文档库 最新最全的文档下载
当前位置:文档库 › 气溶胶对降水形成与降水性质的影响

气溶胶对降水形成与降水性质的影响

气溶胶对降水形成与降水性质的影响
气溶胶对降水形成与降水性质的影响

气溶胶对降水形成与降水性质的影响

——以山东为例

摘要: 山东地处中国东部沿海,是典型的深受海洋影响的暖温带大陆性季风气候。胶东半岛受海洋的影响,大气中气溶胶粒子胶有明显的海洋特征,而山东内陆地区大气气溶胶粒子具有明显的大陆特征。这也就形成了山东地区的大气中气溶胶粒子胶既有大陆性又有海洋性。在降水的形成和沉降过程中,大气气溶胶粒子起着十分重要的作用,同样对降水的性质也有举足轻重的影响。

关键词:气溶胶粒子 降水

大气气溶胶粒子是指悬浮在大气的液态或固态颗粒。气溶胶粒子在大气能作为云凝结核或冰核,通过影响云进而可以影响降水形成过程,最终影响气候。国内外开展了很多关于大气气溶胶粒子气候影响的研究表明,大气气溶胶的变化已经影响了降水的形成。

(一)、气溶胶对降水形成的影响

大气气溶胶粒子对降水形成的影响,表现为对云的形成的影响,从而进一步影响降水。大气气溶胶粒子可以通过吸收和散射太阳辐射而直接影响地气系统的辐射平衡,即直接辐射气候效应。另一方面,气溶胶粒了又可以作为云的凝结核影响云的光学特性、云量以及云的寿命,产生间接效应。

1、促进作用

Khain 等模拟发现,增加少量气溶胶粒子,能使上升气流增强,促进深对流云的发展,从而单位面积降水量增加0io van den H eever 等通过观测2002年7月福罗里达半岛气溶胶异常偏高时的云降水变化,发现随着气溶胶粒子浓度增加,凝结核浓度随之增加,深对流云强度增强,降水量加大And reae 等对业马逊地区的现场观测也发现,当烟尘气溶胶粒子遇到深对流云时能引起对流强度的明显增强。大量的观测、数值模拟和敏感性试验发现深对流云对气溶胶浓度强迫的响应是非线性的,深对流云,气溶胶粒子增加引起降水增加或减少机制不是在所有的情况下都适用。通过对云降水的观测和模拟可以看出,深对流云对气溶胶强迫的响应不仅与所模拟的云有关,而且与气溶胶的分布、半径、浓度、组成等特征密切相关。而在另一些研究,研究者有意识地区分凝结核对深对流云降水的影响。[1]

2、抑制作用

气溶胶的间接辐射强迫作用表现为气溶胶与云的相互作用,具体来讲就是气溶胶可以通过参与云中的微物理过程来改变云的物理特征,从而改变其辐射特性。通过近些年的研究,这种间接辐射强迫主要可以描述为两类间接效应[2](图1}。第一类间接效应也称Tw

ey 效应,指气溶胶增加使

云中云滴数量增加,减少云粒了半径,从而增加云的反照率(它依赖于气溶胶的吸收特性和光学厚度);第二类间接效应也称

为“云的生命期效应”或

“A 1b rech t 效应”,是由人为气溶胶增加引起粒了半径的减小,从而抑制降水,使云的生命时问发生变化。另有新近的研究提出一种气溶胶对云的半直接效应(}m id r 二〔t effect on cbud):吸收性气溶胶也可以通过云的半自接效应来使地面变暖[3],在这种效应的作用下,边界层通过黑碳( Bc)对太阳辐射的吸收性可以使部分云产生挥发,同时允许更多的太阳辐射到达地面。

从具体机制上来讲,某些大气气溶胶粒了在大气过饱和或接近饱和的情况下,可以作为云凝结核或冰核形成降水粒了胚胎。在这个过程中,大气气溶胶参与了云过程,同时也问接影响了云的辐射特性。

云中水滴或冰晶的形成包括2种机制[4]:自发核化(同质核化)和异质核化。自发核化属于没有异质核存在时的核化现象。但是由于该过程所要求的环境条件很苛刻,因此在自然界中白发核化的发生十分困难。自然界中由水汽形成的水滴、冰晶,或者由过冷却水形成的冰晶,主要依赖于异质核化。异质核化过程与云雾形成有关的气溶胶微粒密切相关。其形成的凝结核和冰核是自然界成云致雨的重要环节。研究表明,直径大于0 OS lam的气溶胶粒了,特别是硫酸盐粒了,为云滴和冰晶的形成贡献了大部分凝结核和冰核[5〕。有机气溶胶也可作为云凝结核与硫酸盐气溶胶一样在云形成过程中发挥着重要作用[6]

影响云的反照率。早期人们对于气溶胶对云反照率的影响主要通过轮船航迹研究得到证明的[8]。近年来新的分析表明,气溶胶的变化改变了云的微物理结构,而云的反照率增大跟云微物理结构的变化有很大关系。Han等[9]通过分析国际卫星云气候学计划(ISCCP)资料发现对于所有光学厚度(S)较大的云(S>15),云滴尺寸越小云的反照率会越大,而对于光学厚度较小的云,云滴尺寸越小云的反照率反而会越小。Massie等[10]通过MODIS卫星资料和辐射传输模式研究认为水云比冰云对云反照率的影响更显著。

Rosenfeld研究表明在污染云中会出现降水并不发生或是延迟发生的现象;在同样的区域,非污染云的云滴增加到20~30Lm并且产生降水。Albrecht[11]的分析结果表明海洋上空气溶胶增加会减少毛毛雨,观测结果低云量也有增加。Yun等[12]、Heymsfield等[13]、Pawlowska 等[14]的研究也发现海洋性云中含有较多的降水粒子,而在污染的情况下降水的粒子较少。Yin等[15]利用一个分档气溶胶)云模式研究了沙尘气溶胶作为CCN和IN对云和降水的影响。目前气溶胶对降水的影响的研究还只限于个例研究,但是在以人为源作为CCN主要源的大陆上,气溶胶很可能是引起云的降水效率减小的重要因素。

