文档库 最新最全的文档下载
当前位置:文档库 › 踏板车工作原理及维修改装,摩友必学课程

踏板车工作原理及维修改装,摩友必学课程

踏板车工作原理及维修改装,摩友必学课程
踏板车工作原理及维修改装,摩友必学课程

踏板车工作原理及维修改装,摩友必学课程

新风机车改装交流群:30639373

一台普通的引擎对于大多数人来说不须任何改动已经够用了,但对于机器爱好者而言是远远不够的,那么,该如何以最少的投入来改变这颗引擎的表现呢?

是否可以通过调校的手段来达到目的呢?如果可以,我们需要调校哪些部件呢?调校之后会否对引擎造成伤害呢?

调校应该是整体而不应是局部的,局部调校的效果是有,但潜力不大,无法使引擎的性能发挥至极限。

进入正题,先从引擎部分说起吧:

1,缸头:缸头部分主要是将缸头上进排气道打磨并抛光,修整,原装缸头内壁并不光滑且高低不平,对进气效果大打折扣,严重影响引擎的加速性,有条件的可用油石转头打磨,直接用沙纸(200#)也行,将化油器与缸头的连接坐内壁也加以打磨,单这两项其中任何一项对加速性都会有帮助的。

效果:提高进气速度,引擎油门响应度和加速性会有所加强

引擎是如何把把动力输出到传动最终到达后轮的?先不要往下看,自己想一想。OK,答案是:首先在传动箱里,皮带的前部是被普利盘和风叶夹住的,后部是被后离合的开闭盘夹住的~~~ 风叶是固定在曲轴上的,当曲轴旋转时就带动风叶旋转------风叶旋转时带动皮带旋转------而皮带的后部是被后离合开闭盘夹住的,所以后离合也会跟着旋转,当转数高到一定程度时,后离合三个磨擦片的受到的旋转离心力大于小弹簧的拉力,向外甩出,与碗公发生磨擦,带动后轮旋转,车就可以动了--- --- 而皮带旋转的同时也会带动普利盘旋转------普利盘旋转导致里面的普利珠在滑道里甩开并对普利盘产生一定的推力------使得普利盘在轴套上朝着风叶方向滑动------而在滑动的同时普利盘又对皮带产生向上和向外的推力,随着引擎转数的上升,皮带就会越来越往上走,而皮带的长度是固定的,在后离合的开闭盘里皮带就会往内走~~~~~~ (我已经说得很详细了,如果想不通的话再去恶补一下传动的基础知识吧~~~)那绵羊传动最关键的几个组件是什么呢?无论你的是什么车型,只要是皮带传动的,无外乎包括:1.风叶、轴套、普利盘、普利珠、普利压盘。

2.皮带。

3. 碗公,后离合磨擦片,大弹簧,小弹簧。而通常改得最多的是哪里呢?普利盘及风叶,普利珠,大小弹簧。现在,我们就从最简单的东西说起,大小弹簧的改装一、关于小弹簧的改装:首先来看,小弹簧主要起什么作用,在后离合的构造中,三个小弹簧紧紧的拉着三块离合器磨擦片,引擎运转之后,通过转数的拉高,将离合器磨擦片甩出和碗公结合,当引擎转数下降时,离合器磨擦片就被小弹簧拉力拉回而和碗公分离,所以小弹簧的硬度就显得尤为重要,比较硬的小弹簧会让摩擦片甩出的时间变迟,离合器在转数拉得比较高的时候才会结合,这样就可以用较高的转数来起步,瞬间的扭力会增强,起步当然比较有冲劲,那是不是说,小弹簧的硬度越硬越好呢?比如说2000转,1500转之类的~~~,答案是否定的,小弹簧过硬只会让你在日常的使用中:1.每次起步都要多拧一点油门,浪费汽油来拉高引擎转数;2.增加皮带的负担,温度很有可能会更高,3.特别是125排量的原厂车,过硬的小弹簧起步会变得非常无力,根本没有任何爆发力,因为磨擦片抓不住碗公。(注:改装小弹簧的转数,是指高出原装弹簧多少转,比如说2000转小弹簧,指的是高于原装小弹簧2000转才会松开离合器磨擦片。)一般来说,原厂的GY6起步转数应该在

2700-3100转左右,试想一下,如果两台车并排着同时拧油门起跑,原装未改的油门拧到不到1/5就可以走了,而另一台改了2000转的小弹簧,可能要拧到1/3油门才会动,原装车已经冲出去几米,进入中低段的加速了,改装2000转小弹簧的车可能才刚起步,它所释放的爆发力能够让改装车追得上原装车吗?这样你能说他的起步快吗?在此,我也想澄清一个观点,究竟什么叫起步?有人说是0---30,或者0-40,而我理解,所谓的起步就是指驾车者骑车时,拧动油门,车子刚好能够离开原地的那一瞬间,而不是冲出去以后到表速30或者60时,那叫中低速段的加速。所以我更喜欢让他在低转时就结合,直接用引擎的转数来拉速度,会比用离合器延迟接合来得好,

但所谓的低转是有一定限度的,不能一味的低,太低也会造成离合器磨擦片抓不住碗公,产生打滑,起步也会发抖,那究竟用什么标准呢?我认为是原厂,所以,不是改很大缸的话,小弹簧最好用的还是原厂的,或者最高不要用到超过1000转的------除非你要参加场地赛了,否则没有必要用硬度太大的小弹簧,硬度大的小弹簧只在场地赛的弯道中进出弯有用~~~ 最后还要提醒一点,国内市场上的原厂车小弹簧一般都会偏软,特别是用到一两万公里以后,由于车价一直在降,导致车的用料越来越省,大小弹簧热衰竭会越来越明显~~~ ,所以,在找不到品质好的代用品之前,定期更换一下大小弹簧吧。(未完待续)二、关于大弹簧的改装:

通常有一种看法,想要改善车的加速的话,最好是更换硬度大的大弹簧,比如说1000转,1500转,2000转之类的,那再来想一下,大弹簧变硬之后有什么好处呢?大弹簧变硬之后,要让弹簧产生同样的压缩形变,必须要施以更大的作用力,所以必须用更高的转数才能把开闭盘撑开到相同的开度,而收油时,较硬的大弹簧可以将开闭盘上的皮带推回更高的位置,因而提升再加速的效果,另外,较硬的弹簧可以提供更强的挟持力,可以减少皮带打滑的情形------

