文档库 最新最全的文档下载
当前位置:文档库 › _100_织构化学气相沉积金刚石薄膜的取向生长过程

_100_织构化学气相沉积金刚石薄膜的取向生长过程

30

{100}织构化学气相沉积金刚石薄膜的取向生长过程

朱宏喜1,2

,顾

超1,薛永栋3,任凤章1.2,毛卫民

4(1.河南科技大学材料科学与工程学院,河南洛阳471003;

2.河南省有色金属材料科学与加工技术重点实验室,河南洛阳471003;

3.中信重工机械股份有限公司,河南洛阳471003;4.北京科技大学材料科学与工程学院,北京100083)[摘

要]为了研究化学气相沉积(CVD )金刚石薄膜生长过程中{100}织构的形成机理,采用X 射线衍射、电子

背散射衍射和扫描电镜研究了CVD 自支撑金刚石薄膜的宏观织构、微区晶界分布和表面形貌。结果表明:金刚石薄膜以{111}面或{100}面为生长前沿面都能够形成{100}织构,但形成的表面形貌不同;通过吸附CH -

3和CH 3-

在{111}面堆积碳原子时,通过{111}面的层层堆垛形成{100}面,且{100}面平行薄膜表面,暴露在晶粒表面的晶面只有{111}面;通过吸附CH 2-

2在{100}面上堆积碳原子时,形成的{100}面平行于薄膜表面且作为晶粒大部分表面,晶粒显露的侧面为{111}面。

[关键词]金刚石薄膜;化学气相沉积;{100}织构;形成机理;形貌;晶体生长;生长过程[中图分类号]TG174.442

[文献标识码]A

[文章编号]1001-1560(2011)12-0030-03

[收稿日期]20110729

[基金项目]国家自然科学基金(50372007);河南科技大学

博士科研启动基金(09001233);河南科技大学校基金(2008ZY003)资助

[通信作者]朱宏喜(1976-),博士,讲师,主要从事材料织

构和应力的研究,电话:136********,E -mail :zhuhx2004@126.com

0前言

化学气相沉积(CVD )金刚石薄膜具有优异的力学、

电学、光学和热学性能[1 4]

。在其制备过程中,由

于外部沉积环境及金刚石单晶体在表面能、生长率等方面呈现各向异性,以致薄膜中形成了不同的生长织构

[2,5]

,如{100}、

{112}、{111}、{110}等。沉积工艺的变化会造成织构组成和强度的明显变化,而织构又会影响金刚石薄膜的性能。因此,研究利用晶体各向异性的特点和规律、寻找和诱导特定晶体学取向,使金刚石薄膜表现出更优良的性能

[6]

,具有重要的实际

意义。然而,金刚石薄膜比表面积大,缺陷密度高,性能对结晶参数非常敏感,且影响晶体取向的因素非常复杂,要制备出高质量和强织构的金刚石薄膜必须对工艺技术加以严格控制。目前,人们对金刚石薄膜织构形成过程的许多细节还不够了解,还没有沉积工艺

如何影响薄膜织构的系统性报道,

这严重制约了金刚石薄膜的发展。因此,

需要进一步的研究,以实现对金刚石薄膜取向生长过程的精细控制,

制备出具有强织构的金刚石薄膜乃至大体积的单晶金刚石。本工作对CVD 金刚石薄膜中{100}织构形成过程的机理进行了探讨,以期为制备高质量、强结构的金刚石薄膜提供借鉴。

1

试验

1.1

基材处理

基材为金属Mo 材,

尺寸为 60mm ?10mm ,先用无水乙醇进行超声波清洗,再用300 400目的金刚石粉进行研磨。1.2

金刚石薄膜的制备

采用直流电弧等离子体化学气相沉积法制备金刚石薄膜,利用直流电弧放电产生的高温等离子喷射流使反应室中的CH 4和H 2离解,产生等离子体,利用Ar 气保护阴极和调节电弧,维持稳定的电弧放电,形成沉积金刚石薄膜所需要的气相环境。沉积金刚石薄膜时,

