文档库 最新最全的文档下载
当前位置:文档库 › LBP算法的matlab快速算法程序

LBP算法的matlab快速算法程序

LBP算法的matlab快速算法程序
LBP算法的matlab快速算法程序

LBP算法的matlab快速算法程序

2015年本程序是LBP 算法(Local Binary Patterns)的matlab实现,并且针对matlab 特点进行优化,可实现对于带掩膜图像的LBP特征提取。经比较,本程序的运行速度与C语言最基础的LBP函数差不多,而高与opencv中的对于带掩膜的LBP 特征统计函数。

本人也比较过,如用matlab模拟原始LBP算法循环移位操作,所需时间是opencv的50倍以上。

——大家都说matlab运行效率不如C,其实是没编好程序最初的LBP算法如图3.1.2(1):

上述256灰度级的图像可以得到256个模式,其中合并成为36个具有旋转不变性的LBP模式。如图3.1.2(2)。

上述36个旋转不变性的LBP模式中,有9个是等价模式,这9个模式的二进制排列如下:

0000000000000001000000110000011100001111000111110011111101111111 11111111

程序输出10个数据,前9个就是上述等价模式,第10个是其余模式的和。

加速方式原理简介:

LBP所用的旋转需要运用二进制的移位操作,而matlab移位函数调用时间很长(一个像素7次移位)。本算法将权值矩阵预先初始化,将二进制码作为向量,运用矩阵相乘直接得出所有移位操作对应的十进制数。

对于统计带掩膜的区域统计,由于matlab循环的效率较低,将图像变为double类型,采用升维法,将灰度值化为0~256 的257阶。

sub = sta==1;

data(1)=sum(sub(:));

用matlab特有的编程方式,sub可以标记出图像sta中所有等于1的位置,这个方法由于是matlab底层函数把图像sta中的所有数据比较得出,效率高与if 的方式。

function [LBPmap]=LBPtransfer(image)

% LBPmap

% image is the gray image

[m,n]=size(image);

LBPmap=zeros(m,n);

sub = zeros(1,8);

weightmat =[1 ,128,64 ,32 ,16 ,8, 4 ,2;

2 , 1 ,128,64 ,32 ,16,8 ,4;

4 , 2 , 1 ,128,64 ,32,16,8;

8 , 4 , 2 ,1 ,128 ,64,32,16;

16, 8 , 4 ,2 ,1 ,128, 64,32;

32, 16, 8 ,4 ,2 , 1 ,128,64;

64, 32,16 ,8 ,4 , 2 , 1,128;

128,64,32 ,16,8 , 4 , 2 ,1];

fori=2:m-1

for j=2:n-2

sub(1) = image((i-1),(j-1));

sub(2) = image((i-1), j );

sub(3) = image((i-1),(j+1));

sub(4) = image( i ,(j+1));

sub(5) = image((i+1),(j+1));

sub(6) = image((i+1), j );

sub(7) = image((i+1),(j-1));

sub(8) = image( i ,(j-1));

sub2=double(sub>image(i,j));

allkind = sub2*weightmat;

LBPmap(i,j) =min(allkind);

end

end

end

function [data]=LBP_feature2(LBPimage,mask) % LBPimage is the LBPmap,double

% data is 10x1 vector

% mask is the area to statistics , logical

data=zeros(10,1);

[m,n]=size(LBPimage);

sta = (LBPimage+1).*mask;

sub = sta==1;

data(1)=sum(sub(:));

sub = sta==2;

data(2)=sum(sub(:));

sub = sta==4;

data(3)=sum(sub(:));

sub = sta==8;

data(4)=sum(sub(:));

sub = sta==16;

data(5)=sum(sub(:));

sub = sta==32;

data(6)=sum(sub(:));

sub = sta==64;

data(7)=sum(sub(:));

sub = sta==128;

data(8)=sum(sub(:));

sub = sta==256;

data(9)=sum(sub(:));

total=sum(mask(:));

data(10)=total-sum(data(1:9)); data=data/total;

end

聚类分析Matlab程序实现

2. Matlab程序 2.1 一次聚类法 X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900]; T=clusterdata(X,0.9) 2.2 分步聚类 Step1 寻找变量之间的相似性 用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。 X2=zscore(X); %标准化数据 Y2=pdist(X2); %计算距离 Step2 定义变量之间的连接 Z2=linkage(Y2); Step3 评价聚类信息 C2=cophenet(Z2,Y2); //0.94698 Step4 创建聚类,并作出谱系图 T=cluster(Z2,6); H=dendrogram(Z2); Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。 1.Matlab中相关函数介绍 1.1 pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’ X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2 squareform函数 调用格式:Z=squareform(Y,..) 说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3 linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量;