那是不是说越硬越好呢?答案是否定的,因为大弹簧变硬以后,车子高速时开闭盘能不能完全打开呢?如果打不开尾速就完全出不来,原厂125的车用2000转的大弹簧我敢说尾速一定很难看,而且皮带寿命也会大打折扣,所以同样的,我建议只有在改缸后再来改大弹簧,因为改大缸后原厂的大弹簧已经不能提供对皮带足够的挟持力了,未改缸车大弹簧我是不建议换的,要换只换回原厂的或者不超过1000转的大弹簧。

需要注意的是,市售大弹簧不同品牌即使标注同样的转数硬度也不相同,包括各厂家生产的原厂大弹簧硬度也不一样,如果原装的大弹簧软了,可以寻找其它原厂品牌的大弹簧来替代,比如说150踏板用的大弹簧。

值得一提的是,还有一种改装件叫扭力加速器,也就是在开闭盘里面垫钢珠,增加了大弹簧的预载,理论上还能减少开闭盘运作时的弹簧扭曲变形,使车的反应变快~~~,但动辄上百元的代价,比换一根原厂弹簧高多了~~~~~~

现在先来说说传动如何搭配更合理,传统的看法认为,选择好合适的大弹簧后,传动搭配的重点就在于前盘的珠重了:轻珠重起步,重珠重尾速,看你要车表现出什么特性了,如果你追求起步和加速,珠子可以换轻一点,但也不要一味的轻,125的GY6你配上9克的珠也许要到四五千转才起步了,但由于转速够了没有换高档(指皮带往上走),所以加速能力也不怎么样,除了废油以外,发动机磨损大、皮带还翘得快;想要尾速的话,极端的配法是

配上很重的珠,比如20克,低转时珠子就把盘子推出去了,但转速没够就换高档(皮带往上走),车的起步加速当然会比较弱,所以,就我所试验的范围,个人觉得调配珠重最好在原厂珠重的正负 2 克之内,这样就缩小了选择的范围,追求性能的朋友我还是建议使用比原厂轻1到2克的珠子,减轻引擎的负担来充分发挥它的潜力。OK,简单说了一下珠重的问题,现在再来想一下,在这里表面上你调的是珠重,实质上调的是什么?调的就是如何更合理的利用引擎的转速!比原厂设计更减少传动的损失!所以要改车的话,我强烈建议装一个转速表,因为它反映了太多的东西:你车的最高转数能到多少?潜力大不大?你的常用速段转速是多少?这个速段用这个转数在跑合不合理,你所配的珠重在起步、中段加速和尾速是不是最优?搭配是不是最合理?~~~~~ 不知各位是否还记得随车的说明书上会有一页清楚地注明了该车的最大功率及最大扭矩,比如五本追梦的说明书标明最大功率6.18KW/7500RPM,最大扭矩8.3N/6000RPM~~~~,其实各125绵羊的这两个指标都相差不是很大,但千万不要忽略这两个指标,因为它给你指出了传动调整的方向!- -----调珠重的时候一定要掌握这个原则:让发动机的转数维持在最大扭矩和最大马力峰值附近!把引擎的常用速段转数调得比最大扭矩转数稍微低个七八百转,这样在日常使用中,需要超车时急加油引擎转数可以迅速飙升至最大扭矩范围,中段加速就会快!------因此我建议你把最大扭矩先调到处于车的中速偏高一点的范围,这样先把中段的转速确定,对尾段而言,尾速时的转速基本就可以到位,剩下的事情就交给引擎来做;然后再回过头来看起步

如果起步冲劲不够可以稍微改硬一点的小弹簧,让磨擦片晚一点与碗公接触,或者用多边形珠子来加强起步~~~ 就像我的车常用速段为60,配珠重让此时的转速保持在5100转左右,这样急加油超车到表速80时转数恰好在最大扭矩附近6300转左右);而改G3盘后起步的转数大概在3100转左右,也不会很费油,到表速100出头时,转数又恰好维持在最大马力转速的7500转左右,除了起步排气声音稍微大点外,骑起来还是比较顺畅,天涯飞驰和坛子里的GUNROSE试骑之后更说我的车震动太小,将它戏称为电甁车。实际上,在最近经常油门到底试车的情况下,连续两次测的油耗都为2.6升/百公里,对于一台三年多车龄的GY6而言,我已经很满意了~~~

好了,前文提出了一个问题,如何能让原厂前盘被皮带吃到最外面?注意,是吃到最外面,而不是从里到外全部吃满!现在就为大家解开迷团吧~~~~

各位先来想一下,前盘组件里是不是有一个东西叫“轴套”,对,就是它,修改轴套我就能让你的原厂盘吃到最外,由传动运作原理可知,皮带在怠速时会被风叶与盘夹紧,皮带会落到风叶内圈的最里圈,那么假如我设定皮带一开始就高于最里圈1MM,到尾速的时候皮带自然也会往上走至少1MM甚至更高!~~~~~~那么怎样才能把皮带设定得在风叶与前盘间被夹得一开始就高一点呢?就原厂盘来说,就是车短轴套!但记住,车多少要补回多少,一定要维持轴套的总长,以免影响前盘的动平衡,怎么补?很简单,在普利压盘的后面垫回来,比如说轴套车短了3MM,那么必须在压盘后面补回一个3MM的垫片!

当我把轴套车短3MM以后,皮带已经往上走了8.5-5.5=3MM,尾速能高多少呢?根据我修车的朋友帮人改车的结果,十台车有八台尾速高了5-10公里,只有两台车子太破,尾速没有改变,而且,用这个方法极度的省油,油耗将近比原来降了0.4升/百公里(我车原来的油耗就是2.7升左右,换算下来油耗大概降了15%)~~~

通常传动的改装,有利必有弊,那么再来想一下,把轴套车短3MM会带来会坏处呢?嗯,皮带一起步时位置就高了,车子起步时的扭矩就小了,车子会变得非常的敏感,轻轻一拧车就窜出去,就会带来起步的抖抖抖~~~,没错,车得太多,抖是一定会的!(除非你的皮

带已经磨得很窄了,比如说天涯的那台老光阳,皮带宽度磨得只剩17MM,他把轴套车短3MM对起步一点影响都没有)

那么如果我把它车少一点呢?比如2MM,比如1MM~~~,呵呵,自己试吧,我只是提供一种思路,传动的东西不必过于教条,因为皮带也是有磨损的,像GY6的皮带标准宽度是20MM,那么在使用3-5000公里以后,它还会维持20MM的宽度吗?不可能!所以车轴套绝对是种可行的方法,理论上而言,车得越多,越影响起步,但对尾速就有利,车得越少,就反之,~~~~但与原车相比,车过轴套的总比未车过的省油,高速又比较能上得去

2,火嘴:将装车火嘴拆下,找一个长点的火嘴(比原车火嘴长约2-3毫米),或把原车火嘴的垫片取下后,再车短0。5-1毫米,(注:有些火嘴的内壁厚度可能不够,车过后在装车时不能过于用力,否则,火嘴可能会被拧断!)这么做的目的是让点火点更接近燃烧室中心位置,使油气在点燃时更接近燃烧室中心点开始爆炸,燃烧速度会更快,暴发的能量也愈大。

效果:提高燃烧效果,引擎出力更大。

3,点火:将转子上触发点位置前移1-1。5厘米,提前点火时间。(且不要论证这么做是否能改变点火时间,各位试试便知!)

