文档库 最新最全的文档下载
当前位置:文档库 › 实验九 电容耦合回路相位鉴频器

实验九 电容耦合回路相位鉴频器

实验九 电容耦合回路相位鉴频器

实验九电容耦合回路相位鉴频器

姓名:

学号:

LC滤波电路原理及设计详解

LC滤波电路 LC滤波器也称为无源滤波器,是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义,就是该装置不需要额外提供电源。LC滤波器一般是由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 LC滤波器的适用场合 无源LC电路不易集成,通常电源中整流后的滤波电路均采用无源电路,且在大电流负载时应采用LC电路。 有源滤波器适用场合 有源滤波器电路不适于高压大电流的负载,只适用于信号处理, 滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。 经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路 电容滤波电路电感滤波电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动

高频小信号调谐放大器的电路设计与仿真

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目:1.高频小信号调谐放大器的电路设计与仿真 2. 乘积型相位鉴频设计与仿真 3. 高频谐振功率放大器设计与制作 初始条件: 对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.谐振频率:o f =10.7MHz ;谐振电压放大倍数:dB A VO 20≥,;通频带:MHz B w 17.0=;矩形系数:101.0≤r K 。要求:放大器电路工作稳定,采用自耦变压器谐振输出回路 2.电路的主要技术指标:输出功率Po ≥125mW ,工作中心频率fo=6MHz , >65%, 已知:电源供电为12V ,负载电阻,RL=51Ω,晶体管用3DA1,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe ≥10,功率增益Ap ≥13dB (20倍)。 时间安排: 第15周,安排任务(鉴3-204) 第16周,仿真、实物设计(鉴主实验室) 第17周,完成(答辩,提交报告,演示) 指导教师签名: 年 月 日

系主任(或责任教师)签名:年月日 高频小信号谐振放大器 (3) 1.设计任务 (3) 2 .总体电路方框图 (3) 3 单元电路设计 (4) 3.1小信号放大电路 (4) 3.2 选频网络 (5) 4仿真结果 (6) 5 实物制作与测试 (7) 乘积型相位鉴频设计与仿真 (8) 1.鉴频器概述 (8) 2.鉴频器的主要参数 (8) 2.1鉴频特性(曲线) (8) 2.2鉴频器的主要参数 (9) 3.鉴频方法 (9) 3.1直接鉴频法 (9) 3.2间接鉴频法 (10) 3.2乘积型相位鉴频器原理说明 (10) 4.乘积型相位鉴频器实验电路说明及仿真设计 (11) 4.1乘积型相位鉴频器电路 (11) 4.2仿真电路设计及结果分析 (12) 5.MC1496鉴频电路的鉴频实物实验 (14) 5.1鉴频电路的鉴频操作过程 (14) 5.2鉴频特性曲线(S曲线)的测量方法 (14) 高频功率放大器 (15) 1.放大器电路分析 (15) 2 谐振功率放大器的动态特性 (16) 2.1谐振功放的三种工作状态 (16) 2.2 谐振功率放大器的外部特性 (17) 3单元电路的设计 (19) 3.1确定功放的工作状态 (19) 3.2基极偏置电路计算 (20) 3.3计算谐振回路与耦合线圈的参数 (21) 3.4电源去耦滤波元件选择 (21) 4电路的安装与调试 (22) 总结 (23) 参考文献 (24)

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

乘积型相位鉴频器的设计

一、电路原理 1.电路原理 (1)乘积型相位鉴频由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。如图所示。 图1 正交鉴频原理图 (2)用LM1596构成的乘积型相位鉴频器电路如图所示。 图2 LM1596构成的相位鉴频器 其中C 1与并联谐振回路C 2L 共同组成线性移相网络,将调频波的瞬时频率的变化转变成瞬时相位的变化。分析表明,该网络的传输函数的相频特性)(ωφ的表 达式为: )]1(arctan[2)(20 2 --=w w Q w π φ 当 <