气溶胶影响云的生命时间、云的面积。关于气溶胶增加引起的云生命时间减少的效应研究较少。Wetzel等[16]指出气溶胶光学厚度和云的光学厚度有明显的正相关,也就是说气溶胶的增加会使云层变厚,从而延长云的生命时间。虽然从理论上认为云的生命时间的增加的可能性,但是目前还并没有可靠的观测表明由于第二类间接强迫引起的云的生命时间的增加[17]。

(二)、气溶胶对降水性质的影响

大气中的气溶胶粒子,在水中表现一定得酸性或碱性,有人指出,大量的人为活动产生的铵根离子以及H y(SO4)z具有一定的酸性,钙离子(主要来自于陆地,很少来自于海洋)、镁离子(主要来自于海洋)具有一定的碱性。在降水过程中,雨水对气溶胶离子的冲刷,使大量的酸性、碱性粒子溶解在水滴中,从而改变与水的酸碱性,大气中的气溶胶粒子既有表现酸性的,又有表现碱性的,酸性粒子多余碱性粒子,降水表现为酸性。

山东地区的降水中主要致酸物质是硫酸根离子(主要来自于海洋,而且夏季明显大于冬季,

只有很少一部分来自于陆地)和铵根离子(海陆兼有),7月份主导风为南风或东南风,直接来自黄海和东海方向,大气气溶胶粒子为海洋性;1月份主导风为北风或西北风,受渤海湾以及内陆尘埃的影响,东北部大气气溶胶粒子为海洋性,其他地区为大陆性。山东地区的降水中主要碱性物质钙离子(绝大多数来自大陆气溶胶,海洋的影响可忽略),不论夏季或冬季,钙离子浓度基本不变。

结语:

大气中气溶胶粒子对降水的形成,以及降水的性质都有影响。对降水形成的影响是通过对云影响实现的,表现为促进和抑制;对降水性质影响表现为是否下酸雨。

参考文献:

[1] 许霖,金莲姬,覃峥嵘,翟晴飞,大气气溶胶粒子影响深对流云降水的国外最新研究进展

[2] Breon FM, TanreD, Generoso S. Aerosol effection cloud droplet size monitored from satellite[J].Science, 2002, 295: 834-838.

[3] 段蜻,毛节泰,气溶胶与云相互作用的研究进展

[4] Wang Pengfe,i LiZihua.The Microphysics of Cloud[M ].Beijing :China Meteorologica lPress, 1989. [王鹏飞,李子华.微观云物理学[M ].北京:气象出版社, 1989]

[5] TwomeyS. Pollution and the planetary albedo[J].AtmosphericEn-vironment,1974, 8: 1 251-1 256.

[6] Novakov T, Penner J E. Large contribution of organic aerosolsto cloud-condensation-nuclei concentrations[J].Nature,1993, 365:823-826.

[8] AckermanA S, ToonO B, Taylor J P,etal. Effects of aerosolson cloud albedo: Evaluation of Twomey 's Parameterization of cloud susceptibility using measurements of ship tracks[J].Jour-nalof Atmospheric

Science,2000, 57: 2 684-2 695.

[9] HanQ, Rossow W B, Chou J,et al. Global survey of the relationships of cloud albedo and liquid water path with droplet size260地球科学进展23usingISCCP[J].JournalofClimate,1998, 11: 1 516-1 528.

[10] Massie S T, Heymsfield A, Schmitt C ,et al. Aerosol indirect effects as a function of cloud top pressure [J].Journal ofGeo-physicalResearch,2007, 112: 1-13.

[11] Yum S S, Hudson JG. Maritime /continental microphysical contrasts in stratus[J].TellusB,2002, 54(1): 61-73.

[12] Heymsfield A J, Mc Farquhar G M. Microphysics of INDOEX clean and polluted trade cumulus clouds[J].JournalofGeophysi-calResearch,2001, 106(D22): 28 653-28 674.

[13] Pawlowska H, Brenguier J L. The indirect effect of aerosols onclimate: Effect of aerosol properties on precipitation efficiency

[14 ]M The Proceedings of the 13th International Conference onClouds and Precipitation. Reno, 2000.

[15] Yin Y, Chen L. The effects of heating by transported dust layerson cloud and precipitation: A numerical study[J].Atmospheric Chemistry andPhysics,2007, 7: 3 497-3 505.

[16] WetzelM, Stowe L L. Satellite-observed patterns in the relationship of aerosoloptical thickness to stratus cloud microphysics and shortwave radiative forcing[J].Journal of Geophysical Research Atmospheric,1999, 104: 31 287-31 299.

[17] Ramanathan V, Crutaen P J, Kirhl JT,etal. Aeroso,l climate, and the hydrological cycle[J].Science,2001, 294: 2 119-2 124.