效果,引擎出力更大。

4,配气:正常的情况活塞在上止点时,齿轮上的两条刻度线是平行于缸头的,我们要做的是将齿轮后移一格,一般引擎配气机构大都早开晚关,这么做的目的是尽可能的调整这一状况。

效果,出力更大,加速性得到提高。

5,化油器:化油器的调整会比较复杂,需根据引擎实际燃烧状况而设定,可调试油针可降低油针位,一般设定在上一或二格,试车,如感觉加速时没有停顿为易,如引擎能正常工作,再试着降低油面试下,极速行驶,回油再加油无停顿为准,将混合器拧到底(最稀状态),再往后退2。5-3圈,再以40KM速度行驶时迅速回油感觉有轻微放炮为准。再将化油器进气口打磨抛光,在空滤进气口套根管子,洞口朝前(在行驶时可增加进气量),所有这些调校要保证引擎怠速稳定。(记得以前有位XD贴过一篇类似这条的贴子)

效果,将引擎推向更高转速,有利于极速的延伸。

6,前后悬挂:这部分的调校也非常重要,很多人认为前减硬点较好,其实不然,过硬的前减在入弯时会变得极难操控,很难快速入弯,但也不能太软,过软的前减在高速刹车时非常危险,因其速度降的太快,过软的前减回弹也太快,在高速时,车会变得不稳(总之,我很难用明确的语言来说明。调校!需要的不是太多理论,而是绝对的经验),后减同样如此,过硬的后减会使引擎动力输出大打折扣,而且在大油门起步时,容易造成后轮因抓不住地而

打滑,后减的调校应是在大油门起步时,车辆尾部有明显抬起感觉(利于动力输出),在高速回油后再加油应有下沉感为好(利于轮胎抓地)。

效果,稳定的悬挂,给你高速时可靠的操控性。

7,活塞,曲轴:轻量化,曲轴的加工我不想多说,我废了将进10根曲轴才完成我工具车上的唯一一根,(虽然引擎转速有明显提升,加速性得到改善,但仍有缺陷,高速时动力优势不明显)。活塞的改动可参照福星125的活塞。活塞内臂也可加工,但要确保加工后活塞的总体强度。————对于新手不推荐这一条

效果,高转的保证。

8,打磨缸头:不再重复,见另一文章。

效果,动力,加速提升明显。

9点火器,综合上诉调校,点火器的使用也非常关键,交流抑或直流(鉴于论坛的复杂性,我不想多说交流与直流哪个更好)个人意见是:交流!!以下是我对引擎调校后用几款交流点火器测试后得出的效果。

shindengen(新电元)该点火器是我91年幸福125(挡车)的原装点火器:0KM到极速加速迅猛,流畅,动力充沛,起步动力非常强劲,极速可较早出现,0KM到极速推背感明显,美中不足的是,该点火器最初设计是为配备CG125顶杆机短行程引擎,对于GY6而言,点火时间太早,使的GY6引擎转速提升太快,造成行驶时引擎震动明显。

台全点火器:起步时动力较新电元相对弱些,加速感稍逊,但引擎震动较新电元好得多,极速出现时间较晚,总体表现还算不错。

仟代点火器:起步动力惊人,远远超过新电元,加速感惊人,极速表现较差,无法达到新电元和台全的最高速度,原因是其设计的点火时间过早。

三信:在国内算是不错的点火器。

10,就这些了,如各位XD调校得法再配合打磨缸头的话,说句大话,在国产125CC(4T)中,你的引擎是无敌的,无论是加速,极速,CH125,UE125也不是对手,甚至可以干掉国产GY6150。

最后想说的是,各位相信也好不信也罢,对于原厂设定的引擎,在不改变其排量的情况下,通过精心调校,是可以改变其功率输出而得到更大马力的(如果你有足够的机械知识与丰富的经验)

电磁炉工作原理及用到的传感器

一、电磁炉工作原理 电磁炉作为厨具市场的一种新型灶具,它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理。 1.外部加热原理: 电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。 2.内部结构及加热原理: 电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

二、传感器类型 传感器主要是用于获取温度电压信息,调控电路或是保护电磁炉内部的元器件,起到反馈信息的作用。主要用到2种负温度系数的半导体热敏电阻 ,一种检测炉面温度,一种检测IBGT的工作温度。 (一)热敏电阻(热电式传感器) 此处为NTC热敏电阻(负温度系数热敏电阻),由金属氧化物组成(如铜)。按用途不同分成两大类,第一类用于测量温度,它的电阻值与温度之间呈负的指数关系;另一类为负的突变型,当其温度上升到某设定值时,其电阻值突然下降,多用于各种电子电路中抑制浪涌电流,起保护作用。 1.锅底温度监测电路 炉温热敏电阻:加热锅具底部的温度透过微晶玻璃板传至紧贴玻璃板底的NTC热敏电阻,该电阻阻值的变化影响电阻的分压,微处理器接收变化的电压信号,有效地测控锅具的温度。为使传感器温度真实地反映炉温,热敏电阻一般与玻璃板直接接触,且与线盘结合在一起。当锅具之温度达到140°C 时,则应进行关机保护。如图所示(中间是温度传感器):

汽车各部位工作原理

汽车各部位工作原理

————————————————————————————————作者: ————————————————————————————————日期: ?