或 )2arctan(2 )(0 f f Q f ?-= ?π φ 式中f 0—回路的谐振频率,与调频的中心频率相等。Q —回路品质因数。△ f —瞬时频率偏移。相移φ与频偏△f 的特性曲线如图所示。 图3 相移φ与频偏△f 的特性曲线 2.主要技术指标 相位鉴频法的原理框图如下图所示。图中的变换电路具有线性的频率—相位转换特性,它可以将等幅的调频信号变成相位也随瞬时频率变化的、既调频又调相的FM-PM 波。把此FM-PM 波和原来输入的调频信号一起加到鉴相器上,就可以通过鉴相器解调此调频信号。相位鉴频法的关键是相位检波器,相位检波器或鉴相器就是用来检出两个信号之间的相位差,完成相位差—电压变换作用的部件或电路。设输入鉴相器的两个信号分别为: 把它们同时加于鉴相器,鉴相器的输出电压o u 是瞬时相位差的函数,即: 在线性鉴相时,o u 与输入位相差21()()()e t t t ???=-成正比。信号2u 中引入/2π固 定相移的目的在于当输入相位差21()()()e t t t ???=-在零附近正负变化时,鉴相器输出电压也相应地在零附近正负变化。 图4 相位鉴频器的框图 11122222cos ()cos ()sin ()2c c c u U t t u U t t U t t ω?πω?ω?=+???? ?? =-+=+???????? 21()()o u f t t ??=-????

详解电源中的电容作用及注意事项

详解电源中的电容作用及注意事项 不要轻视小小电容哦。他的作用很大,你看有没有用过他的电子产品不。。什么地方都有如果用得不好,死得难看的,所以首先介绍电容的作用。作为无源元件之一的电容,其作用不外乎以下几种: 1、应用于电源电路,实现旁路、去藕、滤波和储能方面电容的作用,下面分类详述之: 1)滤波 滤波是电容的作用中很重要的一部分。几乎所有的电源电路中都会用到。从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000uF)滤低频,小电容(20pF)滤高频。 曾有网友将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。 2)旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。 3)去藕 去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 4)储能 储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000uF之间的铝电解电容器(如EPCOS 公司的 B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW的电源,通常采用体积较大的罐形螺旋端子电容器。 2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:

正交鉴频器实验报告

正交鉴相鉴频器 实验报告 一. 设计方案: 1. 实验原理: 先将调频波经过一个移相网络变换成调相调频波,然后再与原调频波一起加到一个相位检波器进行鉴频。 利用模拟乘法器的相乘原理可以实现乘积型相位检波: 输入信号 ()cos(sin )s sm c f v t V t m t ω=+Ω 移相后的信号为: ''' ()cos{sin [ ()]} 2 sin[sin ()] s sm c f sm c f v t V t m t V t m t π ω?ωω?ω=+Ω++=+Ω+ 得到的输出信号 '' 1()KV sin[2(sin )()] 2 1 V sin () 2 o sm sm c F sm sm v t V t m t K V ω?ω?ω=+Ω++ 其中第一项为高频分量,可以用滤波器滤掉,第二项是所需的频率分量。只要线性移相网络的相频特性()?ω在调频波的频率变化范围内是线性的,当 ()0.4rad ?ω≤时,sin ()()?ω?ω≈。因此,鉴频器的输出电压()o v t 的变化规 律与调频波瞬时频率的变化规律相同,从而实现了相位鉴频。 2. 各部分电路具体实现: 鉴相鉴频器主要由三部分组成:移相网络,模拟相乘器和低频放大器。具体电路实现如下: (1) 移相网络: v D (t)

用LC 谐振回路实现移相网络,使输入信号移相90°。谐振回路的谐振频率为中频频率2.455MHz 。 (2) 模拟相乘器 用MC1496构成相乘器,使输入的两路正交信号相乘。1,4管脚和8,10管脚间分别接有电位器R2和R5用来调节输入直流平衡。电源处C7,C8和L2构成 型滤波网络,R12和C9起级间去耦作用。 (3) 低频放大器: 用LM741运放来放大输入调制信号,同时运放还能起到低通滤波以及隔离的作用。通过调节相应的电阻值可以改变放大的倍数。在运放的两个输入端2脚和3脚加上两个隔直电容,可以滤去直流分量,以保证运放的工作点正确。R21和C15构成低通滤波器。 L2 R13R12

