文档库 最新最全的文档下载
当前位置:文档库 › 牡丹江大桥钢栈桥专项方案终版 更改

牡丹江大桥钢栈桥专项方案终版 更改

牡丹江大桥钢栈桥专项方案终版 更改
牡丹江大桥钢栈桥专项方案终版 更改

目录

1.工程概况 (1)

2.水文及地质情况 (1)

2.1地形、地貌、水文 (1)

2.2工程地质 (1)

3.总体施工方案 (2)

4.主要施工机械设备 (2)

5. 钢栈桥搭设 (2)

5.1钢栈桥设计要求 (2)

5.2钢栈桥构造 (3)

5.3 钢管桩的加工、制作 (5)

5.3.1钢管桩材料及加工要求 (5)

5.3.2钢管桩的验收 (5)

5.3.3钢管桩的存放和运输 (6)

5.4主要施工方法 (6)

5.4.1钢栈桥施工工艺流程 (7)

5.4.1施工准备 (7)

5.4.2钢栈桥桥台施工 (7)

5.4.3钢管桩试桩施工 (8)

5.4.4导向定位装置 (8)

5.4.5振动下沉钢管桩 (9)

5.4.6辅助振入钢管桩至设计深度 (10)

5.5观测体系 (14)

5.6钢管桩插打专项措施 (14)

5.6.1钢管桩刃脚加工 (15)

5.6.2桩尖加工 (16)

6.观测体系 (17)

7.安全保证措施 (17)

8.质量保证措施 (18)

9.钢栈桥施工防污染措施 (18)

牡丹江大桥钢栈桥专项施工方案

1.工程概况

红石牡丹江大桥,中心桩号568+332,交角90°,桥位在后红石处跨越牡丹江,位于红石水库鱼西崴子水库之间,西崴子水库库区内(西崴子水库位于红石水库下游),上游距红石水库大坝1820m,下游距西崴子水库大坝5558m。纵断面位置较高,桥梁高度在41-47m左右,设置红石牡丹江大桥,桥位地形起点及终点桥台均为陡坡,山上植物有灌木,山下为大片的水田、旱田及西崴子水库库区,地势平坦。西崴子水库大坝坝顶高程411.5m,设计洪水位为408m,钢栈桥采用三排单层上承式贝雷梁架设,根据现场地域环境以及施工进度,钢栈桥架设方案为线路中心方向修建一条与之平行的贯通牡丹江大桥的钢栈桥,栈桥紧邻主墩承台位置,使两主墩的施工机械及材料供应畅通。钢栈桥跨度布置为5跨×12m,全长60m。钢栈桥0#桥台为钢筋砼扩大基础,1#~4#为钢管桩基础,采用桩长为10m至13m不等共24根直径0.5m的钢管桩,钢栈桥顶面高程410.5m,宽度设计为7m,采用单向机动车道,宽度为5.5m,两侧设人行通道,宽度各为75cm,钻孔平台处宽度缩减至5m。钢栈桥上严禁错车。

2.水文及地质情况

2.1地形、地貌、水文

红石牡丹江大桥,中心桩号568+332,交角90°,桥位在后红石处跨越牡丹江,位于红石水库鱼西崴子水库之间,西崴子水库库区内(西崴子水库位于红石水库下游),上游距红石水库大坝1820m,下游距西崴子水库大坝5558m。纵断面位置较高,桥梁高度在41-47m左右,设置红石牡丹江大桥,桥位地形起点及终点桥台均为陡坡,山上植物有灌木,山下为大片的水田、旱田及西崴子水库库区,地势平坦。

2.2工程地质

桥位处工程地质:表层为4.0~5.0m左右的粉质粘土,其下为2.0~4.0m的中砂,以下为5.0~8.0m的卵石,再以下为2.0~5.5m左右的强风化橄榄玄武岩,最下层为弱风化花岗岩。

