师版)

专题1:导数与不等式的综合问题

1.(天门、仙桃、潜江市2017届高三上学期期末联合考试)定义在(0,)2

π

上的函数()f x ,()f x '是它的导函

数,且恒有()tan ()0f x x f x '+< 成立,则( D )

A

()()34

f ππ

>

B

()()46ππ> C

.()()36f ππ D

()()36

f ππ

<

2、(湖北省部分重点中学2017届高三联考)设函数()1,x f x e ax =--对(),0x R f x ?∈≥恒成立.

(1)求a 的取值集合; (2)求证:()()1111ln 1.23n n N n

*

++++>+∈ .

解: (1)1)(--=ax e x f x ,a e x f x -=')(

①当0

题意,舍去;

②当0≥a 时,)(,0)(),ln ,(x f x f a x <'-∞∈单调递减, )(,0)(),,(ln x f x f a x >'+∞∈ 单调递增,1ln )(ln )(min --==a a a a f x f ,则需01ln ≥--a a a 恒成立.

令1ln )(--=a a a a g ,a a g ln )(-=',当)1,0(∈a 时,)(,0)(a g a g >'单调递增, 当),1(+∞∈a

时,)(,0)(a g a g <'单调递减,而0)1(=g ,所以01ln ≤--a a a 恒成立.所以a 的取值集合为{}

1. (2)由(1)可得)0(01>>--x x e x ,)0)(1ln(>+>x x x ,令n

x 1

=

,则 n n n n n n ln )1ln(1ln )11ln(1-+=+=+>,所以 ))(1ln()ln )1(ln()2ln 3(ln )1ln 2(ln 1

31211*∈+=-+++-+->++++N n n n n n

3. 已知函数2

1()ln 2(0).2

f x x ax x a =-

-< (1)若函数()f x 在定义域内单调递增,求a 的取值范围;

(2)设各项为正的数列{}n a 满足:*

111,ln 2,.n n n a a a a n N +==++∈求证:12-≤n

n a

解:(1)221

()(0).ax x f x x x

+-'=-

> 依题意()0f x '≥在0x >时恒成立,即2

210ax x +-≤在0x >恒成立.

则22

121(1)1x a x x -≤

=--在0x >恒成立,即min 2

)1)11((--≤x

a )0(>x 当1=x 时,2

1(1)1x

--取最小值1- ∴a 的取值范围是(,1]-∞-

(2)设[)()ln 1,1,h x x x x =-+∈+∞,则1

()10h x x

'=-≤

()h x ∴在[)1,+∞为减函数,且max ()(1)0,h x h ==故当1x ≥时有ln 1x x ≤-.

1 1.a = 假设*1(),k a k N ≥∈则1ln 21k k k a a a +=++>,故*1().n a n N ≥∈

从而1ln 22 1.n n n n a a a a +=++≤+1112(1)2(1).n n n a a a +∴+≤+≤≤+ 即12n n a +≤,∴21n n a ≤-

4. 已知函数()x f e x x =-(e 为自然对数的底数)(Ⅰ)求()f x 的最小值;

(Ⅱ)设不等式()f ax x >的解集为P ,且{}|02P x x ?≤≤,求实数a 的取值范围;

(Ⅲ)设n N *

∈,证明:1

1n

n

k e k e n =??<

?-??∑。

5. 为正实数,(1)若e

a

a b >

(2)若b a

a b =且1a <,求证:a=b (3) 若()b a a b a b =≠且a,b 为正整数,求a,b

6、(黄冈市2017)函数()()2

ln 2

a f x x x x x a a R =--+∈在定义域内有两个不同的极值点. (1)求实数a 的取值范围;

(2)记两个极值点为12,x x ,且12x x <,已知0λ>,若不等式112x x e

λ

λ

+?>恒成立,求λ的取值范围.

1、解:(Ⅰ)由题意知,函数f (x )的定义域为(0,+∞),方程f ′(x )=0在(0,+∞)有两个不同根; 即方程lnx ﹣ax =0在(0,+∞)有两个不同根;

(解法一)转化为函数y =lnx 与函数y =ax 的图象在(0,+∞)上有两个不同交点,

如右图.

可见,若令过原点且切于函数y =lnx 图象的直线斜率为k ,只须0<a <k . 令切点A (x 0,lnx 0

),

,又

,故

,解得,x 0=e , 故

.……4分 (解法二)转化为函数

与函数y =a 的图象在(0,+∞)上有两个不同交点.

又,

即0<x <e 时,g ′(x )>0,x >e 时,g ′(x )<0, 故g (x )在(0,e )上单调增,在(e ,+∞)上单调减. 故g (x )极大=g (e )=;

又g (x )有且只有一个零点是1,且在x →0时,g (x )→﹣∞,在在x →+∞时,g (x )→0,

故g (x

)的草图如右图,

可见,要想函数与函数y =a 的图象在(0,+∞)上有两个不同交点,

只须

. ……4分

(解法三)令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,

而(x>0),

若a≤0,可见g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)单调增,

此时g(x)不可能有两个不同零点.