第6章 互感耦合电路

第6章互感耦合电路 6.1互感与互感电压 一、填空题 1.由于一个线圈中的电流变化在另外一个线圈中产生感应电压的现象称为______________,产生的感应电压叫做_________。此时若线圈工中电流红变化在线圈I 中产生的互感电压记做____________,其大小的表达式为_______________;;同理线圈中II 电流2i 的变化在线圈I 产生的互感电压记做____________,其大小的表达式为_______________。 2.互感系数简称互感,用______表示,其国际单位是_________。它是线圈之间的固有参数,它取决于两线圈的______、______、______和______。 3.两线圈相互靠近,其耦合程度用耦合系数k 表示,k 的表达式为_________,其取值范围是,当k =1时称为_________。 4.已知两线圈,1L =12mH ,2L =3mH ,若k =0.4,则M =_________,若两线圈为全耦合。则M =____________。 5.有互感的两线圈,1L =0.4H ,2L =0.1H ,耦合系数k =0.5,电压、电流、磁链的参考方向均关 联,且符合右手螺旋定则,已知1i t A ,2i =0,则M =_______________,1 U =____________,2 U =__________________。 二、选择题 1.变压器同名端的含义是( ) (l )变压器的两个输人端 (2)变压器的两个输出端 (3)当分别从一二级的一端输入电流时,一、二级绕组的自感磁通与互感磁通的方向一致,这两端即为同名端 (4)分别从一、二级的一端输人电流时,一、二级绕组的自感磁通与互感磁通的方向相反,这两端即为同名端 2.线圈自感电压的大小与()有关 (l )线圈中电流的大小(2)线圈两端电压的大小 (3)线圈中电流变化的快慢(4)线圈电阻的大小 3.有一线圈,忽略电阻,其电感量L =0.02H ,当线圈中流过电流i =20A 的瞬间,电流增加的速率是2X 310A/s ,此时电感两端的电压是() (1)40V (2)0.4V (3)0V (4)800V 4、与线圈1中电流每秒变化20A ,线圈2中产生的互感电压的大小是0.2V ,则两线圈的互感是( )

滤波电容的选型与计算详解

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.

高频课程2设计

目录 摘要............................................................... I Abstract........................................................... I I 1绪论. (1) 2 鉴频及方法原理 (2) 2.1 鉴频 (2) 2.2 鉴频方法 (3) 2.3 乘积型相位鉴频器 (4) 2.3.1 移相网络 (5) 2.3.2 低通滤波器 (5) 3 MC1496芯片的介绍 (7) 3.1 内部结构 (7) 3.2 静态工作点设置 (8) 3.2.1 静态偏置电压的设置 (8) 3.2.3 静态偏置电流的确定 (8) 4 设计内容 (9) 4.1总体设计电路 (9) 4.2电路图 (12) 4.3鉴频特性曲线的测量方法 (13) 4.3静态工作点测量 (13) 5心得体会 (16) 参考文献 (17)

摘要 鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频。其鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。因此实现鉴频的核心部件是相位检波器。相位检波器又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波。 乘积型相位鉴频器实际上是一种正交鉴频器,它由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。这个设计采用乘积型相位鉴频器 MC1496芯片完成一个相位鉴频器的设计。 关键词:鉴频、调频、乘积型相位鉴频器、MC1496芯片

LED驱动电源中电容作用详解

不要轻视小小电容哦。他的作用很大,你看有没有用过他的电子产品不。。什么地方都有如果用得不好,死得难看的,所以首先介绍电容的作用 作为无源元件之一的电容,其作用不外乎以下几种: 1、应用于电源电路,实现旁路、去藕、滤波和储能方面电容的作用,下面分类详述之: 1)滤波 滤波是电容的作用中很重要的一部分。几乎所有的电源电路中都会用到。从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000uF)滤低频,小电容(20pF)滤高频。 曾有网友将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。 2)旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均

匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。 3)去藕 去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF 或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 4)储能