3.总体施工方案

由于牡丹江大桥位于红石水库鱼西崴子水库之间,交通非常闭塞,没有等级公路,只有两条分别通抵河岸两侧的新建施工便道,根据周围环境情况,牡丹江大桥的水中墩施工运输通道采用搭设钢栈桥施工方案。

钢栈桥采用50t履带吊车吊导向架定位,配合振动锤(带液压钳)从小里程逐跨悬臂插打钢管桩搭设栈桥的施工方法,将钢管桩打入河床基岩中做栈桥桩基础,桩与桩之间设斜撑和水平撑,桩顶设型钢盖梁,其上搁置三组每组8片共24片贝雷梁做纵向主梁。贝雷桁架的拼装主要在岸上完成,采用履带吊进行整体吊装。整体吊装完毕后,再进行桥面的铺装,在贝雷梁上铺设横向分配梁和纵向分配梁,桥面板采用防滑钢板,两侧设栏杆防护。

4.主要施工机械设备

表4-1 主要施工机械设备

5. 钢栈桥搭设

5.1钢栈桥设计要求

(1)栈桥必须满足550kN履带吊和最大构件吊重150KN在桥面行走及起重要求、350kN混凝土搅拌车行走要求。设计要求单根钢管桩承载力要大于900KN。

(2)栈桥的平面位置不得妨碍钻孔桩施工及承台施工,能够满足整个连续梁施工期间的要求。

(3)钢栈桥共1联,全长60m。

(4)便桥两侧采用C30混凝土硬化连接,连接长度为5m。

(5)栈桥跨度、平面位置、高度满足水流通畅及施工要求。

(6)栈桥宽度采用7m宽,在钻孔钢平台处栈桥缩减为5m,两侧设置120cm 高钢管护栏。

5.2钢栈桥构造

栈桥桥面宽7m,其桥面标高设计为410.5m。栈桥桥墩采用桩基排架,1~4#墩为板凳桩6根桩。钢管桩桩长根据河床覆盖层厚度、地基承载力变化而变化,钢管桩之间的斜撑和水平支撑采用I18工字钢联结。栈桥桩基采用φ500×8mm 规格的热轧无缝钢管。桩顶承重梁采用2I45a工字钢,上部承重梁采用321型贝雷梁,间距0.9m,梁高1.5m。为了防止贝雷梁发生侧移,各榀桁架下的墩顶分配梁两侧需设置挡块。贝雷梁上依次铺设型钢横向分配梁I28a工字钢、纵向分配梁20I18a工字钢和桥面δ=10mm防滑钢板。最后安装栏杆、照明、防滑条等附属结构。

牡丹江大桥钢栈桥立面布置见图5.2-1。

中交路桥鹤大高速公路项目ZT03标段牡丹江大桥专项施工方案

图5.2-1 牡丹江大桥钢栈桥立面布置图

4

5.3 钢管桩的加工、制作

5.3.1钢管桩材料及加工要求

钢管桩采用受力性能较好的热轧无缝钢管。交货时应有合格的“质量检验证明书”,证明书中各项内容应符合设计文件和国家标准要求,进场后应按现行标准进行抽检、复验,表面不得有裂缝、气泡、起鳞、夹层等缺陷。

焊接材料应符合国家现行标准的规定,并采用与主材料相匹配的材料,焊接材料的选择原则是焊条应选择与母材相同的材料或采用在环境介质中的自然腐蚀电位比母材电位低的材料。

因钢管桩是工程的辅助设施,根据钢管桩直径和壁厚,采用中型振动锤ZD90施工,满足施工需要即可,其实际打入长度以振动锤贯入度控制,当贯入度小于2cm/min时停振。为防止钢管桩插打过程中入岩不深,影响插打深度,钢管桩的桩端可做成刃脚形或者采用接锥型桩尖结构,以增大钢管桩的嵌岩力。

钢管桩焊接时,应注意以下问题:

(1)钢管桩焊接前,应将焊接缝上下30mm范围内的铁锈、油污、水汽和杂物清除干净;

(2)焊缝高度不小于8mm,确保焊缝质量;