CH 4,H 2和Ar 的纯度分别为99.99%,99.999%和99.999%,以不同的工艺制备2种金刚石薄膜试样。其中,试样1的工艺条件:CH 4,

H 2和Ar 的气体流速分

31

别为0.08 0.09,

5.50 6.00,2.00 2.50L /min ;薄膜衬底温度为840 860?,

反应室压力4.0kPa ;输入功率17kW 。制备试样2时,

CH 4的气体流速为0.10 0.12mL /min ,薄膜衬底温度为1090 1110?,其他工艺条件同试样1。1.3

测试分析

采用JSM -5610LV 扫描电镜观察金刚石薄膜的表面形貌。采用D5000X 射线衍射仪在金刚石薄膜最终生长面测量{111}、{220}和{311}晶面极图,并用Bunge 法计算取向分布函数(ODF )。使用HKL channel 5电子背散射衍射(EBSD )仪检测金刚石薄膜厚度及截面的微观晶体取向分布。

2

结果与讨论

2.1

金刚石薄膜的织构

图1为金刚石薄膜最终生长面的ODF (取向分布

函数)截面图:2个薄膜试样中都存在很强的{100}纤维织构,且晶面平行于薄膜表面;试样1的{100}取向分布密度最高值为18.2,

试样2的{100}取向分布密度最高值为24.6;薄膜中也存在其他的择优取向,但是取向密度很低,

没有形成较强的织构

。图1金刚石薄膜宏观织构(密度水平:1,

2,4,8,16)2.2金刚石薄膜的表面形貌

图2为金刚石薄膜试样的表面形貌。2个薄膜试

样中虽然都形成了强{100}织构,但是其表面形貌组织却截然不同:试样1表面较粗糙,绝大部分晶粒为四棱椎形状,四棱椎的顶点垂直于薄膜表面,晶粒的尺寸差别不明显,

晶界连接紧密,晶粒表面不平行于薄膜表面;试样2的最终生长面非常平整,全部晶粒的上表面处于一个平面内,晶粒形状表现为四棱台形状,晶粒形状基本一致,晶粒的上表面呈现规则的矩形并且平行于薄膜表面,晶粒之间存在明显空隙。2个薄膜试样中,晶粒多层生长现象不明显,说明晶粒主要是按照连续生长方式长大的

图2

金刚石薄膜表面形貌

2.3

金刚石薄膜的晶界分布

图3为金刚石薄膜截面EBSD 微区晶界分布状态,

顶部为薄膜生长面,底部为薄膜衬底面。2个薄膜试样中都存在明显的取向选择生长,强烈的选择生长使晶粒呈现柱状结构,

纵向尺寸明显大于横向。在薄膜形核阶段,晶粒非常细小,随着薄膜厚度的增加,一些晶粒尺寸逐渐增大,一些晶粒则很快停止生长。在生长过程中二次形核产生的新晶粒,只有部分能够连续生长而成为大晶粒

图3金刚石薄膜厚度截面的EBSD 取向成像图

2.4{100}织构金刚石薄膜的取向生长过程在金刚石薄膜沉积过程中,发生了以下反应

[7 9]

CH 幑幐4CH -3+H +

(1)CH -幑幐3CH 2-

2+H +(2)CH 2-幑幐2CH

3-+H +(3)

可见,反应气氛中存在CH 4,CH -3,CH 2-

2,CH 3-,H 2,H +等原子活性基团,CH -3,CH 2-

2,

CH 3-中每个碳原子能够分别携带1个、

2个和3个悬空连接键[7]

。薄膜

表面被这些原子团包围并不断受到冲击

[10]

,同时在薄

膜激活表面含有等待填充的原子空位和悬空键,所以薄膜沉积过程是由薄膜生长表面的原子活性基团数量和能量决定的。金刚石薄膜晶体在生长过程中,

通过吸附CH -3和CH 3-

在{111}面堆积碳原子,通过吸附CH 2-2在{100}面堆积碳原子

[10,11]。金刚石晶体为面心立方晶格,但与普通面心立方晶格原子堆垛方式不同。金刚石晶体沿{111}面原子堆垛方式为……AABBCC ……。当在A 层上堆积新的A 层原子(即堆积同号原子面)时,原来的A 层每个碳