王乐、王家欣

胶体及其性质

胶体及其性质 一、胶体的由来及其认识的发展 胶体一词,来自1861年T.格雷姆研究物质在水中扩散的论文《应用于分析的液体扩散》。当时发现有些物质(如某些无机盐、糖和甘油等)在水中扩散很快,容易透过一些膜;而另一些物质,如蛋白质、明胶和硅胶类水合氧化物等,则扩散很慢或不扩散。前者容易形成晶态,称为晶质;后者不易形成晶态,多呈胶态,则称为胶体。此种分类并未说明胶体的本质,因为胶状的胶体在适当条件下可以形成晶态,而晶质也可以形成胶态。直到20世纪初超显微镜的发明以及后来电子显微镜的应用,对胶体才逐渐有较清楚的了解. 二、胶体体系的特点 自质点大小这一特点考虑,高分子与胶体质点的大小差不多。例如,分子量为36000的胰岛素(球状)直径约4.0纳米;分子量为42000的蛋白朊长椭球长约11纳米,与一般金溶胶和硅溶胶质点大小相近。有的高分子甚至长达100纳米以上。因此,与大小有关的性质,如扩散、沉降、渗透压、光散射(见胶体光散射)等性质,二者全都相似。胶体研究的许多结果可以应用于高分子体系,从而大大推动了高分子的研究,高分子化学的部分领域也就归入胶体化学的范畴。经典的胶体体系是热力学不稳定体系,是一相(质点)分布在另一相(介质)中的多相分散体系;而高分子质点分散在介质中的这种胶体体系却是热力学稳定的体系,是均相溶液,即高分子溶于溶剂而形成的溶液。如同小分子的溶液一样,只要溶剂不挥发,高分子溶液就可以永久存在。高分子溶液的溶剂挥发后,得到高分子化合物;但若把高分子放入溶剂中,则又自动溶解而形成溶液。于是就把高分子溶液称为可逆胶体,也叫做亲液胶体,以与疏液胶体相对照、相区别。 胶体质点与经典化学所研究的分子不同的另一特点,是其形状的千差万别,从完全对称的球形和比较对称的椭球形,到极不对称的不规则薄片,以至细长的线条。这将对体系的性质,特别是流变性质有重大影响。例如高分子溶液、钻井泥浆、油漆涂料、胶团溶液,以及乳状液、泡沫等的粘度、弹性、塑性及触变性等皆与质点的形状和结构有关(见非牛顿流体)。三、胶体化学中的基本术语 ⑴相—是指物质的物理化学性质都完全相同的均匀部分。体系中有两个或两个以上的相,称为多相体系。 ⑵相界面—是指相与相之间的接触面称为相界面,相与相之间的宏观物理界面。在相互接触的两相中,若一相为气体,相界面称为表面,若是液—固分界面,称为界面。 ⑶分散相—是指在多相分散体系中,被分散的物质。 ⑷分散介质—是指分散相所在的连续介质,又叫连续相。例如:钻井液中,粘土颗粒分散在水中。粘土为分散相;水为分散介质。 ⑸分散度D—是指分散相的分散度,是分散程度的量度,通常用分散相颗粒平均直径或长度a的倒数来表示。D=1/a。 ⑹比表面—是指单位体积(重量)物质的总表面积。比表面= S/V(m-1 )或比表面= S/W (m2 /kg)。 ⑺吸附—是指物质在两相界面上自动浓集(界面浓度大于内部浓度)的现象。 ⑻吸附质—是指被吸附的物质。

沈阳地区气溶胶光学性质研究

沈阳地区气溶胶光学性质研究 1.引言 大气气溶胶是指均匀分散于大气中的固体微粒和液体微粒所构成的稳定混合体系,其中的微粒统称为气溶胶粒子。此类粒子的空气动力学直径在100μm以下,主要包括沙尘气溶胶、碳气溶胶、硫酸盐气溶胶、硝酸盐气溶胶、铵盐气溶胶和海盐气溶胶6类气溶胶粒子。气溶胶在紫外、可见光、红外等波段对辐射的吸收和散射对全球天气过程和气候产生重要影响(Boucher etc. , 1995;Breon etc. , 2002;Satheesh etc. , 2005)。而气溶胶的增加会使空气质量恶化,进而影响人体健康。所以气溶胶对于气候变化和人体健康有着重要的意义。 AOD(Aerosol Optical Depth,气溶胶光学厚度),物理意义是沿辐射传输路径,单位截面上因气溶胶吸收和散射对太阳辐射产生的总削弱。它与垂直方向上大气柱总的气溶胶浓度有关,是表征大气浑浊度的重要物理量(Reddy and Venkataraman, 2000;Lata etc. ,2003;Kaskaoutis etc. , 2006)。 在地理上,沈阳市位于中国东北地区南部,辽宁省中部,以平原为主,山地、丘陵集中在东南部,而辽河、浑河、秀水河等途径境内,属于温带半湿润大陆性气候,平均海拔约50m。沈阳也是建国初期国家重点建设起来的以装备制造业为主的全国重工业基地之一,工业门类达到142个,到2013年为止规模以上工业企业4000多家,地区生产总值7000多亿元。在2015年4月3日沈阳市环保局发布了影响环境空气质量主要污染源有:工业污染、燃煤锅炉和生活炉灶、交通运输、城市扬尘。 目前,对于沈阳地区AOD的研究相对较少,而AOD的变化特征对研究大气环境有着重要意义。因此,笔者基于沈阳2004年8月至2011年10月光学厚度资料,结合地面常规气象观测资料,分析沈阳市AOD变化特征以及气象因子对其影响,希望能对沈阳市大气环境治理提供参考。 2.数据资料 中国科学院大气物理研究所联合国内外单位于2004年7月建立了中国地区太阳分光观测网CSHNET为定量评估中国区域气溶胶的气候和环境效应提供基础观测数据。观测网包括19个中国生态系统研究网络(CERN)定位站、4个典型城市站、香河站和拉萨站两个长期标定站。观测网统一采用新一代便携式LED太阳分光光度计,选取每天10:00~14:00进行观测,0.5h观测一次,每次3组数据,每天至少观测15组数据(天空总云量超过8时不可进行观测)。本文所使用地面光学厚度观测资料来自其中沈阳站。 沈阳站地处松辽平原南部,站点的地理位置为北纬41.52°,123.63°,海拔31m,位于辽中南城市群所在地,是我国重工业基地及乡镇企业迅速发展的地区之一,我国重要的商品粮基地。高投入农业和工业污染给本区农业持续发展带来一系列待解决的生态环境问题。从地理位置上讲,沈阳神态站正好处于由东到西水分因子驱动和由南到北热量因子驱动的横穿我国境内的两条样带上,具有很好的区域代表性和网络研究的重要性。沈阳气候类型属于暖温带半湿润大陆性季风气候,年平均气温7.0~8.0℃,无霜期147~164天,年降水量650~700mm(辛金元,2006)。 Angstrom【1964】给出了气溶胶光学厚度与波长间的关系为 τaerosol(λ)=βλ-α τaerosol(λ)为波长为λ的AOD反映大气气溶胶光学厚度 β为Angstrom混浊系数,与测站上空垂直气柱内的气溶胶质粒总数有关,以代表大气