若a>0,在时,g′(x)>0,在时,g′(x)<0,

所以g(x )在上单调增,在上单调减,从而=,又因为在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→﹣∞,

于是只须:g(x)极大>0,即,所以.

综上所述,.……4分

(Ⅱ)因为等价于1+λ<lnx1+λlnx2.

由(Ⅰ)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2

所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于.又由lnx1=ax1,lnx2=ax2作差得,,即.

所以原式等价于,

因为0<x1<x2,原式恒成立,即恒成立.令,t∈(0,1),

则不等式在t∈(0,1)上恒成立.……8分

令,

又=,

当λ2≥1时,可见t∈(0,1)时,h′(t)>0,

所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.

当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,

所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,

所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.

综上所述,若不等式恒成立,只须λ2≥1,又λ>0,所以λ≥1.…12分

7.已知函数2

1

()ln(1)(0).

2

f x x ax a x a R a

=-+-∈≠

(1)求函数()

f x的单调递增区间;(2)记函数()

y F x

=的图象为曲线C.设点A(x1,y1),B(x2,y2)

是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①12

02

x x

x

+

=;②曲线C在点M 处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”,试问f(x)是否存在“中值相依切线”,请说明理由.

8、(荆门市2017届高三元月调考)已知二次函数2

()(21)ln

f x ax a x x

=---(a为常数,0)

a≠. (Ⅰ)当0

a<时,求函数()

f x在区间[1,2]上的最大值;

(Ⅱ)记函数()

y f x

=图象为曲线C,设点

1122

(,),(,)

A x y

B x y是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.3、(Ⅰ)

1

()2(12)

f x ax a

x

'=+--

2

2(12)1

ax a x

x

+--

=

(21)(1)

ax x

x

+-

=,…………1分当0

a<时,由()0

f x

'=,得

1

1

2

x

a

=-,

2

1

x=,又]2

,1[

x,则有如下分类:①当

1

2

2a

-≥,即

1

4

a

-<

≤时,()

f x在]2

,1[上是增函数,

所以()

f x2

ln

2

)2(

max

-

=

=f.…………………………………………………2分

②当2211<-

,1[a

-上是增函数, 在]2,21

(a

-

上是减函数, 所以()f x )2ln(411)21(max a a

a f -+-=-=. ………………………………………………3分 ③当112a -

≤,即1

2

a -≤时,()f x 在]2,1[上是减函数, 所以()f x a f -==1)1(max

………………………………………………4分

综上,函数()f x 在]2,1[上的最大值为

max

12ln 2,(0)4111()1ln(2),()42411,()2a f x a a a

a a ?

--

?=-+--<<-???

--??

≤≤, …………………………………5分

(Ⅱ)设00(,)M x y ,则点N 的横坐标为12

02

x x x +=, 直线AB 的斜率12112y y k x x -=

-2212122112

1

[()(12)()ln ln ]a x x a x x x x x x =-+--+--

21

1212

ln ln ()(12)x x a x x a x x -=++-+

-,…………………………………7分

C 在点N 处的切线斜率 20001

()2(12)k f x ax a x '==+--

1212

2()(12)a x x a x x =++--

+, 假设曲线C 在点N 处的切线平行于直线AB ,则12k k =,即

211212

ln ln 2

x x x x x x -=-

-+,……………8分 所以2

2211

2

112

1

2(

1)

2(x x )ln 1x x x x x x x x --==++ ,

不妨设12x x <,

2

1

1x t x =>,则2(1)ln 1t t t -=

+,……………………………10分 令2(1)()ln (1)1t g t t t t

-=-

>+,2

22

14

(1)()0(1)(1)t g t t t t t -'=-=>++, 所以()g t 在(1,)+∞上是增函数,又(1)0g =,所以()0g t >,即2(1)ln 1t t t

-=

+不成立,

所以曲线C 在点N 处的切线不平行于直线AB . …………………………12分

变式:已知2()2ln f x x x ax =-- 与x 轴交于1212(,0),(,0)(0)A x B x x x <<

求证:对,(0,1)1,p q p q p q ?∈+=≤且都有'12()0f px qx +<

9、(武汉市武昌区2017届高三1月调研)已知函数()()2

11ln 2

f x x a x a x =

+-- . (Ⅰ)讨论()f x 的单调性; (Ⅱ)设0a >,证明:当0x a <<时,()()f a x f a x +<- ; (Ⅲ)设12,x x 是()f x 的两个零点,证明1202x x f +??

'> ???

.