(3)钢管桩对接应采用剖口焊,所有剖口焊要达到二级焊缝标准,现场焊缝要达到三级焊缝标准。每层焊缝焊完后,应及时清除焊渣,并做外观检查;

(4)对于现场切割的钢管桩,切面一定要平整,并除去钢渣,然后与上面一节钢桩对中、对焊、最后加焊补强钢板。加补强钢板时要将加焊处对焊的焊缝打磨光滑;

5.3.2钢管桩的验收

钢管桩在工厂预制时应编号,所编号码与桩长(以m计)相同。制作完成后,按加工技术要求进行验收。检查表面不得有气孔、裂纹、弧坑、夹渣等,有焊瘤时需用砂轮打磨,并需补焊,补焊后也需用砂轮打磨。焊缝允许超高不大于3mm,对接焊缝表面各焊道交界处在凹沟时最低点不得低于母材表面。

(1)钢管桩管节制造完毕后,检查其外型尺寸,应符合:

椭圆度:允许0.5%D,且不大于5mm(D为钢管桩外径);

外周长:允许±0.5%C,且不大于10mm(C为钢管桩周长);

管端平面倾斜:允许0.5%D,且不大于4mm(D为钢管桩外径)。

(2)钢管桩对口拼装时,相邻管节的管径偏差不大于2mm,对口板边高差不大于1mm。

(3)钢管桩对接焊缝允许偏差:

咬边:深度不超过0.5mm,累计总长度不超过焊缝长度的10%;

超高:不大于3mm;

(4)对口接长后,钢管桩外形尺寸的允许偏差:

桩长偏差:+300mm,0mm;

桩轴向弯曲矢高:允许0.1%L,且不大于30mm(L为钢管桩长度)。

(5)钢管桩地基承载力计算公式:

F=π×L×+×fa×0.8

L:钢管桩插入深度

D:钢管桩直径

qik:摩阻力

fa:地基承载力

通过计算验证钢管桩的承载力可满足施工要求。

5.3.3钢管桩的存放和运输

钢管桩应按不同的规格分别堆存,堆放层数和形式应安全可靠,为防止滑动,钢管桩两侧必须用木楔塞紧。为避免钢管桩产生纵向变形和局部压曲变形,堆放场地尽量平整、坚实且排水畅通,还应采取防锈蚀等保护措施。

在钢管桩的起吊、运输和堆存过程中,应尽量避免由于碰撞、摩擦等原因造成的管身变形和损伤。

为方便钢管桩的吊装,在顶端两侧焊上耳筋,并根据钢管桩使用的先后顺序确定钢管桩的摆放位置。

5.4主要施工方法

5.4.1钢栈桥施工工艺流程

图5.4-1钢栈桥施工工艺流程图

5.4.1施工准备

首先利用施工便道作为临时进场道路,进行场地平整,然后进行测量定位放样,标出桥台位置,同时量测出桥台基坑开挖线。岸上坡面修整采用挖掘机和人工相结合的整坡方法。在施工岸边平整一处临时堆放场地存放钢管桩和贝雷片,由平板车从钢管桩加工厂运达堆放场后,由一台25T汽车吊作为搬运卸货工具,最后由长挂车将材料运送到履带吊车后方。钢管桩则在现场拼焊接长,每一节长度控制在6~10m之间。

5.4.2钢栈桥桥台施工

桥台采用钢筋砼扩大基础结构,在栈桥与施工便道连接处绑扎钢筋,立组合钢模,浇筑C20砼桥台,台前设计标高为408.32m,台顶标高与桥面标高一致为410.5m,台后分层回填夯实的砂砾石,最后采用C30硬化作为栈桥与施工便道的顶面过渡连接,连接长度为5m。为减少施工期间雨水冲刷水土流失,桥台两侧和台前椎体采用片石笼做护坡,钢栈桥桥台示意图见图5.4-2。