大气气溶胶相关研究综述

摘要 近日,环保部公布了我国第一部综合性大气污染防治规划——《重点区域大气污染防治“十二五”规划》。事实上,随着大气污染给人民生活带来的不便增多,人们空前关注大气科学进展以及PM2.5治理的理论依据。本文将从三个方面对大气气溶胶的研究做出总结和分析:大气气溶胶的基本特征,大气气溶胶的气候效应,国内外相关的大气气溶胶研究计划。 关键词:大气气溶胶;气候效应;环境健康;研究综述 前言 气溶胶是指长时间悬浮在空气中能被观察或测量的液体或固体粒子,其实际直径一般为0.001~100μm,动力学直径为0.002~100μm,对人体、环境、气候等产生着重要的影响。 [4] 由于大气气溶胶在气候、环境等方面的重要作用,近年来越来越引起科学界的重视。 很多过程可以产生气溶胶,根据来源可分为自然气溶胶和人为气溶胶。自然源主要是海洋、土壤和生物圈以及火山等;人为源主要来自化石燃料的燃烧、工农业生产活动等。工业革命以来,人类活动不仅直接向大气排放大量粒子,更重要的是向大气排放大量的SO2和SO X,NO2和NO X在大气中通过非均相化学反应逐渐转化成硫酸盐和硝酸盐粒子,形成二次气溶胶。污染气体形成的大气气溶胶自工业革命以来有大幅度增加。来自自然源的气溶胶如沙尘,也由于人类活动利用土地变化而发生着改变。尽管气溶胶只是地球大气成分中含量很少的组分,但由于其在许多大气过程中的重要作用而日益受到重视。随着环境污染问题的发展,人们已认识到大气气溶胶自身的污染特性与其物理化学性质以及在大气中的非均相化学反应有着密切的关系。[5] 气溶胶还与其他环境问题如臭氧层的破坏、酸雨的形成、烟雾事件的发生等密切相关。此外,气溶胶对人体和其他生物的生理健康也有其特有的影响。[1] 由于气溶胶的气候效应问题,气溶胶再次成为国际学术界的研究热点之一,大气气溶胶是当今大气化学研究中前沿的领域。国际大气化学研究计划(IGAC)科学指导委员会于1994年将国际全球大气化学研究计划和国际气溶胶计划(ICAP)合并重组,大气气溶胶研究被列为3大研究方向之一。大气气溶胶的研究内容,发展到包括物理和化学的性状、来源和形成、时空分布、对气候变化和环境质量的影响以及对大气化学过程的影响等多方面、多层次的综合研究,也涉及到大气科学的各个领域,具有很强的综合性。

气溶胶与雾霾天气的关系

气溶胶与雾霾天气的关系 学生: 指导教师: 专业:给排水科学与工程 院系:城市建设与环境工程 论文提交时间:2015年4月29日TheRelationshipBetween Aerosol And

Fogweather Studnt:Zhang Shuai Guidance teachers:Zuo Zhao Hong Major:Water science and Engineering Department:Urban Construction and Environmental Engineering Submit Time:29th April,2015

摘要 此文立足当代社会雾霾已经对人类生产生活造成严重影响的现实基础上已解析气溶胶与雾霾之间的关系为目的,在查阅大量相关资料的后分析得到雾霾与气溶胶之间的种种联系,依次点明了雾霾与气溶胶的定义,气溶胶的物理化学性质及其分类和来源,气溶胶与大气颗粒物之间的作用关系,及气溶胶与雾霾能见度之间的关系,并得到了一定成果,气溶胶与大气颗粒物浓度息息相关,是雾霾能见度的关键因素,降低气溶胶浓度,能够显著降低雾霾发生的可能性与危害性。气溶胶可以通过雾的凝结来降低气溶胶浓度,但当城市污染严重时效率低下,将形成雾霾。当代社会人类生活生产活动大大增加了气溶胶的化学成分,不过科学家已经认识到气溶胶是雾霾的幕后黑手,并且采取了一定措施来降低气溶胶浓度。 关键词:雾霾,气溶胶,大气颗粒物,能见度,pm2.5

Abstrct This article based on the contemporary social reality thatf haze has a serious impact on the production and life of human beings. In order to analysis the relationship between aerosol and haze , after reading a lot of relevant data to analysis the connections between the haze and aerosol pointed out, that the definition of the haze aerosols, aerosol and its physical and chemical properties of the source and classification and interaction between aerosol and atmospheric particles, and the relationship between aerosol and visibility of the fog and haze, and obtained the certain achievement, aerosol and atmospheric particulate matter concentration is closely linked, which is the key factor to reduce haze visibility, aerosol concentration, it can significantly reduce the possibility and harmfulness of haze . Aerosol can be reduced by fog condensation , but when the severe pollution of the city when the efficiency is low, it will form haze. Contemporary social and human activities greatly increased the aerosol chemical composition, but scientists have been aware of the aerosol is behind the haze, some measures have been taken to reduce the aerosol concentration . Key word:Fog and haze, Aerosol ,Atmosphere Grain,Visibility ,pm2.5

硅溶胶的性质及用途

HX- HX-是胶体二氧化硅的简称,其基本成分是无定型二氧化硅,并以10~20纳米的粒径均匀地分散于水中。其外观为乳白色或青白色半透明状胶体溶液,是一种良好的无机粘结剂,具有无毒、无味、耐高温、隔热、绝缘性能好、比表面积大、吸附力强、热膨胀系数低等优点。 二、的性能 1、具有较大的吸附性:硅溶胶中无数胶团产生的无数网络结构孔隙,在一定的条件下对无机物及有机物具有一定的吸附作用。 2、具有较大的比表面积:比表面积一般为250~300平方/g。 3、具有较好的粘结性:因其胶团尺寸均匀,并在10~20nm左右,自身风干即产生一定的粘接强度,但强度较小。如将硅溶胶加入某种纤维或粒状材料中,然后干燥固化即可成坚硬的凝胶结构,会产生较大的粘接性(一般46.7Kg/cm2左右)。 4、具有良好的耐温性:一般可耐1600℃左右。 5、硅溶胶具有较好的亲水性和憎油性:可以用蒸馏水稀释至任意浓度,而且随稀释度的增加而稳定性增强。但加入有机物或多种金属离子中又可产生憎水性。 6、硅溶胶具有“高度的分散性”,“较好的耐磨性”和良好的“透光性”等。因此,可作为良好的“分散剂”,“防腐剂”,“絮凝剂”,“冷却剂”和特殊的“光学材料”等。 三、的用途 1、应用于精密铸造业:代替硅酸乙脂使用,无毒性;不仅可以降低成本,用于制作零件,尺寸精确度高,铸件光洁度好,可使壳型强度大,造型比使用水玻璃质量好;用于铸模的耐高温涂料,可以使涂层具有较好的耐热性,减少高温下熔融金属与模具的损耗,并有助于脱模。 2、应用于涂料行业,能够使涂料牢固,具有耐水、耐火、耐污、耐高温、涂膜强度大、色泽艳丽、不褪色等优点。还可以应用于耐酸、耐碱、防火涂料和远红外线辐射涂料。 3、应用于耐火材料的粘结剂:具有粘结强度高、耐高温(1500~1600℃)等优点。 4、应用于纺织业:可以用做纺织上浆助剂,减少断头率;在织物染色中使用,因具有粘结性,可以形成优良的保护液,增加染色的附着力等等。