9、(Ⅰ)()f x 的定义域为()0,+∞ ,

求导数,得()()()()2

111x a x a x x a a f x x a x x x

+--+-'=+--== , 若0a ≤ ,则()0f x '>,此时()f x 在()0,+∞上单调递增,

若0a > ,则由()0f x '=得x a =,当0x a <<时,()0f x '< ,当x a >时,()0f x '> , 此时()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)令()()()g x f a x f a x =+--,则

()()()()()()()()()22111ln 1ln 22g x a x a a x a a x a x a a x a a x ??

=

++-+-+--+----????

()()2ln ln x a a x a a x =-++- .

求导数,得()2

22

22a a x g x a x a x a x -'=--=+-- , 当时0x a <<,()0g x '<,()g x ∴在()0,a 上是减函数. 而()00g =,()()00g x g ∴<= , 故当0x a <<时,()()f a x f a x +<-

(Ⅲ)由(Ⅰ)可知,当0a ≤时,函数()y f x =至多有一个零点, 故0a >,从而()f x 的最小值为()f a ,且()0f a <, 不妨设120x x <<,则120x a x <<<,10a x a ∴<-< , 由(Ⅱ)得()()()11120f a x f a a x f x -=+-<= , 从而212x a x >-,于是122x x a +>, 由(Ⅰ)知,1202x x f +??

'> ???

.

2021年高考数学复习《导数---泰勒不等式专题》

导数——泰勒不等式专题 一、泰勒公式: 泰勒公式,也称泰勒展开式,主要是用于求某一个复杂函数在某点的函数值。如果一个函数足够平滑,即若函数)(x f 在包含0x 的某个闭区间],[b a 具有n 各阶导数,且在开区间),(b a 上存在1+n 阶导数,则对],[b a 上任意一点x ,有 ).()(! )()(!2)()(!1)(!0)()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= 其中)(x R n 为泰勒展开式的余项,泰勒展开式也叫泰勒级数. 我们更多的是用泰勒公式在00=x 的特殊形式: )(!) 0(!2) 0( !1)0(!0)0()(2 2x R x n f x f f f x f n n +++''+'+= .以下列举一些常见函数的泰勒公式: ++++=32!31 !21 !11 1x x x e x ① +-+-=+4324 1 3121 )1ln(x x x x x ② +-+-=753!71!51!31sin x x x x x ③ -+-=4 2!41!211cos x x x ④ ++++=-32111x x x x ⑤从中截取片段,就构成了高考数学考察导数的常见不等式: x e x +≥1①; 1ln -≤x x ②; 212 x x e x ++≥③对0≥x 恒成立; x x x x ≤+≤+)1ln(1④对0≥x 恒成立; x x x x ≤≤-sin 63 ⑤对0≥x 恒成立; 2421cos 214 22x x x x +-≤≤-⑥对0≥x 恒成立

(no.1)2013年高中数学教学论文 利用导数处理与不等式有关的问题 新人教版

本文为自本人珍藏版权所有仅供参考 利用导数处理与不等式有关的问题 关键词:导数,不等式,单调性,最值。 导数是研究函数性质的一种重要工具。例如求函数的单调区间、求最大(小)值、求函数的值域等等。而在处理与不等式有关的综合性问题时往往需要利用函数的性质;因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题。下面具体讨论导数在解决与不等式有关的问题时的作用。 一、利用导数证明不等式 (一)、利用导数得出函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。即把证明不等式转化为证明函数的单调性。具体有如下几种形式: 1、直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减) 区间,自变量越大,函数值越大(小),来证明不等式成立。 例1:x>0时,求证;x 2x 2 --ln(1+x)<0 证明:设f(x)= x 2x 2 --ln(1+x) (x>0), 则f'(x)= 2x 1x - + ∵x>0,∴f ' (x)<0,故f(x)在(0,+∞)上递减, 所以x>0时,f(x)a>e, 求证:a b>b a, (e为自然对数的底) 证:要证a b>b a只需证lna b>lnb a 即证:blna-aln b>0 设f(x)=xlna-alnx (x>a>e);则f ' (x)=lna- a x , ∵a>e,x>a ∴lna>1,a x <1,∴f ' (x)>0,因而f(x)在(e, +∞)上递增 ∵b>a,∴f(b)>f(a);故blna-alnb>alna-alna=0;即blna>alnb 所以a b>b a成立。 (注意,此题若以a为自变量构造函数f(x)=blnx-xlnb (e0时 b x,f'(x)0 ln b <<时 b x ln b >,故f(x)在区间(e, b)上 的增减性要由 b e ln b 与的大小而定,当然由题可以推测 b e ln b >