原子有3个键已经连接到薄膜基体,第4个键垂直于A

层,脱氢后成为悬空键吸附1个CH -3,因而2层{111}

面碳原子的位置完全一样。吸附的CH -

3脱氢后会产生3个悬空键,继续堆积B 层原子(即堆积异号原子面)时,由A 层3个两两相邻的碳原子各自贡献出一个悬

空键来吸附一个CH 3-

,同时A 层每个碳原子会连接3个CH 3-

,堆积后B 层上的碳原子携带的碳氢键垂直于

A 层,继续堆积新的

B 层原子时与在A 层上堆积新的A 层碳原子过程一致。综上可以看出,{111}面堆积碳原子过程中,通过吸附CH -

3堆积同号原子面,通过吸附CH 3-堆积异号原子面[11]。

{100}激活表面每个碳原子有2个化学键连接到薄膜基体,脱氢后形成2个悬空键,沿〈110〉晶向每相邻的2个碳原子各自贡献出一个悬空键吸附一个

CH 2-2,

继续沉积新一层{100}面时,沿[]晶向的2

个相邻的碳原子结合一个CH 2-

2。可见,

{100}面通过吸附CH 2-

2即可生长。少量吸附在{100}面的CH -

3由于对H 原子吸附速率小于H 原子迁移的速率,很快转变为CH 2-

2后吸附到薄膜基体

[10]

图4给出了金刚石薄膜形成{100}织构的2种不同生长过程。在图4a 的生长方式中,通过碳原子在{111}晶面上堆垛实现晶体长大,以{111}面作为生长前沿面,通过{111}面的层层堆积最终形成{100}面,而显露在晶粒表面的晶面是{111}面,

{111}面不平行于薄膜表面,与表面夹角约55?。因此,形成的{100}面平行于衬底面,使薄膜形成{100}纤维织构。这种生长方式形成的薄膜表面形貌符合图2a ,

其中,四棱锥正是由4个{111}面互相搭建而成的,相邻的棱锥同样由于{111}面互相搭建联接紧密。在图4b 的生长方式中,通过碳原子在{100}和{111}晶面上堆垛实现晶体长大,但是主要在{100}面上堆积原子,并且{100}面平行于薄膜表面;薄膜在{100}面沉积一层碳原子后,继续在侧面的{111}面上堆积碳原子,从而完成晶体表面一层碳原子的堆积。这种生长方式形成的薄膜表面形貌符合图2b ,晶粒表面由{100}和{111}面包裹,

平行于薄

图4{100}织构金刚石薄膜生长过程

膜表面的晶面为{100}面,呈四方形,晶粒大部分表面为{100}面,

侧面为{111}面。竞争生长使位于晶粒侧面的{111}面之间不断相互覆盖而减小,但是{100}面堆积碳原子形成的生长使{111}面没有最终消失,因而不同晶粒的{100}面彼此不联接。

金刚石晶体{100}面和{111}面的表面能分别为9.85J /m 2和5.70J /m 2[12],热力学上{111}面比{100}面的稳定性高。然而,薄膜沉积气氛中甲烷浓度和衬底温度的改变,会使薄膜沉积的热力学过程和动力学

过程发生变化,从而影响CH -3,CH 2-

2,

CH 3-等原子团的相对浓度

[8]

,使得{100}和{111}面吸附碳原子的优势

随之改变,并最终决定晶体表面的性质和薄膜表面形貌。图1和图3表明,薄膜存在强烈取向选择生长,就会形成强织构,织构的类型取决于生长过程中平行薄膜表面的晶面,

而不取决于生长前沿面。3结论

(1)金刚石薄膜沉积过程中能够分别以{111}面和{100}面作为生长前沿面,以2种生长方式形成{100}织构,但薄膜表面形貌不同。

(2)金刚石薄膜以{111}面为生长前沿面时,碳原子通过吸附CH -

3和CH 3-

原子团在{111}晶面上堆垛实现晶体长大,通过{111}面的层层堆垛最终形成{100}面,且{100}面平行衬底面,显露在晶粒表面的晶面只有{111}面。

(3)金刚石薄膜以{100}面为生长前沿面时,碳原

子通过吸附CH 2-

2原子团在{100}面上堆垛,形成的

{100}面平行于薄膜表面且作为晶粒大部分表面,晶粒显露的侧面为{111}面。竞争生长使{111}面之间不断相互覆盖而减小,但{100}面堆积碳原子形成的生长使{111}面没有最终消失。

[参

献]

[1]张剑云,王鹏飞,丁士进,等.CVD 金刚石自支撑薄膜

(111)与(100)取向生长的热力学分析[J ].功能材料,2001,32(2):217 219.

[2]陈志红,余志明,许向阳.甲烷浓度对金刚石薄膜织构的

影响[J ].金刚石与磨料磨具工程,2005,25(4):21 24.

[3]任

玲,王林军.[100]金刚石薄膜的辐照响应特性研究

[J ].人工晶体学报,2006,35(4):719 723.