差速器具有三种功能: ?使发动机动力指向车轮 ?相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 ?在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。 现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个, 因为在转弯时前轮行驶的距离与后轮不同。分时四轮驱动系统在前轮和后轮之间没有差速器,相反,他们被锁止在一起,以便前轮和后轮以相同的平均速

电磁炉原理图和工作原理(维修必备神器)

电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。 1.2 458系列简介 458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。200~240V机种电压使用范围为 160~260V, 100~120V机种电压使用范围为90~135V。全系列机种均适用于50、60Hz的电压频率。使用环境温度为-23℃~45℃。电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材

质检测。 458系列虽然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。电路的各项测控主要由一块8位4K内存的单片机组成,外围线路简单且零件极少,并设有故障报警功能,故电路可靠性高,维修容易,维修时根据故障报警指示,对应检修相关单元电路,大部分均可轻易解决。 二、原理分析 2.1 特殊零件简介 2.1.1 LM339集成电路 LM339内置四个翻转电压为6mV的电压比较器,当电压比较器输入端电压正向时(+输入端电压高于-入输端电压), 置于LM339内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(-输入端电压高于+输入端电压), 置于LM339内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低,此时输出端为0V。 2.1.2 IGBT

全面讲解电磁炉的工作原理(修正排版)

最详细电磁炉原理讲解 一、原理简介 电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速动动产生热量,然后加热锅中的食物。 二、电磁炉的原理方块图 三、电磁炉工作原理说明 1.主回路

图中桥整DB1将工频(50HZ)电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT 由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。IGBT截止时,L2、C12发生串联谐振,IGBT的C极对地产生高压脉冲。当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。上述过程周而复始,最终产生25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。串联谐振的频率取之L2、C12的参数。 C11为电源滤波电容,CNR1为压敏电阻(突波吸收器)。当AC电源电压因故突然升在时,即瞬间短路,使保险丝迅速熔断,以保护电路。 2.副电源 开关电源式主板共有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT的驱动回路和供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。 3.冷却风扇 主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。通电瞬间CPU 会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。

汽车各部件工作原理图解

汽车各部件工作原理(图解)

————————————————————————————————作者: ————————————————————————————————日期:

汽车各部位工作原理(图示) ? 差速器具有三种功能: 使发动机动力指向车轮?相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

柴油机柱塞式喷油泵结构工作原理基础

柴油机柱塞式喷油泵结构工作原理基础 喷油泵是柴油供给系中最重要的零件,它的性能和质量对柴油机影响极大,被称为柴油机的"心脏"。 ?一.功用、要求、型式 ?功用:提高柴油压力,按照发动机的工作顺序,负荷大小,定时定量地向喷油器输送高压柴油,且各缸供油压力均等。 要求:?(1)泵油压力要保证喷射压力和雾化质量的要求。?(2)供油量应符合柴油机工作所需的精确数量。 (3)保证按柴油机的工作顺序,在规定的时间内准确供油。?(4)供油量和供油时间可调正,并保证各缸供油均匀。(5)供油规律应保证柴油燃烧完全。 (6)供油开始和结束,动作敏捷,断油干脆,避免滴油。?类型:车用柴油机的喷油泵按其工作原理不同可分为柱塞式喷油泵、喷油泵- 喷油器和转子分配式喷油泵三类。?? 二.柱塞泵的泵油原理 柱塞泵的泵油机构包括两套精密偶件: 柱塞和柱塞套是一对精密偶件,经配对研磨后不能互换,要求有高的精度和光洁度和好的耐磨性,其径向间隙为0.002~0.003mm

柱塞头部圆柱面上切有斜槽,并通过径向孔、轴向孔与顶部相通,其目的是改变循环供油量;柱塞套上制有进、回油孔,均与泵上体内低压油腔相通,柱塞套装入泵上体后,应用定位螺钉定位。?柱塞头部斜槽的位置不同,改变供油量的方法也不同。出油阀和出油阀座也是一对精密偶件,配对研磨后不能互换,其配合间隙为0.01 。 出油阀是一个单向阀,在弹簧压力作用下,阀上部圆锥面与阀座严密配合,其作用是在停供时,将高压油管与柱塞上端空腔隔绝,防止高压油管内的油倒流入喷油泵内。?出油阀的下部呈十字断面,既能导向,又能通过柴油。出油阀的锥面下有一个小的圆柱面,称为减压环带,其作用是在供油终了时,使高压油管内的油压迅速下降,避免喷孔处产生滴油现象。当环带落入阀座内时则使上方容积很快增大,压力迅速减小,停喷迅速。? 泵油原理 工作时,在喷油泵凸轮轴上的凸轮与柱塞弹簧的作用下,迫使柱塞作上、下往复运动,从而完成泵油任务,泵油过程可分为以下三个阶段。 ?进油过程

金灶电磁炉维修资料

工作原理 这里例讲金灶KJ —10E,是广东海利公司近两年的新产品,双炉结构,左边是消毒锅,右边是烧水壶。由于没有 现成的电路图,笔者只好按照实物绘制了电路原理图(见图1)。该机的电磁感应加热电路与其他品牌的电磁炉(灶) 基本相同,是利用电磁感应原理将电能转换为热能的电器。开关管IGBT (VT3,型号:H20R1202)的饱和导通和 截止时间(占空比)受控于MCU输出的PWM脉冲信号;C8 ( g F/1200V)与加热线盘L2 (或L3,电感量约为)组成频率约为24kHz 的并联谐振电路。当电磁炉工作时,加热线盘周围便产生高频交变电磁场,当炉面放置导磁又导电的金属锅(壶)具时,交变的磁场使锅(壶)底感应出强大的涡流而产生高热。下面具体分析一下它的

蚩甘 慝甘 M&rl -SG l&l -----* 0- (ki jotf AMr rfrp I hHt )¥ Wf.1 \i Wfci :嘟 纠 HDOQXGlQ 19 舄爲… 士 10年 EX^CI B L 弋 “ -SJtA tx "|. 0 r*0 ^3 -iEO-SiO start 丄 -A $ w 砧 丁,EUA 七5 Di S D 2 0 C b c ppitc ^rer :>?jra : r ? 4 1 11 £1 > 3 51 M IL 肌 冃$ tx