高三数学培优补差辅导专题讲座-集合、函数与导数单元易错题分析与练习p

集合与函数、导数部分易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? [问题]:{}1|2-=x y x 、{ }1|2-=x y y 、{}1|),(2-=x y y x 的区别是什么? 4.绝对值不等式的解法及其几何意义是什么? 5.解一元一次不等式(组)的基本步骤是什么? [问题]:如何解不等式:()0122>--b x a ? 6.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?注意到对二次项系数及对 称轴进行讨论了吗? 7.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? [问题]:请举例说明“否命题”与“命题的否定形式”的区别. 什么是映射、什么是一一映射? [问题]:已知:A={1,2,3},B={1,2,3},那么可以作 个A 到B 上的映射,那么可以作 个 A 到 B 上的一一映射. 9.函数的表示方法有哪一些?如何判断函数的单调性、周期性、奇偶性?单调性、周期性、奇偶性在函数的 图象上如何反应?什么样的函数有反函数?如何求反函数?互为反函数的图象间有什么关系?求一个函数的解析式或一个函数的反函数时,你注明函数的定义域了吗? [问题]:已知函数()[],9,1,2log 3∈+=x x x f 求函数()[]() 22x f x f y +=的单调递增区间.(你处理函数问题是是否将定义域放在首位) [问题]:已知函数()()的函数x g y x x x f =-+=,132图象与()11+=-x f y 的图象关于直线()的值对称,求11g x y =. 10、如何正确表示分数指数幂?指数、对数的运算性质是什么? 11、你熟练地掌握了指数函数和对数函数的图象与性质吗? [问题]:已知函数()[)+∞∈=,3log x x x f a 在上,恒有()1>x f ,则实数的a 取值范围是: 。 12.你熟练地掌握了函数单调性的证明方法吗?(定义法、导数法) 13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒 成立问题).这几种基本应用你掌握了吗? [问题]:写出函数)0()(>+=m x m x x f 的图象及单调区间.],[d c x ∈时,求函数的最值.这种求函数的最值的方法与利用均值不等式求函数的最值的联系是什么? [问题]:证明“函数)(x f 的图象关于直线a x =对称”与证明“函数)(x f 与函数)(x g 的图象关于直线a x =对称”有什么不同吗? 例题讲解 1、忽略φ的存在: 例题1、已知A ={x|121m x m +≤≤-},B ={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 【错解】A ?B ?? ?≤-+≤-?5 1212m m ,解得:33≤≤m - 【分析】忽略A =φ的情况.

教师用导数及其应用1

第十二章 导数及其应用 【知识图解】 【方法点拨】 导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。 1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。 2.深刻理解导数概念。概念是根本,是所有性质的基础,有些问题可以直接用定义解决。在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。 3.强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。 4.重视“数形结合”的渗透,强调“几何直观”。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。 5.加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。 6.(理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)

的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。 第1课 导数的概念及运算 【考点导读】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等); 2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念; 3.熟记基本导数公式; 4.掌握两个函数和、差、积、商的求导法则; 5.了解复合函数的求导法则.会求某些简单函数的导数.(理科) 【基础练习】 1.设函数f (x )在x =x 0处可导,则0lim →h h x f h x f )()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。 2.一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873 741234-+-= ,那么速度为零的时刻是 1,2,4秒末。 3.已知)1()('23f x x x f +=, 则=)2('f 0 。 4.已知),(,cos 1sin ππ-∈+=x x x y ,则当2'=y 时,=x 3 2π±。 5.(1)已知a x x a x f =)(,则=)1('f 2ln a a a +。 (2)(理科)设函数5()ln(23)f x x =-,则f ′1 ()3 =15-。 6.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。 解:因为点P (1,2)在曲线ax x y +=3上,1=∴a 函数ax x y +=3和c bx x y ++=2的导数分别为a x y +='23和b x y +='2,且在点P 处有公切数 b a +?=+?∴12132,得b=2 又由c +?+=12122,得1-=c 【范例导析】 例1. 电流强度是单位时间内通过导体的电量的大小。从时刻0t =开始的t 秒内,通过导体的电量(单位:库仑)可由公式2 23q t t =+表示。 (1) 求第5秒内时的电流强度; (2) 什么时刻电流强度达到63安培(即库仑/秒)? 分析:为了求得各时刻的电流强度,类似求瞬时速度一样,先求平均电流强度,然后再用平均电流强度逼近瞬时电流强度。 解:(1)从时刻0t 到时刻0t t + 通过导体的这一横截面的电量为:

利用导数研究不等式问题

1.已知函数f (x )=x 2-ax -a ln x (a ∈R ). (1)若函数f (x )在x =1处取得极值,求a 的值; (2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116 . 2.(优质试题·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ). (1)若函数y =h (x )的单调减区间是????12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.

3.(优质试题·山西四校联考)已知f (x )=ln x -x +a +1. (1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围; (2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12 成立. 4.已知函数f (x )=(2-a )ln x +1x +2ax . (1)当a <0时,讨论f (x )的单调性; (2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围. 5.(优质试题·福州质检)设函数f (x )=e x -ax -1. (1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0; (2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.