[4]刘存业,刘

畅.CVD 金刚石膜的结构分析[J ]

.物理学报,

2003,52(6):1479 1483.(下转第56页)

表2实际浓度修正系数

m123456

S10.900 0.9500.700 0.8000.500 0.6000.300 0.4000.100 0.200-

β11.050 1.1101.250 1.4301.670 2.0002.500 3.3305.000 10.000-

β1(实例1,实/理)0.7191.74216.904518.33018100.000537500.000

β1(实例2,实/理)0.6881.3542.069---

β1(实例3,实/理)0.7791.1021.7052.68720.455166.667推荐β1取值0.650 0.8001.000 1.5001.500 2.5002.500 4.00010.000 30.000100.000 200.000

表3断续补水各级清洗槽镀液浓度与理论浓度比较

清洗条件类别

ρ(Cr6+平衡)/(mg·L-1)备注

C1C2C3C4C5C6C0清洗方法

Q=130.00L/h q=2.106L/h

i=0.016

实测2035.00079.88012.5606.2203.6201.720

理论2830.50045.8500.7430.0120.0002-

实/理0.7191.74216.904518.33018100.000537500.000

实例1

174.728g/L

6级逆流

浸洗,浸洗时

间2s

Q=12.75L/h q=2.278L/h

i=0.022

实测2100.00090.0003.000---

理论3051.20066.5001.450---

实/理0.6881.3542.069---

实例2

140.00g/L

1级空槽

逆流喷洗,2,

3级逆流浸

洗,时间10s

Q=32.40L/h q=2.160L/h

i=0.067

实测8800.000830.00085.6009.0004.5002.500

理论11301.300753.40050.2003.3500.2200.015

实/理0.7791.1021.7052.66720.454166.700

实例3

169.520g/L

6级逆流

浸洗,时间

10s,每级都

加逆流喷洗

注:有关实例实测浓度素材见文献[1]。

表4不同清洗工艺的清洗效率比较

清洗槽号

η(清洗)/%

只浸洗浸洗+自搅拌浸洗+自搅拌+反喷淋1号92.0096.5398.09

3号98.9099.5999.74

注:清洗效率是指镀件在清洗前、后附着液含Cr6+量之差与清洗前附着液含Cr6+量之比[1]。

由表4可见,采用浸洗+自搅拌(或自喷淋)+反喷淋是一种较好的清洗方法。采用泵升在自喷淋的同时进行自搅拌浸洗并以少量水反喷补水可使系统更为简单高效,这时可增大自喷淋与自搅拌的流量,提高清洗效果(见图1)。考虑到清洗效果在常用方法实例3的基础上还有提高的可能,推荐β

1

取值见表2。[编校:严灿]

(未完待续

檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪

(上接第32页)

[5]Choi I H,Weisbecker P,Barrat S,et al.Growth of highly

oriented diamond films by the MPCVD technique using

CO-H

2,CH

4

-H

2

and CH

4

–N

2

–H

2

gas mixtures[J].

Diamond and Related Materials,2004,13(2):574 580.[6]刘艳辉,张秀娟,孟亮.多晶薄膜生长中的织构诱导与控制[J].材料导报,2002,16(10):28 30.

[7]Evelyn M P,Graham J D,Martin L R.The role of methyl radicals and acetylene in[100]vs[111]diamond growth

[J].Diamond and Related Materials,2001,10(3):

1627 1632.

[8]Yu Z,Karlsson U,Flodstron A.Influence of oxygen and nitro-gen on the growth of hot filament chemical vapor deposited dia-

mond films[J].Thin Solid Films,1999,342(12):74 82.[9]Martin L R.Diamond film growth in a flowtube:A tempera-

ture dependence study[J].J Appl Phys,1991,70(10):

5667 5674.

[10]Maeda H,Ohtsubo K,Irke M,et al.Determination of dia-mond[100]and[111]growth rate and formation of highly

oriented diamond film by microwave plasma-assisted chemi-

cal vapor deposition[J].J Mater Res,1995,10(12):

3115 3123.

[11]Titus E,Sikder A K,Paltnikar U.Enhancement of(001)texture in diamond films grown using a temperature gradient

[J].Diamond and Related Materials,2002,11(3),

1403 1408.

[12]Tzeng Y,Yoshikawa M,Murakawa M,et al.Applications of diamond films and related materials[M].Amsterdam:

Elsevier Science Publishers,1991:527 531.