+ 300V 直流高压电源是直接由 220V 交流市电经高压整流桥堆(B1,型号:D15XB60H )整流、C7 (4^F/400V ) 滤波产生的,是加热线盘、IGBT 管工作的主电源。VIPer22A (IC2)是小功率智能开关电源集成电路,其引脚功能 如图2所示。该集成电路内置场效应开关管、 60kHz 脉宽调制器、智能调整电路及过流、过压、过热保护电路。它 具有外围电路简洁、输入电压适应范围宽、输出电压稳定等优点。本机由 VIPer22A 和Z1、C5、C4、VD1、 VD2、L1、C3等外围元件组成+ 18V 开关稳压电源,主要是供给 VT1、VT2、IC1 (LM339八切换继电器和排热 电扇使用。+ 5V 的电源也是由+ 18V 电源经78L05稳压,C14滤波产生的,主要是作为基准电压源和供给控制显 示电路使用。 2. 控制显示电路 控制显示电路是由 8位MCU 芯片S3F9454BZZ-DK94 (IC3 )、8位串入/并出移位寄存器 74HC164N (IC4 )、数码 管、三极管、LED 、按键和电阻、电容等元件组成的,并通过 8位接插件与主电路板连接。它的引脚功能图如图 所示(详细资料 3. 同步电路 为了避免 IGBT 管在导通时被大电流冲击而损坏,要保证加到 IGBT 管的 G 极上的 PWM 脉冲前沿与 C 极上PM ---J i 1 20 IS 3 祁 ¥科 4 5 5 rt 15 7 114 □ 112 10 V S<]URCI : 讷 RZZA 1 t2 <■. DRAIN CONTROL v.. -R.ESE T ?-.2 PE 3 ' P2.2 ' 嘉門击一 X - 'P\1 -… PC S ADC^'F-vV^ i 1': 7 心凤:; F2 3JADC8/CL0 13 肖 住 ad> —POO ^^G-.'INTOrSGL —FO ^APC14MTV&QA PC ? AK? POS^DG^ -PC 4 ADC-i P0 5 ADCS

汽车构造原理图解

汽车构造(发动机,底盘,车身,电气设备) 1. 发动机:发动机2大机构5大系:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系。 2. 底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。 3. 车身:车身安装在底盘的车架上,用以驾驶员、旅客乘坐或装载货物。轿车、客车的车身一般是整体结构,货车车身一般是由驾驶室和货箱两部分组成。 4. 电气设备:电气设备由电源和用电设备两大部分组成。电源包括蓄电池和发电机;用电设备包括发动机的起动系、汽油机的点火系和其它用电装置。 性能参数 1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。 2. 最大总质量(kg):汽车满载时的总质量。 3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。 4. 最大轴载质量(kg):汽车单轴所承载的最大总质量。与道路通过性有关。 5. 车长(mm):汽车长度方向两极端点间的距离。 6. 车宽(mm):汽车宽度方向两极端点间的距离。 7. 车高(mm):汽车最高点至地面间的距离。 8. 轴距(mm):汽车前轴中心至后轴中心的距离。 9. 轮距(mm):同一车轿左右轮胎胎面中心线间的距离。 10. 前悬(mm):汽车最前端至前轴中心的距离。 11. 后悬(mm):汽车最后端至后轴中心的距离。 12. 最小离地间隙(mm):汽车满载时,最低点至地面的距离。 13. 接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。 14. 离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。 15. 转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平面上的轨迹圆半径。转向盘转到极限位置时的转弯半径为最小转弯半径。 16. 最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。 17. 最大爬坡度(%):汽车满载时的最大爬坡能力。 18. 平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。 19. 车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m 代表驱动轮数。

电磁炉原理图和工作原理与维修(全)

电磁炉原理图和工作原理与维修 目录 一、简介 (2) 1.1 电磁加热原理 (2) 1.2 458 系列简介 (2) 二、原理分析 (2) 2.1 特殊零件简介 (2) 2.2 电路方框图 (4) 2.3 主回路原理分析 (5) 2.4 振荡电路 (6) 2.5 IGBT 激励电路 (7) 2.6 PWM永宽调控电路 (7) 2.7 同步电路 (7) 2.8 加热开关控制 (8) 2.9 VAC检测电路 (8) 2.10 电流检测电路 (9) 2.11 VCE检测电路 (9) 2.12 浪涌电压监测电路 (10) 2.13 过零检测 (10) 2.14 锅底温度监测电路 (11) 2.15 IGBT 温度监测电路 (11) 2.16 散热系统 (12) 2.17 主电源 (12) 2.18 辅助电源 (12) 2.19 报警电路 (13) 三、故障维修 (13) 3.1 故障代码 (13) 3.2 主板检测标准 (13)

3.3 故障案例 (15) 一、简介 1.1 电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz 的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz 的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。 1.2 458 系列简介 458 系列是由建安电子技术开发制造厂设计开发的新一代电磁炉, 界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开/ 关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%并且在全电压范围内功率自动恒定。200~240V机种电压使用范围为 160~260V,100~120V机种电压使用范围为90~135V全系列机种均适用于50、60Hz 的电压频率。使用环境温度为-23 C ~45C。电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机)保护、IGBT 温度限制、IGBT 温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE W制、VCE过高保护、过零检测、小物 检测、锅具材质检测。 458 系列虽然机种较多, 且功能复杂, 但不同的机种其主控电路原理一样, 区别只是零件参数的差异及CPU程序不同而己。电路的各项测控主要由一块8位4K 内存的单片机组成, 外围线路简单且零件极少, 并设有故障报警功能, 故电路可靠性高, 维修容易, 维修时根据故障报警指示, 对应检修相关单元电路, 大部分均可轻易解决。 二、原理分析 2.1 特殊零件简介 2.1.1 LM339集成电路

电磁炉的工作原理

电磁炉的工作原理 一、什么是电磁炉 电磁炉(又名电磁灶)--是现代厨房革命的产物,是无需明火或传导式加热的无火煮食厨具,完全区别于传统所有的有火或无火传导加热厨具(炉具)。 二、电磁炉工作原理 电磁炉作为厨具市场的一种新型灶具。它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。因此,在电磁炉较普及的一些国家里,人们誉之为"烹饪之神"和"绿色炉具"。 三、电磁炉的主要构成 电磁炉主要有两大部分构成:电子线路部分及结构性包装部分。 ①电子线路部分包括:功率板、主机板、灯板、线圈盘及热敏支架、风扇马达等。 ②结构性包装部分包括:瓷板、塑胶上下盖、风扇叶、风扇支架、电源线、说明书、功率贴纸、操作胶片、合格证、塑胶袋、防震泡沫、彩盒、条码、卡通箱。 天驰电磁炉与其它品牌部件的优劣对比 主要原件天驰电磁炉一般电磁炉 芯片(CPU)微电脑中央处理器韩国三星芯片,独立方案,越用越稳定,无法被破译现代芯片,行业通用 IGBT 德国西门子、美国快捷;不同功率使用不同需求的电流要求(如:25N与40N)国内通用件,以假功率代替大功率,蒙骗消费者 语音芯片行内领先,全部覆盖每个操作功能少 塑胶壳使用VO@HB配方料,高阻燃耐磨性好一般ABS757或低档PP料,甚至用工业翻新料 自动跟踪器使用高敏度热敏电阻探测,快速反馈状态给CPU,达到全面保护作用使用高精度+-1%的热敏传感器一般使用+-5%或热敏传感器