实验12 斜率鉴频与相位鉴频器

实验12 斜率鉴频与相位鉴频器 —、实验准备 1.做本实验时应具备的知识点: FM波的解调 斜率鉴频与相位鉴频器 2.做本实验时所用到的仪器: 变容二极管调频模块 斜率鉴频与相位鉴频器模块 双踪示波器 万用表 二、实验目的 1.了解调频波产生和解调的全过程以及整机调试方法,建立起调频系统的初步概念; 2.了解斜率鉴频与相位鉴频器的工作原理; 3.熟悉初、次级回路电容、耦合电容对于电容耦合回路相位鉴频器工作的影响。 三、实验内容 1.调频-鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2.观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 四、基本原理 从FM信号中恢复出原基带调制信号的技术称为FM波的解调,也称为频率检波技术,简称鉴频。鉴频器的解调输出电压幅度应与输入FM波的瞬时频率成正比,因此鉴频器实际上是一个频率—电压幅度转换电路。实现鉴频的方法有很多种,本实验介绍斜率鉴频和电容耦合回路相位鉴

频。 1.斜率鉴频电路 斜率鉴频技术是先将FM波通过线性频率振幅转换网络,使输出FM波的振幅按照瞬时频率的规律变化,而后通过包络检波器检出反映振幅变化的解调信号。实践中频率振幅转换网络常常采用LC并联谐振回路,为了获得线性的频率幅度转换特性,总是使输入FM波的载频处在LC并联回路幅频特性曲线斜坡的近似直线段中点,即处于回路失谐曲线中点。这样,单失谐回路就可以将输入的等幅FM波转变为幅度反映瞬时频率变化的FM波,而后通过二极管包络检波器进行包络检波,解调出原调制信号以完成鉴频功能。 图12-1为斜率鉴频与相位鉴频实验电路,图中13K02开关打 向“3”时为斜率鉴频。13Q01用来对FM波进行放大,13C2、13L02为频率振幅转换网络,其中心频率为9MHZ左右。13D03为包络检波二极管。13TP01、13TP02为输入、输出测量点。 2.相位鉴频器 本实验采用平衡叠加型电容耦合回路相位鉴频器,实验电路如图12-1所示,开关13K02拨向“1”时为相位鉴频。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号加到放大器13Q01的基极上。放大管的负载是频相转换电路,该电路是通过电容13C3耦合的双调谐回路。初级和次级都调谐在中心频率上。初级回路电压直接加到次级回路中的串联电容13C04、13C05的中心点上,作为鉴相器的参考电压;同时,又经电容13C3耦合到次级回路,作为鉴相器的输入电压,即加在13L02两端用表示。鉴相器采用两个并联二极管检波电路。检波后的低频信号经RC滤波器输出。

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

乘积型相位鉴频器的设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:乘积型相位鉴频器的设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式有一定的了解;具备晶体管电路的基本设计及基本调试能力;能够正确使用实验仪器进行电路的调试与检测;使用适当的软件进行仿真和制作PCB板图。 主要内容: 本题目为集成模拟乘法器应用设计之一,即设计一个乘积型相位鉴频器。通过本次电路设计,掌握集成模拟乘法器的基本原理及其所构成的相位鉴频电路的设计方法、电路调整及测试技术。加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 基本要求: (1) 采用集成模拟乘法器设计乘积型相位鉴频器,电路的工作中心频率 为f=6.5MHz。 (2) 绘制电路原理图,并给出鉴频特性曲线。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1 原理说明与电路分析 (3) 1.1电路原理及用途.........................................................................................错误!未 定义书签。 2.2 模拟乘法器MC1496 (4) 2.3 低通滤波器 (5) 2.4主要技术指标 (5) 3 乘积型相位鉴频器 (8) 3.1 乘积型相位鉴频器的原理图....................................................................错误!未 定义书签。 3.2电路工作状态或元件参数的确定 (9) 3.3仿真结果 (11) 3.4 调试及静态工作点的测量 (14) 4 元件清单 (16) 5 心得体会 (17) 6参考文献 (18)

滤波电容详解

电源滤波电路 注:本文献只用于学习,禁止任何商业用途!!! 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频 通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可 滤去交流纹波.。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF 的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的 等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 尽量将去耦电容和滤波电容等放置在对应元件的周围。去耦电容和滤波电容的布置是改善电路板的电源质量,提高抗干扰能力的一项重要举措。实际上,印制电路板的走线、引脚连线和接线等都有可能带来较大的电感效应,电感的存在会在电源线上引起纹波和毛刺,而在电源和地之间放置一个0.1uF的去耦电容可以有效滤除高频纹波,如果电路板上使用的是贴片电容,可以使贴片电容紧靠着元件的电源引脚。对于一些电源转换芯片,或者是电源输入端,最好还布置一个10uF或者更大的电容,以进一步改善电源 的质量。 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.