答案精析 1.(1)解 f ′(x )=2x -a -a x ,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1. (2)证明 由(1)知,f (x )=x 2-x -ln x , 令g (x )=f (x )-????-x 33+5x 22 -4x +116 =x 33-3x 22+3x -ln x -116 , 由g ′(x )=x 2 -3x +3-1x =x 3-1x -3(x -1)=(x -1)3x (x >0),可知g (x )在(0,1)上是减函数, 在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116 成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0), 由h ′(x )=2x 2-ax +1x (x >0), 若h (x )的单调减区间是????12,1, 由h ′(1)=h ′????12=0,解得a =3, 而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x (x >0). 由h ′(x )<0,解得x ∈????12,1, 即h (x )的单调减区间是????12,1, ∴a =3. (2)由题意知x 2-ax ≥ln x (x >0), ∴a ≤x -ln x x (x >0). 令φ(x )=x -ln x x (x >0),

教育高中数学一对一冲刺课程专题简介

高中数学一对一冲刺课程专题简介 第一讲集合 第二讲函数概念与基本初等函数(基础理论,重难点,高考考点) §2.1函数及其表示 §2.2函数的基本性质 §2.3一次函数和二次函数 §2.4指数与指数函数 §2.5对数与对数函数 §2.6幂函数 §2.7函数的图象 §2.8函数的值域和最值 §2.9函数的应用 第三讲立体几何初步(基础理论,重难点,高考考点) §3.1空间几何体的结构、三视图和直观图 §3.2空间几何体的表面积和体积 §3.3点、线、面的位置关系 §3.4直线、平面平行的判定与性质 §3.5直线、平面垂直的判定与性质 第四讲平面解析几何初步(基础理论,重难点,高考考点) §4.1直线方程和两条直线的位置关系 §4.2圆的方程 §4.3直线与圆、圆与圆的位置关系 第五讲算法初步与框图(基础理论,重难点,高考考点) 第六讲基本初等函数(基础理论,重难点,高考考点) §6.1三角函数的概念 §6.2三角函数的图象和性质 §6.3三角函数的最值与综合应用 §6.4三角恒等变换 §6.5解三角形 第七讲平面向量(基础理论,重难点,高考考点) §7.1向量、向量的加法与减法、实数与向量的积 §7.2向量的数量积和运算律、向量的应用 第八讲数列(基础理论,重难点,高考考点) §8.1数列的概念及其表示 §8.2等差数列及其前n项和 §8.3等比数列的综合应用 §8.4数列的综合应用 第九讲不等式(基础理论,重难点,高考考点) §9.1不等关系与不等式 §9.2一元二次不等式及其解法 §9.3简单的线性规划 §9.4基本不等式 §9.5不等式的综合应用 第十讲计数原理(基础理论,重难点,高考考点) §10.1排列与组合 §10.2二项式定理 第十一讲概率与统计(基础理论,重难点,高考考点)

第13讲 函数与导数之导数及其应用(教师版)

第13讲 函数与导数之导数及其应用 一. 基础知识回顾 1.函数的平均变化率:一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商00()() f x x f x x +-△△=Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数:(1)定义:函数y =f (x)在点x 0处的瞬时变化率0lim x y x →△△△通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即00'()lim x y f x x →=△△△. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的 切线的斜率.导函数y =f ′(x )的值域即为切线斜率的取值范围. 3.函数f (x )的导函数:如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开 区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作y ′或f ′(x). 4.基本初等函数的导数公式表(右表) 5.导数运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ) ; (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 [g (x )≠0]. 5.导数和函数单调性的关系:(1)若 f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是增函数,f ′(x )>0的解集与定义域的交集的对应区间为增区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a , b )上是减函数,f ′(x )<0的解集与定义域的交集的对应区间为减区间(3)若在(a ,b )上, f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为增函数,若在 (a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为减函 数. 6.函数的极值:(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,① 如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求 方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根左右值的符号.如果左正右负,那 么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 7.函数的最值:(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ] 上连续,那么它必有最大值和最小值.(2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点值比较,其中最大的一 个是最大值,最小的一个是最小值. 二.典例精析 探究点一:导数的运算 例1:求下列函数的导数: (1)y =(1-x )? ???1+1x ; (2)y =ln x x ;(3)y =x e x ; (4)y =tan x . 解:(1)∵y =(1-x )????1+1x =1x -x =1122x x --,∴y ′=11 22()'()'x x --=31 221122x x ----.