汽车各部件工作原理(图解)

汽车各部位工作原理(图示) 差速器具有三种功能: 使发动机动力指向车轮 相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组

件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。 现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

分时四轮驱动系统在前轮和后轮之间没有差速器,相反,他们被锁止在一起,以便前轮和后轮以相同的平均速度转弯。这就是当四轮驱动系统啮合时这些车辆在混凝土路面上很难转弯的原因。以不同的速度旋转我们将介绍最简单的差速器——开式差速器。首先,我们需要了解一些术语:下面的图像标示的是开式差速器的组件。

汽车构造原理

第3章 汽车构造 37 第3章 汽车构造 汽车是一个数以万计零件组成的移动机器,已有上百年的发展历史,那么其结构到底如何?各部分有何作用?各总成的工作原理如何?这是很多想了解汽车的人关心的问题。 本章主要介绍汽车主要总成及其零部件的作用、组成及工作原理。汽车由发动机、底盘、车身和电气设备四大组成部分,本章对组成汽车的各个部分分别介绍其功用、组成、结构及工作原理等。 汽车的组成 发动机的工作原理 发动机两大机构五大系统的组成与工作原理 离合器、变速器等的组成与工作原理 车架分类与结构 转向系统的组成与工作原理 制动系统的组成与工作原理 前照灯的组成 承载式车身各部名称 3.1 发动机构造 发动机是将热能转化成机械能的机器,它是汽车行驶的动力源。按所用燃料不同,分为汽油机和柴油机。汽油机由两大机构五大系统组成,分别为曲柄连杆机构、配气机构、起动系统、点火系统、燃料供给系统、冷却系统和润滑系统;而柴油机由于其着火方式为压燃,因此柴油机不需要点火系统,所以柴油机由两大机构和四大系统组成。起动系统、点火系统在3.3节汽车电气部分介绍。 3.1.1 发动机的工作原理 1.常用术语 图3-1所示为一单缸四冲程汽油发动机,在缸盖上安装有进气门和排气门,火花塞通过螺纹拧到缸盖上,活塞在汽缸里作往复运动,活塞通过活塞销和连杆与曲轴连接,电脑ECU 接收各传感器传来的信号,控制喷油器喷油。

汽车概论 38 1-ECU ;2-空气滤清器;3-节气门;4-喷油器;5-进气门;6-汽缸盖;7-火花塞;8-排气门; 9-气门弹簧;10-汽缸体;11-活塞;12-连杆;13-曲轴;14-油底壳;15-油底壳 图3-1 单缸四冲程汽油发动机 描述发动机工作的常用术语如下(见图3-2)。 (1)上止点:活塞向上运动到最高位置,即活塞离曲轴回转中心最远处。 (2)下止点:活塞向下运动到最低位置,即活塞离曲轴回转中心最近处。 (3)活塞行程:上、下两止点间的距离称为活塞行程。 (4)燃烧室容积:活塞运行到上止点时,活塞上方的容积称为燃烧室容积。 (5)汽缸工作容积:上止点到下止点所让出的空间容积,即上、下两止点间的容积称为汽缸工作容积。 (6)发动机排量:发动机所有汽缸工作容积之和称为发动机的排量。对于单缸发动机来说,汽缸工作容积在数值上即为发动机的排量。 (7)汽缸总容积:活塞运行到下止点时,活塞上方的容积称为汽缸总容积。即汽缸工作容积与燃烧室容积之和。 (8)压缩比:汽缸总容积与燃烧室容积的比值称为压缩比。它表示活塞由下止点运动到上止点时,汽缸内气体被压缩的程度。压缩比越大,压缩终了时汽缸内的气体压力和温度就越高,因而发动机发出的功率就越大,经济性越好。一般车用汽油机的压缩比为8~10,柴油机的压缩比为15~22。 (9)曲柄半径:曲轴连杆轴颈与曲轴主轴颈之间的距离称曲柄半径R ,显然,S =2R ,曲轴每转一周,活塞移动两个行程。 (10)发动机的工作循环:在汽缸内进行的每一次将燃料燃烧的热能转化为机械能的一系列连续过程称为发动机的工作循环。 (11)二冲程发动机:两个行程完成一个工作循环的发动机称为二冲程发动机,二冲程发动机重量轻,制造成本低,但是其经济性和净化性能较差,通常摩托车和农用机械使用较广泛。

电磁炉工作原理说明之电路分析

电磁炉工作原理说明之电路分析 1、主回路 图中整流桥BI将工频(50HZ)电压变成脉动直流电压,L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。IGBT截止时,L2、C21发生串联谐振,IGBT的C极对地产生高压脉冲。当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。上述过程周而复始,最终产25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。串联谐振的频率取之L2、C21的参数。 C5为电源滤波电容。CNR1为压敏电阻(突波吸收器),当AC电源电压因故突然升高时,瞬间短路,使保险丝迅速熔断,以保护电路。 2、副电源

开关电源提供有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT 的驱动回路,同步比较IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。 3、冷却风扇 当电源接通时主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达至机内散热目的,避免零件因高温工作环境造成损坏故障。当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。通电瞬间CPU会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。 4、定温控制及过热保护电路

该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT上的热敏电阻(负温度系数)感测温度而改变电阻的一随温度变化的电压单位传送至主控IC(CPU),CPU经A/D转换后对照温度设定值比较而作出运行或停止运行信号。 5、主控IC(CPU)主要功能 18脚主控IC主要功能如下: (1)电源ON/OFF切换控制 (2)加热火力/定温温度控制 (3)各种自动功能的控制 (4)无负载检知及自动关机 (5)按键功能输入检知 (6)机内温升过高保护 (7)锅具检知 (8)炉面过热告知 (9)散热风扇控制 (10)各种面板显示的控制 6、负载电流检知电路 该电路中T2(互感器)串接在DB(桥式整流器)前的线路上,因此T2二次侧的AC电压可反映输入电流的变化,此AC电压再经D13、D14、D15、D5全波整流为DC电压,该电压经分压后直接送CPU的AD转换后,CPU根据转换后的AD 值判断电流大小经软件计算功率并控制PWM输出大小来控制功率及检知负载