[编校:严灿]

Preparation ,Anti -Oxidation Performance and Formation Mechanism of SiC /MoSi 2-Si 2N 2O -CrSi 2Coating on Car-bon /Carbon Composites

YIN Ling ,XIONG Xiang ,ZENG Yi ,GUO Shun ,ZHANG Wu -zhuang (State Key Laboratory of Powder Metallurgy ,

Central South University ,Changsha 410083,China ).Cailiao Baohu 2011,44(12),23 26(Ch ).High -temperature anti -oxidation coating SiC /MoSi 2-Si 2N 2O -CrSi 2was prepared on C /C composites using pack cementation method and slurry method.The phase structure and morphology of as -prepared anti -oxidation coating were ana-lyzed by means of X -ray diffraction and scanning electron microscopy ,and its anti-oxidation performance at 1500?in air and formation mechanism were investigated.It was found that the outer layer of the coating mainly consisted of Si 2N 2O and con-tained a small amount of CrSi 2,SiC and MoSi 2.Besides ,its mass loss rate after 26h of oxidation at 1500?in air was only 1.94%,corresponding to its better anti -oxidation performance than MoSi 2-SiC -CrSi 2coating without Si 2N 2O.

Key words :carbon /carbon composites ;anti -oxidation coating ;SiC coating ;Si 2N 2O ;phase structure ;morphology ;formation mechanism

High -Temperature Oxidation Resistance Mechanism of 45CT Coating QU Yan-ping ,WANG Jian (School of Materials Science and Engi-neering ,Shenyang University of Technology ,Shenyang 110178,China ).Cailiao Baohu 2011,44(12),27 29(Ch ).Arc -spra-ying technique was applied to prepare 45CT coating.The micro-structure of as-prepared 45CT coating and the interfacial structure between the coating and substrate were analyzed by means of scanning electron microscopy ,X -ray diffraction and metallo-graphic microscopy.The high -temperature oxidation resistance and mechanism of 45CT coating were analyzed.At the same time ,arc -sprayed conventional Ni -Cr coating was studied as a comparison.It was found that as -prepared 45CT coating had better high -temperature oxidation resistance than conventional Ni -Cr coating ,which was attributed to the formation of a uniform and dense Cr 2O 3layer on the surface of 45CT coating.Mean-while ,interfacial transition layer consisting of Ni -Cr -Fe ,[Fe ,Ni ]and Fe was formed around the interface of 45CT coating and substrate to facilitate metallurgical bonding ,resulting in enhanced interfacial bonding between the coating and substrate.Key words :arc spraying ;45CT coating ;high-temperature oxida-tion resistance ;mechanism ;bonding ;transition layer

Oriented Growth Process of Chemical Vapor Deposition Diamond Film with {100}Texture

ZHU Hong -xi 1,2,GU Chao 1,XUE Yong -dong 3,REN Feng -zhang 1,2

,MAO Wei -min 4(1.School of Materials Science and Engineering ,Henan University of Science and Technology ,Luoyang 471003,China ;2.Henan Key Laboratory of Advanced Non -Ferrous Metals ,Luoyang 471003,China ;3.CITIC Heavy Industries Company Ltd.,Luoyang 471003,China ;4.School of Materials Science and Engineering ,University of Science and Technology Beijing ,Beijing 100083,China ).Cailiao Baohu 2011,44(12),30 32(Ch ).The macro-texture ,grain boundary distribution and surface morphology of free standing diamond film prepared via chemical vapor deposition (CVD )were investigated

by means of X-ray diffraction ,

electron backscatter diffraction and scanning electron microscopy ,and the formation mechanisms of {100}texture in CVD diamond film were explored.It was found that both {111}planes and {100}planes could act as the growth frontiers to form {100}texture during the crystal growth of dia-mond films ,but resultant diamond films had different morpholo-gies.When carbon atoms stacked on {111}planes by adsorbing CH -3and CH 3-,the {100}planes parallel to the film surface were generated ,and in this case only the {111}planes were dominant over the grain surface.When carbon atoms stacked on

{100}planes by adsorbing CH 2-

2,

the formed {100}planes were parallel to the film surface and dominant over the grain surface ,while the {111}planes comprised the side surface.

Key words :diamond film ;CVD ;{100}texture ;formation mech-anism ;morphology ;crystal growth ;growth process

Inhibition Performance of Sodium Diethyl Dithiocarbamate and Its Compounding Inhibitors for 316L Stainless Steel

YANG Jie 1,2

,REN Xiao -guang 2(1.School of Chemical Engi-neering ,Beijing University of Chemical Technology ,Beijing

100029,China ;2.School of Chemical Engineering ,Beijing In-stitute of Petrochemical Technology ,Beijing 102617,China ).