专题09导数与不等式的解题技巧

专题09导数与不等式的解 题技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

专题导数与不等式的解题技巧 一.知识点 基本初等函数的导数公式 ()常用函数的导数 ①()′=(为常数); ②()′=; ③()′=;④′=; ⑤()′=. ()初等函数的导数公式 ①()′=;②( )′=; ③( )′=;④()′=; ⑤()′=;⑥( )′=; ⑦()′=. .导数的运算法则 ()[()±()]′=; ()[()·()]′=; ()′=. .复合函数的导数 ()对于两个函数=()和=(),如果通过变量,可以表示成的函数,那么称这两个函数(函数=()和=())的复合函数为=(()). ()复合函数=(())的导数和函数=(),=()的导数间的关系为,即对的导数等于对的导数与对的导数的乘积. 二.题型分析 (一)函数单调性与不等式 例.【一轮复习】已知函数()=+,∈(-,),则满足(-)+(-)>的的取值范围是( ).(,) .(,) .(,) .(,) 【答案】 【分析】在区间(﹣,)上,由(﹣)=﹣(),且′()>可知函数()是奇函数且单调递增,由此可求出的取值范围.

【点睛】本题考查了判断函数的奇偶性和单调性的问题,综合运用了函数的奇偶性和单调性解不等式进行合理的转化,属于中档题. 练习.对任意,不等式恒成立,则下列不等式错误的是().. .. 【答案】 【分析】构造函数,对其求导后利用已知条件得到的单调性,将选项中的角代入函数中,利用单调性化简,并判断正误,由此得出选项. 【解读】构造函数,则,∵,∴ ,即在上为增函数,则,即 ,即,即,又,即, 即,故错误的是.故选:. 【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有,也含有其导数的不等式,根据不等式的结构,构造出相应的函数.如已知是,可构造,可得 . (二)函数最值与不等式

2015年高中数学导数解答题尖子生辅导(有答案)

高中数学导数尖子生辅导 一.解答题(共30小题) 1.(2014?遵义二模)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性; (Ⅱ)证明:f(x2)>. ,其对称轴为 ,得 ,∴ )当)在 减.∴ 2.(2014?武汉模拟)己知函数f(x)=x2e﹣x (Ⅰ)求f(x)的极小值和极大值; (Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.

. )设切点为( ﹣ , 的斜率为负数,∴( 时, ,解得 时,)单调递增;当 时,函数)取得极小值,也即最小值,且= )∪ 3.(2014?四川模拟)已知函数f(x)=lnx+x2. (Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围; (Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3ae x x∈[0,ln2],求h(x)的极小值; (Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

结合题意,列出方程组,证得函数 ,,当且仅当 ∴,可得 ,令 , ,得 ∵,∴ )单调递减;若当)取得极小值,极小值为 ,由④ 式变为 所以函数

,即,也就是 4.(2014?河西区三模)已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x) ≥0在R上恒成立. (1)求a,c,d的值; (2)若,解不等式f′(x)+h(x)<0; (3)是否存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出实数m的值;若不存在,请说明理由. ∴x+c,有 上恒成立,即 =a ,于是由二次函数的性质可得 ,解得:, )∵.∴ 时,解集为(时,解集为()时,解集为 )∵,∴= ∴

导数与不等式专题一

导数与不等式专题一 1. (优质试题北京理18倒数第3大题,最值的直接应用) 已知函数。 ⑴求的单调区间; ⑵若对于任意的,都有 ≤,求的取值范围. 解:⑴,令, 当时,与的情况如下: 所以,的单调递增区间是和:单调递减区间是, 当时,与的情况如下: 所以,的单调递减区间是和:单调递增区间是。 ⑵当时,因为11 (1)k k f k e e ++=>,所以不会有 当时,由(Ⅰ)知在上的最大值是, 所以等价于,解 综上:故当时,的取值范围是[,0]. 2 ()()x k f x x k e =-()f x (0,)x ∈+∞()f x 1e k 221()()x k f x x k e k '=-()0,f x x k '==±0k >()f x ()f x '()f x (,)k -∞-(,)k +∞(,)k k -0k <()f x ()f x '()f x (,)k -∞(,)k -+∞(,)k k -0k >1(0,),().x f x e ?∈+∞≤0k <()f x (0,)+∞2 4()k f k e -=1(0,),()x f x e ?∈+∞≤24()k f k e -= 1 e ≤10.2k -≤<1(0,),()x f x e ?∈+∞≤ k 1 2 -

2. (优质试题天津理20倒数第3大题,最值的直接应用,第3问带有小的处理技巧) 已知函数,其中. ⑴若曲线在点处切线方程为,求函数的解析式; ⑵讨论函数的单调性; ⑶若对于任意的,不等式在上恒成立,求的取值范围. 解:⑴,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. ⑵. 当时,显然(),这时在,上内是增函数. 当时,令,解得 当变化时,,的变化情况如下表: + 0 - - 0 + ↗ 极大 值 ↘ ↘ 极小值 ↗ ∴在,内是增函数,在,内是减函数. ⑶由⑵知,在上的最大值为与的较大者,对于任意的 ,()()0≠++= x b x a x x f R b a ∈ ,()x f y =()( )2,2f P 13+=x y ()x f ()x f ??????∈2,21a ()10≤x f ?? ? ???1,41b 2()1a f x x '=- (2)3f '=8a =-(2,(2))P f 31y x =+27b -+=9b =()f x 8 ()9f x x x =-+2 ()1a f x x '=- 0a ≤()0f x '>0x ≠()f x (,0)-∞(0,)+∞0a >()0f x '=x =x ()f x '()f x x (,-∞()+∞()f x '()f x ()f x (,-∞)+∞((0,)+∞()f x 1[,1]41()4f (1)f 1 [,2]2 a ∈