大气气溶胶含碳物质基本特征综述

第一作者:邹长伟,男,1969年生,博士研究生,主要研究方向为环境污染与控制。3 国家自然科学青年基金资助项目(No.NSFC40205018)。 大气气溶胶含碳物质基本特征综述 3 邹长伟1 黄 虹2曹军骥3 (1.南昌大学环境科学与工程学院,江西 南昌330029;2.华南师范大学化学与环境学院,广东 广州510631; 3.中国科学院地球环境研究所,陕西西安710075) 摘要准确界定了气溶胶含碳物质,特别是有机碳和元素碳的基本概念,指出了元素碳与黑碳的异同,总结了有机碳和元素 碳的排放源,以及二次有机碳的经验公式。阐述了有机碳、元素碳对全球气候、大气化学过程及人体健康带来的危害及机理。归纳了气溶胶中有机碳、元素碳组分的空间分布特征、时间变化特征。概述了国内气溶胶有机碳、元素碳的研究状况,指出国内相关研究重点和趋势。 关键词大气气溶胶碳气溶胶有机碳元素碳 R eview on b asic characteristic of aerosol carbonaceous Zou Changwei 1,H uang Hong 2,Cao J unj i 3.(1.S chool of Envi ronmental S cience and Engineering ,N anchang Universit y ,N anchang J iang x i 330029;2.School of Chemist ry and Envi ronment ,S outh China N ormal Universit y ,Guangz hou Guang dong 510631;3.I nstitute of Earth Envi ron 2ment ,Chinese A cadem y of Sciences ,X i ’an S hanx i 710075) Abstract : Based on the researches of carbonaceous aerosol ,clear conception of the carbonaceous especially ,that of organic carbon (OC )and elemental carbon EC )was offered ,and the difference between EC and black carbon (BC )was recognized ;the main sources of OC and EC were summarized ,and the model of quantification of second OC was given ;the influences of carbonaceous on global climate ,atmospheric chemistry process and human health were indicated ;spatial distribution and temporal variation of carbonaceous were reviewed.Research progress of OC and EC in China were summarized and research trend were prospected. K eyw ords : Aerosol Carbonaceous Organic carbon Elemental carbon 近年来国外有关气溶胶中含碳物质的研究论文呈显著增长的趋势,碳气溶胶基本特征研究成为当前国际大气化学研究的热点之一。1 气溶胶含碳物质的概念 气溶胶颗粒中的含碳物质包括三类:有机碳(OC )、元素碳(EC )和碳酸盐碳(CC )[1]。其中CC 在大气气溶胶中的含量很低,其占总碳含量的比例<5%[2]。根据Clarke 等[3]的气溶胶碳酸盐特征研究结果表明,碳酸盐质量浓度为0.10~0.53μg/m 3。因此,绝大多数研究者,研究气溶胶含碳物质时,只讨论OC 、EC ,认为总碳量等于OC 加EC 。 OC 是一种含有上百种有机化合物的混合体,一般组分有脂肪类、芳香族类、酸类,包括多环芳香烃、正构烷烃、酞酸脂和醛酮类羧基化合物等有毒有害类物质[4,5]。OC 还可分为水溶性和非水溶性[6,7]。常规的分析中,OC 的量是有机物中碳元素的量。 EC 是一种高聚合的、黑色的、在400℃以下很 难被氧化的物质[8] 。在常温下表现惰性和憎水性, 不溶于任何溶剂。惰性决定了EC 的转换和清除都是物理过程。尽管EC 具有惰性,但它在化学反应中具有重要的作用,特别是它能在液相系统中加速SO 2氧化成硫酸盐[9]或降低雪的表面反照率[10]。其固相的物理硬度和惰性决定了单位质量单位面积的EC 所含有的颗粒数相对稳定,导致其表面面积/质量达到1000m 2/g [11]。考虑到EC 的来源,其表面可能覆盖有吸附性的聚合物质,或由于其暴露在大气中而与其他物质相互作用。由于在大气中受到扩散和凝聚过程的影响,所以与环境颗粒或示踪气体相碰撞导致EC 的表面被亲水性的物质覆盖。因此,其表面被覆盖的颗粒或粒子团就表现出憎水或亲水性的行为。环境大气中的EC 并不是纯的元素碳,有时还含有复杂的脂肪类、酚类和羧基等有机化合物[5,12]。 黑碳(BC )和EC 在文献中互换使用,只是研究者考虑的出发点有些区别。BC 相对于光吸收特性和化学组成更直观,而EC 则能更好地描述热分析测量中得到的物质,主要是石墨碳成分[13]。简而言 ? 072?