电磁炉工作原理及常见故障及检修方法

前言 本章一共2节主要介绍电磁炉的工作原理、系统部件组成以及常见故障及检修方法,希望能够帮助到技术工作人员。 第1节 电磁炉工作原理 电磁炉是利用电磁感应原理,电流经过线盘产生变化磁场,磁场感应到炉面上的铁质锅具底部产生涡流,从而产生大量的热量,直接使得锅具底部迅速发热,进而使得食物得到加热。电磁炉由交流电输入部分、大电流整流滤波输出部分、线盘高频振荡电路部分 、开关电源部分 等功能模块组成。下面将介绍电磁炉的不同功能模块工作原理以及电磁炉的常见故障及检修方法。如下图是电磁炉的结构图。 工作结构图 电路原理图(见附图 1)

交流电输入部分 市电220V经接插件L1、N1接入电路。电路开始通电。由于电磁炉工作电流较大,接插件N1、L1和保险管两端引脚焊接必须牢固,目的是避免接触不良。电磁炉的保险丝是个保护装置,在更换的过程中要选用同型号的更换。(过小电流不够过、易熔断。过大保护失去作用)。所以16A/250V的保险丝不能随意改动或代换(更不能直接短路)。 L1、N1之间有电容C1,该电容既能防止电磁炉工作产生的高频干扰脉冲窜入市电网干扰其他电器,又防止市电网的干扰脉冲窜入电磁炉电路影响其工作。该电容的容量通常为2uF—5 uF。如图所示

大电流整流滤波输出部分 市电经过桥式整流器BG1(桥堆)整流出来再经过L1、C4滤波后输出300V 直流电,为线盘高频振荡供电。BG1是个大电流高耐压器件,其规格为20A800V。当其烧坏后,不能随意用其它整流器代替。一定要用同型号或比它更大电流高耐压的整流器(外观、管脚、接口相同)替换。L1扼流圈、C4电容组成倒L型滤波电路。作用是把整流出来的直流脉动成分滤去,使输出波形更加平滑。当C4、8uF/400V(DC)电容击穿短路时,保险丝会烧断,整流器也会因电流过大而烧坏。此电容容量变值时(变小),直流输出300V电压会明显下降,当C4没有容量时,也会导致烧IGBT,维修时要特别注意。如图所示

(完整版)史上最全面的汽车各零件部位图解有图解说

打开发动机盖,就是这个样子了,这个是4A13发动机。 空气滤清器:作用是过滤空气中的灰尘杂质,让洁净的空气进入发动机,这对发动机的寿命和正常工作很重要。空滤吸附的灰尘杂质多了就会堵塞,影响发动机工作,所以必须定期更换。如果在灰尘较大的地方开车,比如有沙尘暴的地方,更换空滤的周期还要缩短。 蓄电池:不必多说,就是储存电能的。一般是铅蓄电池,电解液是稀硫酸。 制动液:就平常说的刹车油。现在小汽车的制动一般都为液压的,就是以制动液为介质将刹车踏板的力传递到制动盘上。 点火线圈:将低电压转变为高电压,通过它下面的火花塞放电产生电火花,点燃油气混合物燃烧做功。 机油:这个也不必多说,起润滑密封作用的矿物油或合成油。发动机如果缺少了机油的润滑就会产生拉缸、抱瓦等严重问题。 助力转向油:现在小汽车的转向助力一般还是传统的液压助力,既然是液压的相应的就需要油液介质了。当然有些车已开始使用电动助力了,这也是未来的发展趋势。 防冻液:在散热器和发动机缸体内的通道循环,用于冷却发动机的液体介质,主要是水和添加剂,因为有防冻的功能,就叫防冻液了。 玻璃水:地球人都知道,擦玻璃用的。 机油尺:检测机油量的尺子。用的时候发动机先熄火,拔出机油尺,用一块干净纸巾擦干净上面的油,然后再插入再拔出,看机油的油位,必须在尺子上的两个上下限刻度之间,不 能多也不能少。

保险盒:里面有很多电气设备的保险丝,还有继电器。小F一共有两个保险盒,另一个在驾驶室司机左下方。具体看随车说明书。 进气口:发动机进气的入口,这个是优化后的,位置已经提高很多,老款车的进气口位置比较低,涉水时发动机容易进水。进气口的位置是汽车涉水深度的极限,绝对不可以超过。发动机一旦进水,后果很严重~! 电子油门:说是油门,其实和油没有一点关系的噢,它连接的是进气总管和进气歧管,控制的是发动机进气量,所以正确说法应该是电子节气门。发动机控制模块会根据进气量计算出喷油量,这样就能控制发动机的转速及输出功率了。还有一种拉线油门,用一根拉索来控制节气门开度,虽然动力直接没有电子油门的滞后,但是电子油门科技含量高而且省油。

电磁炉原理与维修精讲

电磁炉工作原理与故障分析讲座

目录 第一章电磁炉的基本工作原理的介绍 (3) 第二章电磁炉组装结构图 (5) 第三章电磁炉的基本加热功能及保护功能介绍 (7) 第四章电磁炉的原理图各功能部分的分析 (9) 第五章电磁炉常见异常故障分析之“葵花宝典” (32) 第六章电磁炉元器件的认别及其测量方式 (43) 第七章电磁炉上元器件的规格与作用简介 (48) 电磁炉由于具有热效率高、使用方便、无烟熏、无煤气污染、安全卫生等优点,非常适合现代家庭使用

第一章电磁炉的基本工作原理的介绍 电磁炉的加热原理 电磁炉又称电磁灶,分为工频(低频)和高频两种。其中,工频电磁炉工作简单可靠,但躁声大,热效率低,这里所说的电磁炉指高频电磁炉。 电磁炉是利用电磁感应原理将电能转换为热能的工作原理。由整流电路将50/60Hz的交流电压转换成直流电压(AC-DC-AC、交流-直流-交流),再经过控制电路将直流电压转换成频率为20~35KHz的高频电压,高速变化的电流流过线圈产生高速变化的磁场,当磁场内的磁力线通过金属器皿底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西,达到用户使用的结果。 如图1