利用导数处理与不等式有关的问题

利用导数处理与不等式有关的问题 关键词:导数,不等式,单调性,最值。 导数是研究函数性质的一种重要工具。例如求函数的单调区间、求最大(小)值、求函数的值域等等。而在处理与不等式有关的综合性问题时往往需要利用函数的性质;因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题。下面具体讨论导数在解决与不等式有关的问题时的作用。 一、利用导数证明不等式 (一)、利用导数得出函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。即把证明不等式转化为证明函数的单调性。具体有如下几种形式: 1、直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单 调递增(减)区间,自变量越大,函数值越大(小),来证明不等式成立。 例1:x>0时,求证;x 2x 2 --ln(1+x)<0 证明:设f(x)= x 2x 2 --ln(1+x) (x>0), 则f'(x)= 2x 1x - + ∵x>0,∴f'(x)<0,故f(x)在(0,+∞)上递减, 所以x>0时,f(x)a>e, 求证:a b>b a, (e为自然对数的底) 证:要证a b>b a只需证lna b>lnb a 即证:blna-alnb>0 设f(x)=xlna-alnx (x>a>e);则f '(x)=lna-a x , ∵a>e,x>a ∴lna>1,a x <1,∴f '(x)>0,因而f(x)在(e, +∞)上递增 ∵b>a,∴f(b)>f(a);故blna-alnb>alna-alna=0;即blna>alnb 所以a b>b a成立。 (注意,此题若以a为自变量构造函数f(x)=blnx-xlnb (e0时 b x,f'(x)0 ln b <<时 b x ln b >,故f(x)在区间(e, b)

高中数学培训班一对一辅导答题技巧

高中数学培训班一对一辅导答题技巧怎么让数学这个科目变成自己的优势呢?其实,高中数学要变成优势并不难。接下来一对一辅导教你如何进行高三复习? 高三的数学教材是人教版,只有54页,好像就一个最基本的导数和统计,不知道大家现在是不是也用的这本书。这个别落下,估计可以拿到8分左右。 这个几十页的教材学完后,就开始复习了。若平时只有三四十分,说明有很多最基本解题思路的都是没有掌握的。如果把这些最基本的答题技巧都掌握了的话,效果肯定会好很多。 高三一对一辅导一般来说,老师会分三轮复习,第一轮是细到每个知识点的复习(我觉得基本上就是快速的讲一轮新课了);第二轮是梳理一遍,整理归纳;第三轮式 选择题 一、易错点归纳: 九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。 针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。 二、答题方法:

选择题十大速解方法: 排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法; 填空题四大速解方法: 直接法、特殊化法、数形结合法、等价转化法。 解答题 专题一、三角变换与三角函数的性质问题 1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h ④结合性质求解。 2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。 专题二、解三角形问题 1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。 (2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。 2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。③求结果。④再反思:在实施边角

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

导数中不等式相关的几个问题

导数中“不等式”相关的几个问题 f (x )=ln(1+ax ) -2x x +2 . 专题二:不等式两边“变量”相同且不含参 1. (2016年山东高考)已知.当时,证明对于任意的成立. 2. (2016年全国II 高考)讨论函数的单调性,并证明当时,; 专题三:不等式两边不同“变量”的任意存在组合型 1. 已知函数f (x )=x -1 x +1 ,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使 f (x 1)≥ g (x 2),则实数a 的取值范围是__________ 2. 已知函数.设当时,若()2 21 ()ln ,R x f x a x x a x -=-+ ∈1a =()3 ()'2 f x f x +>[]1,2x ∈x x 2f (x)x 2 -= +e 0x >(2)20x x e x -++>1()ln 1a f x x ax x -=-+ -()a R ∈2()2 4.g x x bx =-+1 4 a =

对任意,存在,使,求实数取值范围. 专题四:不等式两边不同“变量”的对等构造、齐次消元型 类型1:对称变量,构造法求解 1. 已知函数f(x)= 2 1x 2 -ax+(a-1)ln x ,1a >。 (1)讨论函数()f x 的单调性; (2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有 1212 ()() 1f x f x x x ->--。 2. 已知函数 (I )讨论函数的单调性; (II )设.如果对任意,,求的 取值范围。 3. 设函数f (x )=ln x +m x ,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x 3 零点的个数; (3)若对任意b >a >0,f (b )-f (a ) b -a <1恒成立,求m 的取值范围. 4. 当()1,,n m n m Z >>∈,时,证明:( )()m n n m mn nm > 1(0,2)x ∈[]21,2x ∈12()()f x g x ≥b 1ln )1()(2 +++=ax x a x f )(x f 1-