高频实验九 电容耦合相位鉴频器实验报告

实验九 电容耦合相位鉴频器实验 一.实验目的 1. 进一步学习掌握频率解调相关理论。 1. 了解电容耦合回路相位鉴频器的工作原理。 3. 了解鉴频特性(S 形曲线的调试与测试方法)。 二、实验使用仪器 1.电容耦合相位鉴频器实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源 三、实验基本原理与电路 1. 实验基本原理 从调频波中取出原来的调制信号,称为频率检波,又称鉴频。完成鉴频功能的电路,称为鉴频器。在调频波中,调制信息包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 本实验采用的是相位鉴频器。相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。 鉴相器采用两个并联二极管检波电路。假设二极管D3的检波电路和二极管D4的检波电路完全对称,两个检波电路的电压传输系数完全相等,检波后的输出信号为两个检波电路的输出电压差。即034D D U U U =- 当瞬时频率0f f =时, 2U 比1U 滞后90°,但|3D U |=|4D U |,这时,鉴频器输出为零。当0f f >时, 2U 滞后于1U 的相角小于90°,|3D U |>|4D U |,鉴频器的输出大于零。当0f f <时,2U 滞后于1U 的相角大于90°,

|3D U |<|4D U |,鉴频器的输出小于零。相位鉴频器鉴频特性的线性较好,鉴频灵敏度也较高。 图9-1频率电压转换原理图。 (ω<ω0)U 2(ω=ω0) (ω>ω0) . U 1.. U 2 .2U 2. 2 .. U 1 .U 2 .2 U 2. 2 . . U 2 .2 U 2. 2 (a) (b)(ω=ω0)(c)(ω>ω0) (d)(ω<ω0) 图9-1频率电压转换原理图。 鉴频器的主要参数: (1) 鉴频跨导 鉴频器的输出电压与输入调频波的瞬时频率偏移成正比,其比例系数称为鉴频跨导。图9-3为鉴频器输出电压V 与调频波的瞬时频偏f ?之间的关系曲线,称为鉴频特性曲线。它的中部接近直线部分的斜率即为鉴频跨导。它代表每单位频偏所产生的输出电压的大小,希望鉴频器的鉴频跨导应该尽可能的大。 (2)鉴频灵敏度 指鉴频器正常工作时,所需要输入调频波的最小幅度。其值越小,鉴频器灵敏度越高。 (3)鉴频器频带宽度 从上图的鉴频特性曲线中可以看出,只有特性曲线中间一部分的线性度较好,我们称2m f ?为频带宽度。一般,要求2m f ?大于输入调频波频偏的两倍,并

相位鉴频器

课程名称通信电子线路 实验项目相位鉴频器成绩 学院信息专业通信工程学号20141060149姓名李越 实验时间2016.06.04实验室3501指导教师谢汝生 1.实验目的 1.熟悉变容二级管调频器和相位鉴频器电路原理及构成。 2.了解调频器调制特性和相位鉴频器的鉴相特性及测量方法。 3.将变容二极管调频器与相位鉴频器两实验板进行联机试验,进一步了解调 频和解调全过程及整机调试方法。 2.实验设备 1.双踪示波器(RIGOL DS5062CA数字存储示波器) 2.频率计(AT-F1000-C数字频率计) 3.万用表(DT9205数字万用表) 4.扫频仪(BT3C宽带扫频仪)

5.清华科教TPE-GP2型高频电路实验箱及G4实验板 6.高频信号发生器(前锋QF1055A/1056A信号发生器) 3.实验电路及基本原理分析 从调频波中取出原来的调制信号,称为频率检波,又称为鉴频。在调频波中,调制信号包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 鉴频器电路是先借助谐振电路将等幅的调频波转换为幅度随瞬时频率变化的调幅调频波,再用二极管检波器进行幅度检波,以还原出调制信号。由于信号的最后检出还是利用高频振幅的变化,为了避免寄生调幅干扰检出的调制信号,一般都将输入鉴频器的调频波进行限幅去干扰,使其幅度恒定后再进行鉴频。