图5.4-2钢栈桥桥台结构示意图

5.4.3钢管桩试桩施工

第一跨采用试桩施工,试桩的主要目的是为了检验钢管桩的承载能力。通过试桩,确定钢管桩的入土深度,采集试桩数据并报质检工程师,校核图纸并选择最合理的施工方法和机具设备。

5.4.4导向定位装置

导向定位装置主要作用是为了沉放钢管桩,安装钢管桩定位导向架,为钢管桩插打提供具有足够刚度和稳当、固定的工作平台。

在已搭建的栈桥平台上锚固两根双拼I40b工字钢,沿着钢管桩的外侧设置,作为钢管桩插打前接桩的承重梁。在导向定位装置的端头和中间部位分别焊接3个定位导向框架,此时定位装置可同时定位3根钢管桩的位置而不需要移动。每个定位导向框架采用4根I25b工字钢焊接,其内截面尺寸应比钢管桩直径大5cm~10cm,将导向定位装置对应桩区锚固到位后,锁定后支点就可以进行钢管桩的插打。

5.4.5振动下沉钢管桩

钢栈桥的架设采用550kN履带吊和DZ90型振动锤共同配合逐跨悬臂打桩搭设栈桥,还需要配备一只交通船协助插打施工。施工时注意履带吊悬出长度不准超过2m。栈桥搭设示意见图5.4-3。

图5.4-3 钢栈桥搭设示意图

钢管桩施打前根据桩位图计算每一根桩平面位置,直接确定其桩中心坐标,使用导向架上焊接定位框定位,其尺寸比钢管桩外径大5~10cm,同时确定好打桩顺序,防止先施打的桩妨碍后续的桩施工。钢管桩通过导向定位架逐节接长、再振动沉埋连续地施工。

插打钢管桩步骤为:

第一步:履带吊将导向架固定安装,测量定位,用全站仪架设在桩的正面或侧面,校正桩架导向杆及桩的垂直度,并保持锤、桩帽与桩在同一纵轴线上;

第二步:履带吊车将第一节钢管桩垂直地吊入定位框内,使钢管桩依靠其自重沉入河中直到桩顶距离定位框面上50cm时止,临时锁定钢管桩在定位框上,然后松开吊点,钢管桩顶端的两个吊环钢丝绳拴住,等钢管桩接长后,利用履带吊下放;

第三步:将接长钢管桩的电焊机及其工作挂蓝吊挂到第一节钢管桩顶吊环上,电焊工从交通船爬上挂篮或从定位架顶面走到焊接挂蓝内;

第四步:将定位架吊挂在第一节钢管桩外侧吊环上,然后履带吊将第二节钢管桩就位到第一节顶上,测量定位准确后电焊工施焊接长;

第五步:重复第一节沉埋及接长等工作程序,直至将钢管桩沉埋到河床面以下时,履带吊将DZ90振动锤就位到最上面一节钢管桩顶上并调整锤夹,将钢管桩夹稳,测量待沉钢管桩的位置,调整准确后开动振动锤沉入钢管桩;

第六步:在沉桩锤沉埋过程中,开始时振第一、二次不超过1分钟,待钢管桩入土较深时(超过2m以上时)才能延长连续振动的时间,以利于工作正常进行。当锤进入连续工作状态后,履带吊车的吊点保持适当的松驰状态,确保沉桩锤不倾斜、不脱吊状态。直到最上面一节钢管桩顶距离定位框面上50~100cm时止;

第七步:如果没有达到要求的贯入度,继续进行接长等工作程序,直至将钢管桩沉埋到要求的贯入度为准。

第八步:沉桩过程必须做好沉桩记录,记录每一次振动入土的关键指标:桩位偏差、振动时间、贯入度、桩底标高、垂直度等。

沉桩过程必须注意观察和测量桩位的准确性,及时校正。若开始阶段发现桩位不正或倾斜时,应调正或将钢管桩拔出重新插打。钢管桩的最终桩尖标高由入土深度控制,若钢管桩无法施打至设计标高,及时汇报、分析原因,拿出解决办法,直至钢管桩的入土深度满足设计要求或证明钢管桩达到了设计承载力。