高考文科数学真题汇编:导数及应用老师版.doc

2012-2017 年高考文科数学真题汇编:导数及应用老师版

学科教师辅导教案 学员姓名年级高三辅导科目数学 授课老师课时数2h 第次课授课日期及时段2018 年月日: —: 历年高考试题汇编(文)——导数及应用 1.(2014 大纲理)曲线y xe x 1在点(1,1)处切线的斜率等于( C ) A .2e B.e C.2D.1 2.(2014 新标 2 理) 设曲线 y=ax-ln(x+1) 在点 (0,0)处的切线方程为 y=2x,则 a= ( D ) A. 0 B. 1 C. 2 D. 3 3.( 2013 浙江文 ) 已知函数 y=f(x)的图象是下列四个图 象之一,且其导函数 y=f′(x)的图象如右图所示,则该函数的图象是 ( B ) 4.(2012 陕西文)设函数 f(x)= 2x +lnx 则( D )A .x= 1为 f(x) 的极大值点B.x= 1为

f(x) 的极小值点 C.x=2 为 f(x) 的极大值点D.x=2 为 f(x) 的极小值点 5.(2014 新标 2 文) 函数f (x)在x x0 处导数存在,若p : f ( x0 )0 : q : x x0是 f ( x) 的极值点,则 A .p是q的充分必要条件 B. p是q的充分条件,但不是 q 的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是 q 的充分条件,也不是 q 的必要条件 【答案】 C 6.(2012 广东理)曲线y x3 x 3 在点 1,3 处的切线方程为 ___________________. 【答案】 2x-y+1=0 7.(2013 广东理)若曲线y kx ln x 在点 (1,k) 处的切线平行于 x 轴,则k 【答案】 -1 8.(2013 广东文)若曲线y ax2 ln x 在点 (1,a) 处的切线平行于 x 轴,则 a . 【答案】1 2 9 . ( 2014 广东文 ) 曲线y 5 e x 3 在点 (0, 2) 处的切线方程为.

2021-2022年高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第2讲不等式问题练习

2021年高考数学二轮复习上篇专题整合突破专题一函数与导数不等 式第2讲不等式问题练习 一、填空题 1.(xx·苏州调研)已知f (x )=???x 2 +x (x ≥0),-x 2 +x (x <0), 则不等式f (x 2 -x +1)<12的解集是________. 解析 依题意得,函数f (x )是R 上的增函数,且f (3)=12,因此不等式f (x 2-x +1)<12等价于x 2-x +1<3,即x 2-x -2<0,由此解得-1<x <2. 因此,不等式f (x 2 -x +1)<12的解集是(-1,2). 答案 (-1,2) 2.若点A (m ,n )在第一象限,且在直线x 3+y 4 =1上,则mn 的最大值是________. 解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n 4 =1, 所以m 3·n 4≤2 342m n ?? + ? ? ? ?? ? ???? 当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤? ????122=1 4,即mn ≤3,所以mn 的最大值为3. 答案 3 3.(xx·苏北四市模拟)已知函数f (x )=???x 2 +2x ,x ≥0, x 2-2x ,x <0, 若f (-a )+f (a )≤2f (1),则 实数a 的取值范围是________. 解析 f (-a )+f (a )≤2f (1)?

???a ≥0, (-a )2-2×(-a )+a 2 +2a ≤2×3或 ?? ?a <0, (-a )2+2×(-a )+a 2-2a ≤2×3 即???a ≥0,a 2+2a -3≤0或???a <0,a 2-2a -3≤0, 解得0≤a ≤1,或-1≤a <0. 故-1≤a ≤1. 答案 [-1,1] 4.已知函数f (x )=???log 3 x ,x >0, ? ?? ??13x ,x ≤0,那么不等式f (x )≥1的解集为________. 解析 当x >0时,由log 3x ≥1可得x ≥3,当x ≤0时,由? ?? ??13x ≥1可得x ≤0,∴不等 式f (x )≥1的解集为(-∞,0]∪[3,+∞). 答案 (-∞,0]∪[3,+∞) 5.(xx·南京、盐城模拟)若x ,y 满足不等式组???x +2y -2≥0, x -y +1≥0,3x +y -6≤0, 则 x 2+y 2的最小值是 ________. 解析 不等式组所表示的平面区域如图阴影部分所示, x 2+y 2表示原点(0,0)到此区域内的点P (x ,y )的距离. 显然该距离的最小值为原点到直线x +2y -2=0的距离. 故最小值为|0+0-2|12+22=25 5.

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

相关文档
相关文档 最新文档