气溶胶力学

课程名称:气溶胶力学

一、绪论 研究气溶胶粒子的形成、运动、沉降和凝并的科学成为气溶胶力学。其研究内容对人类的生产和生活有着重大的影响。自然界中云的形成对气候的影响;水蒸发凝结而降雨;风所造成的固体颗粒的迁移与沉积;风对植物花粉的传播以及空气中微生物的散布等都是气溶胶力学的研究内容。气溶胶的形成对人们的生产和生活有着有害和有利的双面,如一些尘粒会造成呼吸性疾病,生产过程中尘粒的发散会对产品的质量造成影响;但是,液体燃料在燃烧前喷成雾状以及固体燃料在燃烧前磨成粉末可以提高燃烧效率。 目前,研究气溶胶粒子的沉降过程比研究粒子的形成更有意义。控制粉尘污染的方法和手段是多样的,一般有重力式、惯性式、离心式、纤维过滤式、织物过滤式、静电式以及各种湿式除尘设备。而气溶胶力学所研究的内容是他们手机气溶胶粒子的机理以及在收集过程中气流的流场和能量损失。气溶胶力学的研究内容是气象、环境保护、劳动保护等科学的理论基础。为除尘净化的目的,从气溶胶粒子的物理性质及其运动;气溶胶粒子的空气动力捕获、扩散运动与沉降;气溶胶粒子的凝并、经典沉降以及气溶胶粒子的其他沉降机理讲解。 二、当前气溶胶科学发展动向 在应用方面,气溶胶工程技术发展很快。首先,微电子这一尖端高技术的发展,要求超纯净的工作环境,例如,在大规模和超大规模集成电路超纯净工作室,要求空气中所含气溶胶粒子浓度低于每立方英尺个粒子。因此,气溶胶粒子的过滤与分离的间题,以及超微量粒子浓度的测量问题,就成为当代气溶胶研究 中的重大课题。另外一个气溶胶工程技术的新发展,是利用气溶胶技术制备新材料。这是一个引人注目的气溶胶科学与材料科学交叉的新发展。按照人们预先规定好的力学性质、光学性质和电学性质来制备新材料,本来是材料科学的一个中心课题现在气溶胶科学深入到这一领域,与材料科学相互交叉、相互合作,就出现了一些技术上最激动人心、科学上最富挑战性的新的人工合成物。例如氧化物与非氧化物,以及金属粉末等,被烧结成不同形状,不同大小的新的固休材料。这之中有低温超导体材料,人造金刚石薄膜、碳黑、二氧化硅、二氧化铁、硅、碳化硅、光导纤维、汽车钢材、磁带与录相带上的薄膜、感光片薄膜等。这些新材料正以其高纯度、低成本而令人瞩目。

外文文献翻译-:上海冬季亚微米级气溶胶吸湿性增长特性说课讲解

冬季上海地区亚微米级城市气溶胶的吸湿性增长 摘要: 吸湿性增长因子和混合状态的信息对理解被严重污染的长三角地区的雾的形成机制具有重要的作用。在此研究了环境气溶胶的吸湿性增长。用HTDMA测量了复旦大学校园中粒径在30-250nm的干粒子的吸湿性增长因子,研究两种模式化的表面混合物。较少吸湿组在85%的相对湿度下的吸湿性增长因子为1.10。较少吸湿组的平均数部分在0.33-0.17范围内呈现多样化,随着干粒子的尺度的增长有轻微的减少。较多吸湿组的吸湿性增长因子显示出爱根核与积聚模态的粒子有显著的不同。爱根核为接近1.3,而积聚模态为1.4以上。在以硫酸铵盐为基础的模式中,较多吸湿组的吸湿体积增长分数在0.47-0.70这个范围内,而且爱根核和积聚模态的粒子的吸湿性增长分数的界限很清晰。以相对湿度测试为背景的吸湿性增长不仅显示出潮解相对湿度决定于粒子大小,同时也显示出硝酸盐粒子的增长最初是由硫酸盐的凝结提升的。结果也表明了大多数积聚模态的粒子在有雾的情况下都会潮解。 1前言: 近20年来,随着经济的快速增长和城市化进程的加快,中国超大城市的空气污染问题越来越受到关注。由化石燃料燃烧排放的一次污染物和由光化学氧化和多相反应而来的二次污染物对城市居民的环境和健康造成了极大地威胁。雾这种能见度小于十公里的现象是由于高浓度的微粒排放造成的。长江三角洲是中国四大雾区之一。作为长三角的经济中心,上海为国家GDP做出了4.6%的贡献。作为全国最大的超大城市,上海有1800万的常住居民和280万的流动人口(Geng等人,2008)。由当前研究为基础做出结论,上海雾天能见度的下降主要是由于PM2.5浓度升高造成的(Fu等人,2008)。 很多因素影响着大气能见度,比如化学组成、粒子大小的贡献、气溶胶的构成和气溶胶的混合状态。水相、海盐和矿物尘埃的参与促进了硝酸的吸湿反应。N2O5在对流层表面的水解(Dentener和Crutzen,1993;Mongili等人,2006),硫酸盐在有雾状态下的组成(Tursic等人,2004)。环境气溶胶的吸湿增长会改变粒子大小和光学特性(Gasso等人,2000;Kotchenruther等人,1999;Swietlicki等人,1999)。作为相对湿度RH的功能之一的光散射性质是衡量大气气溶胶直接影响气候的衡量参数之一,有些人已经试图将吸湿性增长因子包含到全球气候模型中去(Boucher 和

铸造用硅溶胶

铸造用硅溶胶一般二氧化硅30%: A.台湾荣祥工业 基本物理化学 矽溶胶/矽酸胶 性质主要成份 其他成份有机补强剂 二氧化硅含量25% 粒径7~8 mm pH at 25°C 9~10.5 比重 1.17 黏度<10 cps 氧化钠含量0.4% 带电性负电 颜色白色 规格RS-PⅡ、RS-P、RS-E型硅溶胶应用在精密铸造业简介 一种添加树脂增加湿态强度、乾燥速度。增效型的硅溶胶!为奈米级的有无机复合材料! PⅡ/P/E依序通常用于面层/2、3层/背层,树脂量由高而低。 PⅡ/P/E型硅溶胶是一种复合型的硅溶胶,为一综合有机/无机黏结剂优点为一身的新型黏结剂。适用于各种精密铸造的应用,使用P型硅溶胶会有下列几项优点: *良好的润湿性 *较低沙浆黏度 *较短滴滞时间 *降低壳模材料的使用量 *缩短壳模的乾燥时间 *更佳的湿态强度 *更薄的壳模厚度 实际的效果会因壳模的种类、大小、应用而有所不同的表现。 典型的沙浆调制(10公升) 64.5%耐火材料(耐火材料约63.0~66.0%) RS-PⅡ型硅溶胶:5.92 KG 120~200MESH熔融石英:5.38 KG or 140MESH熔融石英:10.75 KG 黏度:14~18 sec 3号詹氏杯 浆密度:1.65~1.69 g/ml *以上仅供参考,各厂应视各家的需求,自行调配比例。 使用建议: a. 使用前,请先搅拌。关于简易型的活动搅伴叶片,请洽本公司服务部。 b 泡新浆时建议不用再加水了,但补充自浆桶散失的水份是必要的。 .