Cailiao Baohu 2011,44(12),33 35(Ch ).The inhibition per-formance of sodium diethyl dithiocarbamate (SDDTC )and its mixtures with sodium silicate or sodium molybdate as compoun-ding inhibitors for 316L stainless steel in solution of 3%sodium chloride was examined using potentiodynamic polarization curve method and electrochemical impedance spectroscopy.Results show that SDDTC is able to effectively inhibit the corrosion of the stainless steel at room temperature ,and the compounding inhibi-tors of SDDTC with sodium silicate or sodium molybdate possess better inhibition performance than SDDTC alone.

Key words :316L stainless steel ;sodium diethyl dithiocarbamate ;sodium silicate ;sodium molybdate ;synergistic effect

Activation of Ceramics by Nanoscale Gold for Electroless Copper Plating

WANG Yi -han ,MA Hong -fang ,MA Fang ,DING Yan -guang (School of Materials Science and Engineering ,Shandong Jianzhu

University ,Jinan 250101,China ).Cailiao Baohu 2011,

44(12),36 39(Ch ).Nanoscale gold activation fluid with catalytic activity was formulated and used for activation of ceramics before electroless Cu plating.The effects of bath compo-sition ,temperature and loading capacity on the deposition rate of electroless Cu coating were analyzed using a scanning electron microscope ,an energy dispersive spectrometer ,an X-ray diffrac-tometer and a bonding strength meter.The optimized condition for electroless Cu plating of ceramics activated by nanoscale Au was

established ,

and the performance of as-prepared coating was com-pared to that of electroless Cu coating of ceramics activated by Pd.Results show that a compact and homogeneous Cu coating with good adhesion can be prepared via electroless plating on ceramics activated by nanoscale Au.

Key words :ceramics ;activation ;nanoscale gold ;electroless copper plating ;adhesion ;microstructure of coating

Corrosion Resistance of In -Situ Organic Phosphating Coat-ing on Aluminum Alloy

ZHANG Sheng -lin ,YAO Yuan ,LI Wei -wei ,SUN Fei (College of Chemistry &Environmental Science ,Henan Normal

University ,Xinxiang 453007,China ).Cailiao Baohu 2011,

44(12),40 42(Ch ).In -situ organic phosphating coating was prepared on the surface of 6061Al alloy by one -step phophating process ,where phenylphosphonic acid was used as the in -situ phosphating agent and ready -mixed alkyd paint as the organic paint.Electrochemical methods were adopted to compare the pro-tective performance of as -prepared in -situ organic phosphating coating with that of the organic coating without incorporating phe-nylphosphonic acid as well as that of the organic coating treated with phosphate or chromate.The effects of phenylphosphonic acid dosage ,curing temperature and curing time on the corrosion re-sistance of the in-situ organic phosphating coating were investiga-ted.Results indicate that the corrosion resistance of the organic coatings can be obviously increased by incorporating phenylphos-phonic acid.The organic coating containing 2%(mass fraction )phenylphosphonic acid ,prepared after curing at 50?for 8h ,possessed the best corrosion resistance ,which was superior to that of the organic coating treated with phosphate or chromate.

Key words :in -situ phosphating ;organic coating ;corrosion re-sistance ;electrochemical ;aluminum alloy

Effect of Electroplating Condition on Deposition Rate and Performance of Electroplated Au -Fe Coating on Copper Wares

YANG Fu -guo 1,LU Zhan-yu 1,RUAN Shan-ju 2(1.Environment and Construction College ,Foshan University ,Foshan 528000,China ;2.Ma ’anshan Research Institute of Environmental Engi-neering ,Ma ’anshan 243000,China ).Cailiao Baohu 2011,44(12),43 44(Ch ).KAu (CN )2,FeSO 4,KCN and potassium citrate were used to formulate the bath for decorative Au-Fe alloy electroplating of copper wares.The effects of the concentration of KAu (CN )2and FeSO 4as well as the pH value and temperature of the plating bath on the deposition rate and performance of Au -Fe alloy coating were analyzed using a scanning electron microscope and an atomic absorption spectrometer as well as facilities for ben-ding test ,hot -dipping test and artificial sweat test.Results show that Au -Fe alloy coating with good adhesion to substrate and good corrosion resistance can be prepared by electroplating in the bath

相关文档
相关文档 最新文档