5.4.6辅助振入钢管桩至设计深度

表5.4-1 钢便桥钢管桩桩底标高表

表5.4-2 钢便桥钢管桩桩长表

本桥主墩处河床覆盖层为粉质粘土,下层为卵石。钢管桩须进入卵石层。为减少钢管桩振入河床内时所遇阻力,当钢管桩振入到河床中2m左右后(此时钢管桩周边摩阻力较大),用空气吸泥机(进泥管口内径150mm)将钢管桩内细砂、小砾石吸出,然后用振动锤将钢管桩往下振入至设计深度。

(1) 钢管桩插打主意事项:

a钢管桩施打时注意桩位标高控制,进尺缓慢或施沉困难时,分析原因,采取措施调整;

沉桩允许偏差:桩位平面位置:±10cm

桩顶标高:±10cm

桩身倾斜度: 1%

b 桩顶损坏局部压曲应对该部割除并接长至设计标高;

c 打桩质量以贯入度控制为主,标高控制为辅,钢管桩插打采用桩端承载力和入土深度双控。施工中应确保钢管桩的入土深度,并可视设计桩尖处的贯入度适当调整钢管桩桩底标高;

d沉桩之前,将震动打桩锤与钢管桩桩顶栓接,检查两者竖直中心线是否一致,桩位是否正确,桩的垂直度是否符合规定;

e钢管桩下沉过程中,应及时检查钢管桩的倾斜度,发现倾斜应及时采取措施调整,必要时应停止下沉,采取有效措施进行调正;

f钢管桩下沉过程中,应随时观察其贯入度,当贯入度小于每分钟5cm时停震分析原因,或用其他辅助方法下沉,禁止强震久震;

g桩的平面位置特别重要,栈桥设在桥纵向中心线上,钢管桩的位置与承台距离较小,不能出现较大的平面位置偏差,否则将影响下一步的承台施工;

h钢管桩焊接接长时应保证管桩顺直,焊缝饱满;振动锤重心和管桩中心轴尽量保持在同一直线上;

i若钢管桩不能沉放到所需深度,则利用空气吸泥机,按先中部后四周再中部的顺序吸碴,必要时可在管桩外壁辅以高压射水下沉。开动空气吸泥机同时须往钢管桩内加水,管桩内水位不能低于河面水位;

g在管桩下沉过程中,当管桩沉入土中一定深度后,要及时撤除管桩导向架,以免影响管桩下沉。

(2) 钢管桩横向连结焊接:

每排钢管桩下沉到位后,要进行桩之间的连接,增加桩的稳定性,避免发生意外事件,连接材料采用Ⅰ18工字钢做斜撑、水平撑,尺寸需根据现场尺寸下料,高程位置根据设计图纸确定。

(3) 主横梁安装及桩顶处理:

钢栈桥主横梁2I45a的安装,经测量放线后,在钢管桩顶端往下30cm处焊上牛腿,按工字钢宽度在钢管桩顶端开槽,使直接嵌入钢管桩内30cm。桩顶分配梁在钢管桩位置及主纵梁搁置位置加焊加劲板加强。型钢与钢管桩上的牛腿、牛腿与钢管桩之间的焊缝必须符合设计的焊缝厚度要求。

图5.4-4 钢管桩与主横梁加固图

(4) 纵向贝雷梁吊装

贝雷梁预先在陆上按每组尺寸拼装好,两片一组拼装完成后,运至55t履带吊起吊范围内,贝雷梁的位置需放线后确定,以保证栈桥轴线不偏移,为减少纵梁的磨损,在桩顶分配梁与纵梁之间垫一块8cm厚的橡胶垫块。当钢管桩顶联接焊接完成一跨后,在岸上或已成型的栈桥上,履带吊整体吊装贝雷梁至横梁上。