PID算法Matlab仿真程序和C程序

增量式PID控制算法Matlab仿真程序设一被控对象G(s)=50/(0.125s^2+7s),用增量式PID控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。程序如下clear all; close all; ts=0.001; sys=tf(50,[0.125,7, 0]); dsys=c2d(sys,ts,'z'); [num,den]=tfdata(dsys,'v'); u_1=0.0;u_2=0.0; y_1=0.0;y_2=0.0; x=[0,0,0]'; error_1=0; error_2=0; for k=1:1:1000 time(k)=k*ts; S=2; if S==1 kp=10;ki=0.1;kd=15; rin(k)=1; % Step Signal elseif S==2 kp=10;ki=0.1;kd=15; %Sin e Signal rin(k)=0.5*sin(2*pi*k*ts); end du(k)=kp*x(1)+kd*x(2)+ki*x(3); % PID Controller u(k)=u_1+du(k); %Restricting the output of controller if u(k)>=5 u(k)=5; end if u(k)<=-5 u(k)=-5; end %Linear model yout(k)=-den(2)*y_1-den(3)*y_2+nu m(2)*u_1+num(3)*u_2; error(k)=rin(k)-yout(k); %Return of parameters u_2=u_1;u_1=u(k); y_2=y_1;y_1=yout(k); x(1)=error(k)-error_1; %C alculating P x(2)=error(k)-2*error_1+error_2; %Calculating D x(3)=error(k); %Calculating I error_2=error_1; error_1=error(k); end figure(1); plot(time,rin,'b',time,yout,'r'); xlabel('time(s)'),ylabel('rin,yout'); figure(2); plot(time,error,'r') xlabel('time(s)');ylabel('error'); 微分先行PID算法Matlab仿真程序%PID Controler with differential in advance clear all; close all; ts=20; sys=tf([1],[60,1],'inputdelay',80); dsys=c2d(sys,ts,'zoh'); [num,den]=tfdata(dsys,'v'); u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

最短路径算法_matlab程序[1]

算法描述: 输入图G,源点v0,输出源点到各点的最短距离D 中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合 1.初始化v1,D 2.计算v0到v1各点的最短距离,保存到D for each i in v0;D(j)=min[D(j),G(v0(1),i)+G(i,j)] ,where j in v1 3.将D中最小的那一项加入到v0,并且从v1删除这一项。 4.转到2,直到v0包含所有顶点。 %dijsk最短路径算法 clear,clc G=[ inf inf 10 inf 30 100; inf inf 5 inf inf inf; inf 5 inf 50 inf inf; inf inf inf inf inf 10; inf inf inf 20 inf 60; inf inf inf inf inf inf; ]; %邻接矩阵 N=size(G,1); %顶点数 v0=1; %源点 v1=ones(1,N); %除去原点后的集合 v1(v0)=0; %计算和源点最近的点 D=G(v0,:); while 1 D2=D; for i=1:N if v1(i)==0 D2(i)=inf; end end D2 [Dmin id]=min(D2); if isinf(Dmin),error,end v0=[v0 id] %将最近的点加入v0集合,并从v1集合中删除 v1(id)=0; if size(v0,2)==N,break;end %计算v0(1)到v1各点的最近距离 fprintf('计算v0(1)到v1各点的最近距离\n');v0,v1 id=0; for j=1:N %计算到j的最近距离 if v1(j)

matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名吴隆煌 学号41158007

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1 【2013-5-21更新】 说明:正文中命令部分可以直接在Matlab中运行, 作者(Yangfd09)于2013-5-21 19:15:50在MATLAB R2009a(7.8.0.347)中运行通过 %最短距离聚类(含距离计算,含聚类图) %说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令, %所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。 %程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法, %以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。 %==========================>>导入数据<<============================== %变量名为test(新建一个以test变量,双击进入Variable Editor界面,将数据复制进去即可)%数据要求:m行n列,m为要素个数,n为区域个数(待聚类变量)。 % 具体参见末页测试数据。 testdata=test; %============================>>标准化<<=============================== %变量初始化,m用来寻找每行的最大值,n找最小值,s记录每行数据的和 [M,N]=size(testdata);m=zeros(1,M);n=9999*ones(1,M);s=zeros(1,M);eq=zeros(1,M); %为m、n和s赋值 for i=1:M for j=1:N if testdata(i,j)>=m(i) m(i)=testdata(i,j); end if testdata(i,j)<=n(i) n(i)=testdata(i,j); end s(i)=s(i)+testdata(i,j); end eq(i)=s(i)/N; end %sigma0是离差平方和,sigma是标准差 sigma0=zeros(M); for i=1:M for j=1:N sigma0(i)=sigma0(i)+(testdata(i,j)-eq(i))^2; end end sigma=sqrt(sigma0/N);

数学实验05聚类分析---用matlab做聚类分析

用matlab做聚类分析 Matlab提供了两种方法进行聚类分析。 一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。1.Matlab中相关函数介绍 1.1pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算X数据矩阵中对象之间的距离。’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2squareform函数 调用格式:Z=squareform(Y,..)

说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量; method:可取值如下: ‘single’:最短距离法(默认);‘complete’:最长距离法; ‘average’:未加权平均距离法;‘weighted’:加权平均法; ‘centroid’:质心距离法;‘median’:加权质心距离法; ‘ward’:内平方距离法(最小方差算法) 返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。 1.4dendrogram函数 调用格式:[H,T,…]=dendrogram(Z,p,…) 说明:生成只有顶部p个节点的冰柱图(谱系图)。 1.5cophenet函数 调用格式:c=cophenetic(Z,Y) 说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。 1.6cluster函数 调用格式:T=cluster(Z,…) 说明:根据linkage函数的输出Z创建分类。

最优化算法-Matlab程序

CG程序代码 function [x,y] = cg(A,b,x0) %%%%%%%%%%%%%%%%%CG算法%%%%%%%%%%%% r0 = A*x0-b; p0 = -r0; k = 0; r = r0; p = p0; x = x0; while r~=0 alpha = -r'*p/(p'*A*p); x = x+alpha*p; rold = r; r = rold+alpha*A*p; beta = r'*r/(rold'*rold); p = -r+beta*p; plot(k,norm(p),'.--'); hold on k = k+1; end y.funcount = k; y.fval = x'*A*x/2-b'*x;

function [x,y] = cg_FR(fun,dfun,x0) %%%%%%%%%%%%%%%CG_FR算法%%%%%%%%%%%%%%% error = 10^-5; f0 = feval(fun,x0); df0 = feval(dfun,x0); p0 = -df0; f = f0; df = df0; p = p0; x = x0; k = 0; while ((norm(df)>error)&&(k<1000)) f = feval(fun,x); [alpha,funcNk,exitflag] = lines(fun,0.01,0.15,0.85,6,f,df'*p,x,p);%%用线搜索找下降距离%% if exitflag == -1 disp('Break!!!'); break; end x = x+alpha*p; dfold = df; df = feval(dfun,x); beta = df'*df/(dfold'*dfold); p = -df+beta*p; plot(k,norm(df),'.--'); hold on k = k+1; end y.funcount = k; y.fval = feval(fun,x); y.error = norm(df);