c. pH维持在9.0~10.5之间。 d . 维持固定的粉液比。 e. 浆桶的温差不要超过±3°C,沾浆室的温差不要超过±6°C。 f. 壳模乾燥室的温度要维持定温,相对湿度可以降低至20%~60%,风速可提高 至1.3~2.0 m/s,减少乾燥的时间。 g . 若使淋砂机和RS-PⅡ/P时,砂子的粒径要小于30MESH,附着力才会好。 h . 若用压力锅脱腊时,用乾蒸气升压至 5.5bar(80psi) 要在10sec内完成;降压时,时间要超过 2 min。 硅溶胶RS-PⅡ,RS-P,RS-E型是一种添加树脂,在精密铸造行业中,常当做优质的粘结剂。大量使用,所制的壳模具有高温强度高、光洁度好、尺寸精度高等优点。本公司生产的硅溶胶中约有60%应用于此行业,通常使用产品为RS-30/RS-30S和快乾型FS-30A/FS-25B硅溶胶。 本公司精密铸造专用硅溶胶分有面层RS-30S和背层RS-30硅溶胶。面层硅溶胶粒径较小,有利于提高浆料的粉液比和致密性,能有效提高铸件表面品质;而背层硅溶胶则粒径稍大,更注重强度性能。经专家测定,其高温强度明显高于国内其他厂家所生产的产品,和美国Nyacol、日本Nisson公司等产品相仿。 B.精密铸造专用硅溶胶 一、应用领域 本品是为精密铸造专业设计的一款硅溶胶产品,特别适合于面层。用其制备的型壳具有表面光洁度高、高温强度高等优点,显著提高铸件的良品率。 二、性能指标 指标名称标准 SiO2含量(重量) 25-28% 粒径10-15nm 外观透明液体 pH值9-10 保质期(月) ≥12 三、使用说明 在搅拌桶中先加入润湿剂和消泡剂,然后加入硅溶胶,搅拌均匀,然后在不断搅拌中加入耐火粉,继续搅拌至体系充分稳定,测量其粘度,若体系粘度过高,则加硅溶胶稀释;若体系粘度过低,则加适量耐火粉,直至粘度适合。 四、包装及储存 1.采用聚乙烯塑料桶包装,主要包装规格有25Kg、250Kg。 2.贮存时应避免曝晒,贮存温度为0-40℃。低于0℃则产生冻胶失效。 3.避免敞口长期与空气接触。 一、当前国内精密铸造面临的机遇和挑战 中国精密铸造业从20世纪90年代初起,进入了一个飞速发展的时期.经过十几年的稳步发展现已成为亚洲地区生产规模最大,专业化程度最高,辅助材料最为齐全的精铸产品生产基

气溶胶的光学特性参数

气溶胶的光学特性参数 (1)气溶胶光学厚度 气溶胶光学厚度,英文名称为AOD(Aerosol Optical Depth)或AOT(Aerosol Optical Thickness),表示的是单位截面的垂直气柱上的透过率,有时候又叫大气混浊度,它是一个无量纲的正值。数值范围在0-1之间,0代表完全不透明大气,1代表完全透明的大气,气溶胶光学厚度越大,大气透过率越低。值的大小主要由气溶胶质粒的数密度、尺度分布、气溶胶类型等物理、光学属性来决定。 气溶胶光学厚度的反演: 公式:L=L0+F*T*P/[1-S*P] L:传感器收到的辐射;L0:大气路径辐射;F:下行辐射 P:地表反射率;T:大气透过率;S:大气半球反射率 F*T*P/[1-S*P]:地表反射辐射 对于大气路径辐射项L0,它只是大气气溶胶光学厚度和几何参数的函数,假如地表反射辐射比较小或为零,就可以通过大气路径辐射项来反演获得气溶胶光学厚度,对于地表反射辐射(F*T*P/[1-S*P])来说,仅是气溶胶光学厚度的函数,如果消去路径辐射信息,便可以通过它来反演气溶胶光学厚度。 (2)散射相函数 散射相函数反映的是电磁波入射能量经粒子散射后在方向上的分布,或者称相函数是粒子(散射体)将某个方向的入射波散射到其他方向的概率。定义相函数P(θ)为在θ角方向的散射辐射能量与各向同性散射时该方向的散射辐射能量之比。目前,常用的相函数有Mie散射相函数、HG相函数、双HG相函数和改进的HG*相函数等,这些函数各有优缺点。 Mie散射相函数: P Mie(θ)= [S1(θ)2 +S2(θ) 2]/ 2πα2 Qsca α=2πR/λ:球形气溶胶粒子的尺寸参数; S1(θ)、S2(θ):散射振幅矩阵元; Qsca:气溶胶粒子的散射效率因子; S1(θ)、S2(θ)和Qsca可由Mie展开系数求解,Mie散射相函数适合于球形粒子求解。 (3)单次散射反照率 单次散射反照率(single scattering albedo,SSA),在随机介质中传播的光将会被介质中的粒子散射和吸收而衰减,我们称之为消光,其中因散射而导致入射光消光在总消光中所占的比例,可以用粒子的平均单次散射反照率来表示,其定义为: 0(x,m)= Cs(x,m)/C(x,m) C、Cs:粒子的消光截面和散射截面,消光截面是粒子或粒子群在电磁波传播路径上对电磁波衰减能力的度量; x=2πr/λ:为粒子的尺度因子,r、λ分别为粒子的半径和入射光的波长; m:复折射率,为复数m=n–ki,式中实数部分n为介质的折射率,虚数部分的k为介质的吸收系数; 如果用Ca表示粒子的吸收截面,则应满足C=Cs+Ca;如果粒子对入射光完全无吸收,即Ca=0,于是C=Cs,反照率为1,达到它的最大值。粒子有吸收时,反照率介于0到1之间。

