勾股定理的数学史

勾股定理的数学史

一、教学目标

1、知识目标:让学生再次对勾股定理的理解与认识,了解勾股定理的历史。

2、能力目标: 通过学习勾股定理的数学史激发学生对古人的仰慕与钦佩,从而让学生在生活中发现数学,用不同的思维方式去解数学,培养探究能力和探索精神

3、情感目标:通过对勾股定理的数学史,培养学生对数学问题孜孜以求的探索精神和科学态度,通过了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。

二、教学难点:勾股定理的证明思想与应用

三、教学重点:了解勾股定理的历史与勾股定理的证明方法

四、教学设计

1、引入新课:我们在初中学习过勾股定理的探索与证明,那你们知道为什么把直角三角的三边分别叫做勾、股、弦、呢?那最早发现勾股定理是怎样发现的呢?

2、切入主题:勾股定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。

实际上,早在蒋铭祖之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,其所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊。古希腊流传下来的最古老的数学著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上。他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了。

至于希腊科学的起源只是公元前近一二百年才有更深入的研究。因此,毕达哥拉斯定理这个名称一时半会儿改不了。不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

3、“勾三股四弦五”的由来:勾股定理从被发现到现在已有五千年的历史.远在公元前三千年的巴比伦人就知道和应用它了.我国古代也发现了这个定理.据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”从而就有了“勾三股四弦五”的说法

赵爽的证明方法:我国最早的证明方法是三国时期的赵爽在《周髀算经》中记载到,用形数结合的方法,给出了勾股定理的详细证明。

如图所示

以弦C为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形GHBF组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

4、毕氏定理:据记载在西方国家毕达哥拉斯是第一个证明出勾股定理的简称“毕氏定理”他的证明方法

如右图所示:大正方形的面积等于中间正方

形的面积加上四个三角形

5、总统证法:加菲尔德于1881年当选美国总统,就职仅4个月即遭暗杀,是美国第二位被暗杀的总统。加菲尔德是美国历史上唯一一位数学家出身的总统,在数学方面的贡献主要是提供了勾股定理一种简洁证明方法。他的方法简洁易懂

勾股定理的数学史

6、文鼎证法

勾股定理的数学史

7、欧几里得证法

勾股定理的数学史

8、利用三角形相似证明

勾股定理的数学史

9、利用割线定理证明

勾股定理的数学史

10、直角三角内切圆证明

勾股定理的数学史

教师介绍:我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.图7称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图19.2.8是在北京召开的2002年国际数学家大会(ICM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.

此时,教师极力夸赞学生已成功探索出5000多年前人类历史上的一个重大发现,真是太伟大了!,

这就是赫赫有名的勾股定理(板书课题).接着用多媒体展示勾股定理的历史.

勾股定理史话

勾股定理从被发现到现在已有五千年的历史.远在公元前三千年的巴比伦人就知道和应用它了.我国古代也发现了这个定理.据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位

学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”(如图所示),即

邪至日=.

这里陈子已不限于“三、四、五”的特殊情形,而是推广到一般情况了.

人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁最先发明的.国外一般认为这个定理是毕达哥拉斯学派(Pythagoras,公元前580~前500)首先发现的,因而称为毕达哥拉斯定理.

勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多.1940年卢米斯(E.S.Loomis)专门编辑了一本勾股定理证明的小册子――《毕氏命题》,作者收集了这个著名定理的370种证明,其中包括大画家达?芬奇和美国总统詹姆士????阿?加菲尔德(James Abram Garfield,1831~1881)的证法.

美国总统詹姆士????阿?加菲尔德的证法如下:

如图:因为

所以

勾股定理是一条古老而又应用十分广泛的定理.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据说4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差.勾股定理以其简单、优美的形式,丰富、深刻的内容,充分反映了自然界的和

谐关系.人们对勾股定理一直保持着极高的热情,仅定理的证明就多达四百多种,甚至著名的大物理学家爱因斯坦也给出了一个证明.中国著名数学家华罗庚在谈论到一旦人类遇到了“外星人”,该怎样与他们交谈时,曾建议用一幅反映勾股定理的数形关系图来作为与“外星人”交谈的语言.这充分说明了勾股定理是自然界最本质、最基本的规律之一,而在对这样一个重要规律的发现和应用上,中国人走在了前面.