MVDR算法matlab程序

clc clear all close all %% 常量定义 Freqs=1.6e9; %工作频率 c=3e8; %光速 lamda=c/Freqs; %波长 d=0.5*lamda; %单元间距 M=16; %天线阵元数 fs=2e6; %采样频率 pd=10; %快拍数 %% 模型建立 %--------------第一个干扰模型-------------------- thetaJ1=20*pi/180; %干扰方向 FreqJ1=5e5; %第一个干扰的频率 J1NR=sqrt(10^(60/10)); J1one=J1NR*exp(j*(2*pi*FreqJ1*(1:1:pd)/fs)); %1*pd %--------------第二个干扰模型-------------------- ThetaJ2=60*pi/180; %干扰方向 FreqJ2=6e5; %第二个干扰的频率 J2NR=sqrt(10^(60/10)); J2one=J2NR*exp(j*(2*pi*FreqJ2*(1:1:pd)/fs)); %1*pd %--------------信号模型-------------------- ThetaS=30*pi/180; FreqS=7e5; SNR=sqrt(10^(40/10)); Sone=SNR*exp(j*(2*pi*FreqS*(1:1:pd)/fs)); %1*pd %--------------空域处理------------------------- I1=zeros(M,1); I2=zeros(M,1); IS=zeros(M,1); for n=1:M I1(n)=exp(j*2*pi*(n-1)*d*sin(thetaJ1)/lamda); I2(n)=exp(j*2*pi*(n-1)*d*sin(ThetaJ2)/lamda); IS(n)=exp(j*2*pi*(n-1)*d*sin(ThetaS)/lamda); end J1=I1*J1one; J1=J1.'; J2=I2*J2one; J2=J2.'; %------------产生噪声------------------------- noise=sqrt(1/2)*randn(pd,M)+j*sqrt(1/2)*randn(pd,M);

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

聚类分析matlab程序设计代码

function varargout = lljuleifenxi(varargin) % LLJULEIFENXI MATLAB code for lljuleifenxi.fig % LLJULEIFENXI, by itself, creates a new LLJULEIFENXI or raises the existing % singleton*. % % H = LLJULEIFENXI returns the handle to a new LLJULEIFENXI or the handle to % the existing singleton*. % % LLJULEIFENXI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LLJULEIFENXI.M with the given input arguments. % % LLJULEIFENXI('Property','Value',...) creates a new LLJULEIFENXI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lljuleifenxi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lljuleifenxi_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help lljuleifenxi % Last Modified by GUIDE v2.5 07-Jan-2015 18:18:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @lljuleifenxi_OpeningFcn, ... 'gui_OutputFcn', @lljuleifenxi_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before lljuleifenxi is made visible. function lljuleifenxi_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM聚类算法。FCM算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第1章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚”。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means,FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn[10]首先将其推广到加权WGSS函数,后来由Bezdek扩展到加权WGSS的无限族,形成了FCM聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第2章聚类分析方法 2-1聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

SSDA 算法的matlab程序

%SSDAò?×?′óμ???êy?a×??ò,?ù?è±èò?×?D?e?a×??ò?y£?μ?μ±?£°?óD??éùê±£?è??üμ?μ??yè·?¥??μ? %[FileName2,PathName2] = uigetfile('*.jpg'); %pic= imread(FileName2); %[FileName,PathName] = uigetfile('*.jpg'); %moban=imread(FileName); %pic = imread('D:\matching algorithm\matching\2.jpg');%%%%%%%%%%o?ê±12??pic =imread('D:\matching algorithm\matching\lena.jpg') %%%%%%%%%%o?ê±15?? pic=pic(:,:,1); rect_pic = [256 178 145 167] moban = imcrop(pic,rect_pic); moban=imnoise(moban,'gaussian',0.005); pic=im2double(pic); moban=im2double(moban); subplot(2,2,1); imshow(pic);%2 subplot(2,2,2); imshow(moban);%3 pic1=pic; [M,N]=size(pic); [m,n]=size(moban); d=zeros(M-m,N-n); times=zeros(M-m,N-n); Tnum=0; tic; for x=1:M-m for y=1:N-n Temp=0; num=0; for i=0:m-1 for j=0:n-1 Temp = Temp+abs(pic(i+x,j+y)-moban(i+1,j+1)); num=num+1; end if Temp>m Tnum=num; break end end d(x,y)=Temp/(m*n); times(x,y)=Tnum; end end %[min_d, icmin] = min(d(:)); [max_t, itmax] = max(times(:)); %[p,q] = ind2sub(size(d),icmin(1)); [p,q] = ind2sub(size(times),itmax(1)); toc; pic1(:,:)=255; %pic1(p:p+m,q:q+n)=pic(p:p+m,q:q+n); pic1(p:p+m-1,q:q+n-1)=moban(1:m,1:n); msgbox(num2str([p,q]), 'location'); subplot(2,2,3); imshow(pic1);%4

相关文档