相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度变化。 本实验所用电路如图,该电路为电容耦合回路叠加型相位鉴频器。电路中V1/V2构成差分对振幅限幅电路,对输入信号进行去干扰限幅。同时在V2的集电极负载回路中设置了由CT1、C6、L1组成的并联谐振回路,与由CT2、C10、i 为调幅调频波。再通过后面两只检波二极管D1、D2组成的对称幅度检波器分别对上下两个调幅包络进行检波,最后得到调制信号。 4.实验步骤及内容记录(包括数据、图表、波形、程序设计等) 1.用扫频仪调整相位鉴频器的S型鉴频特性。 将实验电路中E、F、G三个接点分别与半可调电容C T1、C T2、C T3连接。

实验十二 斜率鉴频与相位鉴频器

实验十二斜率鉴频与相位鉴频器 一、实验目的 1. 了解调频波产生和解调的全过程以及整机调试方式,建立起调频系统的初步概念; 2. 了解斜率鉴频与相位鉴频器的工作原理 3. 熟悉初、次级回路电容、耦合电容变化对FM波解调的影响。 二、实验项目 1. 调频—鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2. 观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 三、实验步骤 1.模块上电 插装好斜率鉴频与相位鉴频、变容二极管调频器模块,接通电源,即可开始实验。 2.相位鉴频实验(该实验与实验11的内容有部分重复) (1)以实验10中的方法产生FM波,即音频调制信号频率为1KHZ,电压峰—峰值500mv,加到1P01音频输入端,并将调频输出中心频率调至8.2MHZ左右,然后将其输出连接到鉴频单元的输入端1P01,将鉴频器单元开关1K01拨向相位鉴频。 用示波器观察鉴频输出1TP02波形,此时可观察到频率为1KHZ的正弦波。如果没有波形或波形不好,应调整调频单元1W01和鉴频单元1W01。建议采用示波器作双线观察:CH1接调频器输入端1TP01,CH2接鉴频器输出端1TP02,并作比较。 (2)若改变调制信号幅度,则鉴频器输出信号幅度,则鉴频器输出信号幅度亦会随之变大,但信号幅度过大时,输出将会出现失真。 (3)改变调制信号的频率,鉴频器输出频率应随之变化,将调制信号改成三角波和方波,再观察鉴频输出。 3.斜率鉴频实验 (1)将鉴频单元开关1K01拨向斜率鉴频。 (2)信号连接和测试方法与相位鉴频完全相同。 四、实验报告要求 1.画出调频—鉴频系统正常工作时的调频器输入、输出波形和鉴频器输入、输出波形。

耦合电感的等效电路

6.5.2 耦合电感的等效电路 1. 耦合电感的去耦等效电路 (1)串联电路去耦 图6-41(a )和图6-42(a )即为耦合电感的串联电路。图6-41(a )中1L 和2L 的异名端联接在一起,该联接方式称为同向串联(顺接);图6-42(a )中1L 和2L 的同名端连接在一起,该连接方式称为反向串联(反接)。 1 +- 2 u M L +i M L +1 +- 2 u (a ) (b ) M L L 2++- + u (c ) 图6-41 串联耦合电路的去耦 顺接时,支路的电压电流关系为 dt di M L L dt di M L dt di M L dt di M dt di L dt di M dt di L u ) 2() ()() ()(21212 1 ++=+++=+++= 根据等效变换的概念,该顺接耦合电感可用一个)(1M L +的电感和一个)(2M L +的电感相串联的电路等效替代,或用一个)2(21M L L ++的电感等效替代。如图6-41(b )所示。 反接时,支路的电压电流关系为 dt di M L L dt di M L dt di M L dt di M dt di L dt di M dt di L u ) 2()()() ()(21212 1 -+=-+-=-+-= 根据等效变换的定义,该反接耦合电感可用一个)(1M L -的电感和一个)(2M L -的电感相串联的电路等效替代,或用一个)2(21M L L -+的电感等效替代。如图6-42(b )所示。 1 +- 2 u M L -i M L -1+- 2 u

详解滤波电容的选择及计算

详解滤波电容的选择及 计算 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来 平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为 50Hz; 而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我 们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用,用于滤低频,二级用,用于滤高频, 的电容作用是减小输出脉动和低频干扰,的电容应该是减小由于负载电流瞬时 变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率. 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

相关文档
相关文档 最新文档