方案三(教师介绍欧几里得证法)

证明:证明:在Rt△ABC的三边上向外各作一个正方形(如图8),作CN⊥DE交AB于M,那么正方形被分成两个矩形.连结CD和KB.∵由于矩形ADNM和△ADC有公共的底AD和相等的高,

∴S矩形ADNM=2S△ADC

又∵正方形ACHK和△ABK有公共的底AK和相等的高,

∴S正方形ACHK=2S△ABK

在△ADC和△ABK中

∵AD=AB,AC=AK,∠CAD=∠KAB

∴△ADC≌△ABK

由此可得S矩形ADNM=S正方形ACHK同理可证

S矩形BENM=S正方形BCGF

∴S正方形ABED=S矩形ADNM+S矩形BENM=S正方形ACHK+S正方形BCGF

即.

(目的:在勾股定理的发现过程中,充分鼓励学生不同的拼图方法得出不同的验证方法,帮助学生自主建构新知识.另外要介绍学生所拼的图7就是古代的弦图,也是在北京召开的2002年国际数学家大会的会标,

进一步激发学生的成就感.让学生充分体验到探索创新所带来的成功的喜悦.)

四、应用新知、解决问题

例1 如图19.2.4,将长为5.41米的梯子AC斜靠在墙上,BC长为

2.16米,

求梯子上端A到墙的底端B的距离AB.(精确到0.01米)

解在Rt△ABC中,∠ABC=90゜,BC=2.16, CA=5.41,

根据勾股定理得

≈4.96(米)

答:梯子上端A到墙的底端B的距离约为4.96米.

例2(趣味剪纸)如图两个边长分别为4个单位和3个单位的正方形连在一起的“L”形纸片,请你剪两刀,再将所得到的图形拼成正方形.

(目的:本段内容主要通过教师启发引导,学生共同探究完成,一方面让学生感受解决问题的愉悦与强烈的成就感,培养学生动手能力和学习兴趣以及加强对勾股定理的理解.另一方面让学生知道:(1)勾股定理应用的前提条件(在直角三角形中);(2)已知直角三角形的两边会用勾股定理求第三边.)

五、自我评价、形成知识

⑴这节课我的收获是 .

⑵我感兴趣的地方是 .

⑶我想进一步研究的问题是 .

(目的:通过这几个问题,可以很好的揭示学生新建立的不同的认知结构,也体现了不同的人学数学有不同的收获.把学习的权利交给学生,使学生体验做数学的乐趣.同时,把探究阵地从课堂延伸到课外,有利于充分挖掘学生的潜能.)

六、作业

⑴课本P104习题19.2 1,2,3

⑵通过上网,搜索有关勾股定理的知识:如(1)勾股定理的历史;(2)

勾股定理的证明方法;(3)勾股定理在实际生活中的应用等.然后写一

篇以勾股定理为主题的小论文.

(目的:巩固勾股定理,进一步体会定理与实际生活的联系.促进学生学知识,用知识的意识.新课程标准提倡课题学习(研究性学习),通过课题学习与研究更多地把数学与社会生活和其他学科知识联系起来,使学生进一步体会不同的数学知识以及数学与外界之间的联系,初步学习研究问题的方法,提高学生的实践能力和创新意识.)

·关于教学设计的几点说明:

1、这节课是定理课,针对八年级学生的知识结构和心理特征,本节

课我准备以“问题情境-----实验、猜测-----验证、证明----实际应用”

的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论.让学生经历知识的发生、形成与应用的过程,从而更好地理解数学知识的意义.让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想;

2、由于学生的个体差异表现为认知方式与思维策略的的不同,以及

认知水平和学习能力的差异,所以在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平.在学生回答时,我通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能;

3、探索定理采用了面积法,通过用割补两种方法对直角边为3、4这

一特殊直角三角形的斜边上的正方形的面积的计算,得到此直角三角形的两直角边的平方和等于斜边的平方.由此自然的过渡到对一般直角三角形三边关系的研究,当然也自然的用此方法证明了勾股定理.这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用;

4、本课小结也很有新意,通过这短短的几个问题,可以很好的揭示学

生新建立的不同的认知结构,也体现了不同的人学数学有不同的收获.把学习的权利交给学生,使学生体验做数学的乐趣.同时,把探究阵地从课堂延伸到课外,有利于充分挖掘学生的潜能。

勾股定理的数学史

相关推荐
相关主题
热门推荐