(5) 桥面铺装及附属结构施工

桥面板宽7m,铺设桥面δ=10mm防滑钢板,桥面板与横梁采用焊接方式连接,用薄钢板垫实各接触点,电焊工将每一块钢板分别与纵向分配梁的全部接触点焊接牢固(注:钢板覆盖位置采用从贝雷梁处仰焊联结)。钢板上加焊φ8圆钢(间距1m)作防滑肋条,桥面系施工实现标准化、工厂化,将大量的水上施工转化为工厂加工,加快施工进度。桥面铺装采用模块化施工,桥面板在后方加工成标准化模块,由汽车运输到位后利用履带吊机吊装架设,依次逐跨施工。

铺设桥面板的同时安装桥面栏杆。栈桥栏杆立柱φ48×3.5mm钢管高1.2m,间距1.5m,横杆采用双排φ48×3.5mm钢管焊接,间距55cm。立柱焊在钢栈桥横向分配梁I28a工字钢上,栏杆统一用红白油漆涂刷,交替布置,达到简洁美观。

搁置托架设置在栏杆底脚上,搁置主要电缆和输水管等设施,减少对交通的

干扰。

在栈桥入口设置车辆限速行驶警示牌以及车辆限重标志牌。栈桥安排专门的卫生打扫人员兼安全监察员,保证栈桥的清洁,并在入口出设置水泵一套,进入车辆如车轮带泥,必须冲洗干净方许车辆进入栈桥,防止车轮在栈桥上打滑发生安全事故。

在栈桥上两边每隔15m交替布置路灯,采用光控开关,供夜间照明。

5.5观测体系

除在下沉管桩时检查位置及垂直度外,管桩震动下沉固定后,定期观测管桩的位置变化情况,使其不致于因意外而影响桩位。

因该栈桥须使用两年,必须对全桥加强观测、记录,具体措施如下:

(1)前期每周一次对全桥进行测量观察,对全桥的沉降、偏位进行记录,待稳定后每月测量一次。

(2)保证每月对全桥拼装点、焊点焊缝及各型材检查一次,如发现关键焊点焊缝生锈老化、关键型材明显形变,应立即通知项目部,临时封闭交通,采取补强措施。

5.6钢管桩插打专项措施

据地质资料显示,黄泥河大桥主墩处河床表层为厚薄不均的淤泥质粘土或卵石覆盖层;中层为强风化玄武岩;底层为弱风化玄武岩。覆盖层的厚度从6.0m~9.0m不等,加上管桩高度较高,插人深度若小于5.0m很难自稳,因此要使钢管桩插打和自稳,采取的措施如下:

1、浮箱辅助

对于覆盖层厚度均小于6.0m的桩位,拼装3套插打钢管桩浮箱,分别将3根管桩插打入基岩,插打结束后,浮箱保持不动,及时利用[22b槽钢,以斜撑和水平撑焊接成稳固小平台,之后移走浮箱。以小平台做基础,插打平台附近的钢管桩,并与小平台及时连接焊接,扩大平台的面积。为了增加小平台的稳定性,还可以向钢管桩内灌入砂石,增加管桩的稳定性。

2、栽植钢棒法

对于覆盖层厚度较薄,钢管桩插打不深的桩位,可以采用一种栽植钢棒建造钢管桩基础的方法,它是将至少一根钢棒部分栽植入基岩内,将钢管套在钢棒外,

将水下混凝土灌注在钢管内,使钢管与钢棒及基岩连接成整体。它是基岩内与钢棒部分连接固定,基岩外的钢棒设在钢管内,钢管与钢棒连接成整体形成的钢管桩基础。该方法解决了水下基岩面上钢管桩基础很难打入岩层足够的深度,因此桩身的稳定性很难保障等施工难题;通过相对较小的施工量来解决问题,将复杂的水下基岩面上钢管桩基础施工相对简单化,保证钢管桩基础承载力。该结构的钢管桩基础新颖,简单,适用于水下浅覆盖层或裸露基岩上的钢管桩基础施工。