关于纳米硅溶胶的研究与论述

关于“纳米硅溶胶”的研究与论述 巫庭生 前言:百年以前,法国普兰特先生发明了硫酸电池,大大方便了世界工业革命。可是,百年来,地球受到硫酸电池造成的环境污染也让人类很伤脑筋。七十年代初,我在军工七五五厂,被厂里派往西北各导弹基地及矿山巡查,了解用我厂制造的碱性电池的使用情况。在矿山,发现矿工的衣服经常被硫酸电池溢出的酸液烧焦衣服,甚至有的矿工后屁股被烧伤。当时,出于一种无产阶级感情的激发,脑子立即萌生出一种要解决硫酸固化的念头…… 通过十几年的艰辛研制,终于在九二年三月四日国家科委成果办在北京隆重发布,推广发明产品LN型—“硫酸凝固剂”。国际命名为“硅溶胶”,由于此新材料达到1—100纳米的技术范围,我们故命名为“纳米硅溶胶”。 “纳米硅溶胶”的诞生,给电池制作的厂家生产系列胶体电池提供了最佳电解质,也给硫酸电池带来了更新换代的必然,同时,也解决了百年来地球村受硫酸电池严重污染的痛苦。 用“纳米硅溶胶”制造出的胶体电池具有如下八大优点: (一)寿命长:由于胶体电池电解质属高分子结构,凝胶以后,酸液上下均匀,不易产生极板硫酸化,铅粉也不易脱落,因此,寿命 比普通铅酸电池延长一倍以上。 (二)胶体电池属环保电池,其特点是充电时不易产生酸雾,不溢酸,不漏酸,不污染环境。

(三)胶体电池可以充电保存(自放电极微小),电池在库内存放二年装车即可启动,同时入库存二年后还可以100%充进电。(四)高低温性能好,低温-40℃至高温80℃内仍能正常使用,低温-20℃电池容量仍有80%以上。 (五)可高倍率放电,大电流充放电,快速充电,同时。胶体电池可以断路27天不损害,普通铅酸电池断路二小时即报废。 (六)胶体电池充电接受能力比普通铅酸电池快50%,最符合太阳能电池充电储存。 (七)胶体电池容量不易衰减,(其峰值比普通铅酸电池长3 倍),电动摩托车行驶8个月后,电池充电后还能保持100%充足电。(八)防震性能好,由于胶体电池内的凝胶粘结住正负极板和隔板,使铅粉不易脱落,因此电池寿命肯定比普通铅酸电池好。 关键词:纳米硅溶胶、凝胶、触变原理、电性能、胶体电池、气硅、两种材料的区分(硅胶和气胶)、电解质的应用和分析。 一、对纳米硅溶胶材料的认知 首先,我们应该知道,什么是纳米?科学家告诉我们,纳米是长度单位,原称“毫微米”。就是10的负九次方(即10亿分之一米)。纳米科学与技术称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。从具体的物质说来,人们往往用“细如发丝”来形容纤细的东西,其实人的头发丝一般直径为20-50um,并不细。单个细菌用肉眼看不出来,用显微镜测出直径5 um也不算细。极而言之,最

大气气溶胶表面化学与光学特性研究进展

大气气溶胶表面化学与光学特性研究进展 陈建民* 复旦大学全球环境变化研究所,上海,200433 复旦大学环境科学与工程系,上海,200433 *Email:jmchen@https://www.wendangku.net/doc/f911746705.html, 大气气溶胶有一次排放的矿尘、黑炭(soot)、海盐等,二次气溶胶富含硫酸盐、硝酸盐、铵盐、有机物等成分。大气气溶胶作为污染物的载体或反应床,其表面界面化学反应及消光(光吸收、光散射)特性,对空气质量、大气能见度产生影响,其消光特性对气候效应产生直接影响、作为云凝结核影响成云与降雨表现出对气候效应产生间接影响。本文对近年来矿尘、黑炭、海盐、混合气溶胶与SO2、NOx、有机物、O3等大气污染物表面化学反应机理研究前沿进行了分析,特别对大气气溶胶表面变化引起的光吸收、光散射特性的变化规律进行介绍,指出该领域发展前沿难点问题及重要的研究方向。 Progress on Aerosol Surface Chemistry and its Optical Property Jianmin Chen* Research Institute for the Global Environment Change, Fudan University, Shanghai , 200433 Department of Environmental Science & Engineering, Fudan University, Shanghai , 200433 Aerosol includes primary emission such as dust, black carbon(soot), sea-salt, and secondary evolutings like sulfate, nitrate, ammonium and organics et.al. Aerosol provides surfaces serving as a carrier or reaction bed for pollutants. The atmosperic chemistry of aerosol and its optical extinction (light adsorption and scattering) during heterogeneous reaction have significantly effects on air quality, visibility. Aerosol light extinction has both direct impact on climate change through absorption and scattering of solar radiation, and indirectly, through the modification of cloud properties and wet deposition. This paper concerns recent progress on surface chemistry of heterogeneous reaction mechanism between dust, soot, sea-salt and SO2、NOx、organics、O3 et al..The focus of significant research effort has been paid on light adsorption and scattering yet remaining highly uncertain and a significantvconstraint on the evaluation of climate sensitivity.

安全壳微小通道内气溶胶沉积模型综述

Nuclear Science and Technology 核科学与技术, 2020, 8(3), 123-129 Published Online July 2020 in Hans. https://www.wendangku.net/doc/f911746705.html,/journal/nst https://https://www.wendangku.net/doc/f911746705.html,/10.12677/nst.2020.83014 Summary of Aerosol Deposition Models within Micro Channels of Containment Hongchun Ding, Yaru Fu, Qiliang Mei Shanghai Nuclear Engineering Research & Design Institute Co. Ltd., Shanghai Received: Jun. 5th, 2020; accepted: Jun. 30th, 2020; published: Jul. 7th, 2020 Abstract During a severe accident in a nuclear power plant (NPP), even if the containment does not fail or destroy seriously, the radioactive fission product aerosols will still leak into the environment through these potential micro channels within containment. At present, many countries still esti-mate the leakage rate of aerosol particles from these micro channels in the same way as ordinary gases, that is to say, aerosol particles can pass through these micro channels without any loss. However, many experiments have observed that when aerosol particles pass through these micro channels, deposition occurs through a variety of deposition mechanisms. If the deposition of aerosol particles in these micro channels is taken into account, the conservativeness of source term assess-ment of severe accidents can be reduced. In this paper, severe representative models for studying the deposition effects of aerosol particles in micro channels are introduced through a large number of literature reviews. The advantages and disadvantages of these models are compared and sum-marized, which will provide a reference for the subsequent model study of aerosol deposition within micro channels. Keywords Source Term, Aerosol Particles, Micro Channel, Containment, Nuclear Power Plant, Severe Accident 安全壳微小通道内气溶胶沉积模型综述 丁宏春,付亚茹,梅其良 上海核工程研究设计院有限公司,上海 收稿日期:2020年6月5日;录用日期:2020年6月30日;发布日期:2020年7月7日

相关文档