图 1 图2 如图2。电磁感应加热的基本过程,至少需要整流单元、功率开关管、功率开关管驱动控制单元、加热线圈单元及锅具等部件。电磁炉是运用高频电磁感应原理加热。它将市电整流滤波后得到的脉动直流转换为高频电流,通过加热线圈建立高频磁场,磁力线经线圈与金属器皿底部构成的磁回路穿透炉面作用于锅底,利用小电阻大电流的短路热效应产生热量,在锅底形成涡流而发热,起到加热器皿中的食物的作用。 一般来讲,器皿一般是用钢质、铁质材料来加热,铝、铜由于表面电阻率太小,而不易被加热,陶瓷、木等又由于表面电阻率太大,使产生电流太小,所以也不易被加热。

电磁炉电控原理图

第一节 电磁炉的工作原理 电磁炉主要是利用电磁感应原理,电流经过线盘产生变化磁场,磁场感应到炉面上的铁质锅具底部产生涡流,从而产生大量的热能,直接令锅具底部迅速发热,进而加热锅内食物。 工作结构图 电路原理图(见附图1) ★ 交流电输入部分 市电220V 经接插件L1、N1接入电路。电路开始通电。由于电磁炉工作电流较大,接插件N1、L1和保险管两端引脚焊接必须牢固,目的是避免接触不良。电磁炉的保险丝是个保护装置,在更换的过程中要选用同型号的更换。(过小电流不够过、易熔断。过大保护失去作用)。所以16A/250V 的保险丝不能随意改动或代换(更不能直接短路)。

RZ1是压敏电阻,作用是为了防止市电输入电压过高而损坏电磁炉,其外型像瓷片电容(蓝色)。压敏电阻标注一般为10D561K或10D471K,其最大允许使用电压为300V(AC),当电压超出其范围时,就会被炸裂。在维修过程中,更换时,要选合适的型号对号入座。压敏电阻是并联在电路中的,它对电压比较敏感(达到一定的异常高的电压),在正常工作电压的时候它相当于绝缘体,在电压异常大的时候 电阻阻值瞬间变的很小,电流经过压敏电阻回流到前端,拉端保险丝,如果电压比较大时 间比较长自身也瞬间击穿,保护了后端电路. L1、N1之间有电容C1,该电容既能防止电磁炉工作产生的高频干扰脉冲窜入市电网干扰其他电器,又防止市电网的干扰脉冲窜入电磁炉电路影响其工作。该电容的容量通常为2uF—5 uF。如图所示 ★大电流整流滤波输出部分 市电经过桥式整流器BG1(桥堆)整流出来再经过L1、C4滤波后输出300V 直流电,为线盘高频振荡供电。BG1是个大电流高耐压器件,其规格为20A800V。当其烧坏后,不能随意用其它整流器代替。一定要用同型号或比它更大电流高耐压的整流器(外观、管脚、接口相同)替换。L1扼流圈、C4电容组成倒L 型滤波电路。作用是把整流出来的直流脉动成分滤去,使输出波形更加平滑。当C4、 8uF/400V(DC)电容击穿短路时,保险丝会烧断,整流器也会因电流过大而烧坏。此电容容量变值时(变小),直流输出300V电压会明显下降,当C4没有容量时,也会导致烧IGBT,维修时要特别注意。如图所示 ★线盘高频振荡电路 CN3、CN4(接上线盘)与C5、IGBT1组成一个高频振荡电路(振荡频率一般为20KHz — 40KHz之间)。高频交变电流是由线盘的电感量,与高频谐振电容的容量决定的。因此线盘的电感量和电容的容量要根据功率来确定(不能随意代换)。当IGBT击穿后,要对其进行检测,C5容量变值都会导致IGBT烧坏(特别是电容短路)。IGBT是电磁炉的核心部件,采用西门子公司公司H20R1202

电磁炉原理图和工作原理

电磁炉原理图和工作原 理 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

目录 一、简介 电磁加热原理 458系列简介 二、原理分析 特殊零件简介 2.1.1 LM339集成电路 IGBT 一、简介 电磁加热原理 电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

458系列简介 458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。200~240V机种电压使用范围为 160~260V, 100~120V机种电压使用范围为90~135V。全系列机种均适用于50、60Hz的电压频率。使用环境温度为-23℃~45℃。电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。 458系列虽然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。电路的各项测控主要由一块8位4K内存的单片机组成,外围线路简单且零件极少,并设有故障报警功能,故电路可靠性高,维修容易,维修时根据故障报警指示,对应检修相关单元电路,大部分均可轻易解决。 二、原理分析 特殊零件简介

电磁炉维修手册(内部资料)

09年电磁炉维修手册 第一节09年美的电磁炉使用主板概述 09年,美的电磁炉国内单炉主要使用TM-S1-01A-A(TM-S1-01A升级版),TM-S1-01D两块主板。两块主板使用不同的集成芯片,前者使用S007芯片,后者使用三洋芯片。 集成芯片内置单片机处理单元,比较器,放大器等电路。从而大大简化了电磁炉外围电路。下面分别讲述此两块主板线路主要原理,维修方法。由于此两块主板芯片原理,外围线路基本相似,读者可按类比方法理解或维修。 第二节产品命名方式 09年国内单炉产品命名方式如下:

第三节电磁炉产品爆炸图

一、电磁炉的结构分析 电磁炉的立体结构分析图 电磁炉的结构相对来说较简单,主要由:塑料外壳、陶瓷面板、电控系统、散热系统等构成。如下图:

⑴、塑料面盖和塑料底座构成了电磁炉的塑料外壳。 ⑵、陶瓷面板就是电磁炉上的微晶玻璃板。 ⑶、电控系统主要由主电路板、显示板、线圈盘等组件构成。 ⑷、散热系统由散热风机、温度传感器、电路板散热片等组成。 电磁炉的整体结构图 第四节 电磁炉工作原理 一、电磁炉工作原理 微晶面板 塑料底座 主电路板 显 示 板 线 圈 盘 塑料面盖 风 机

1、电磁炉的加热原理 电磁炉主要是利用电磁感应原理将电能转换为热能的厨房电器。 当电磁炉在正常工作时,由整流电路将50Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压。电磁炉线圈盘上就会产生交变磁场,磁力线就会在锅具底部反复切割变化,使锅具底部产生环状电流(涡流),并利用无数的小涡流高速振荡铁分子,致使器皿本身自行高速发热,然后通过热量传递原理,使器皿加热盛装在其内的东西。 这种振荡生热的加热方式,能减少热量传递的中间环节,大大提高制热效率。 电磁炉是应用高频感应涡流生热的原理设计制造的,它保持并大大优于一般热源炉的烹饪功能,有“烹饪之神”的美誉。 2、电磁炉电控部分工作原理 3、电磁炉工作流程:

相关文档
相关文档 最新文档