3钢丝笼法

对于覆盖层厚度较薄,钢管桩插打不深的桩位,可以采用在钢管桩外套入比钢管桩直径稍大的钢丝笼,向钢丝笼内抛入碎石,以增加钢管桩的竖向承载力。

该结构的管桩主要是利用抛入碎石对管桩的摩阻力,以增强管桩的竖向承载力。

5.6.1钢管桩刃脚加工

河床下强风化玄武层坡度未知,对于直径50cm的管桩来说,管桩两侧可能会出现高差,对于薄覆盖层的河床,插打管桩时必然出现管桩一侧已经嵌岩,另一侧还悬在覆盖层中,因侧向土压力不平衡,管桩易沿着斜坡岩石面下溜,造成管桩准确定位和插打困难。

解决方法:

(1)增长导向架的长度,使之伸到河床面,增加管桩的侧向约束力,阻止管桩下溜;

(2)改变管桩最下部的一段管桩的钢材和结构,最下一段管桩的钢材改用Q345厚度10mm的三级钢材,为了增加管桩的入岩的性能,将管桩最下部刨成20°刃脚;

(3)在管桩的最下部焊接2.0cm×15cm的钢板,并伸出管桩5cm,间距50cm,增加管桩吃岩能力;

(4)施工过程中,还根据每个管桩底部的河床高程图(用测量的方法做出准确高程图),把管桩的底部做成椭圆型,加大与河床密贴性。

插打管桩,交替施工,每完成每根管桩都要及时的焊接斜撑和水平撑进行稳固连接,扩充平台的面积,依次类推,直至完成所有管桩的插打。

图5.6-1 钢管桩刃脚加工大样图

5.6.2桩尖加工

对于插打不易地段,现场根据实际插打情况确定是否选用桩尖。

桩尖采用扇形圆环板加工制作,板厚12mm,桩尖,桩尖与桩身的连接要求保证加工精度,防止桩尖歪斜、歪桩。

桩尖缝隙采用电弧焊进行封固,桩尖与桩身连接处采用□100×100×10连接钢板进行补强。

为增强桩尖强度、刚度,可在桩尖内部加入钢筋支撑,并填充C30微膨胀混凝土。

图5.6-2 桩尖结构示意图

6.观测体系

除在下沉管桩时检查位置及垂直度外,管桩震动下沉固定后,定期观测管桩的位置变化情况,使其不致于因意外而影响桩位。

因该栈桥须使用两年,必须对全桥加强观测、记录,具体措施如下:

(1)前期每周一次对全桥进行测量观察,对全桥的沉降、偏位进行记录,待稳定后每月测量一次。

(2)保证每月对全桥拼装点、焊点焊缝及各型材检查一次,如发现关键焊点焊缝生锈老化、关键型材明显形变,应立即通知项目部,临时封闭交通,采取补强措施。

7.安全保证措施

由于牡丹江不通航,根据现场观察,为保证施工安全,项目部将在栈桥施工过程及投入使用时,制定如下安全措施:

(1)钢管桩制作,必须符合设计及规范要求,并按规范进行抽检。钢管桩沉桩偏位控制在设计范围内,以保证结构受力可靠,以及避免与工程桩位,承台冲突,栈桥施工每跨的各种构件安装可靠后,才能上重载。

(2)履带吊在栈桥上沉桩时,履带最前端悬臂处与横向分配梁I25a工字钢的水平距离不得超过2m,吊车要居中,以保证栈桥和吊车安全。

(3)每排钢管桩施打完毕,要立即进行桩间连接,钢支撑焊接质量可靠,以保证桩的稳定性。

(4)栈桥上单向通行车辆间距不得小于15m,车速不得大于8km/h。

(5)建立安全管理体系,配备1名专职安全员负责巡查,临时悬挂彩旗、警示牌等标示;

(6)栈桥两侧均设置防护栏杆,栏杆上贴反光标识并满布安全绿网;

(7)水上施工的人员防护,进入施工现场必须戴好安全帽和其它个人劳动保护用品,另配备好救生圈及救生衣;

(8)建立电工、焊工、危险品管理员、物资仓库管理员等防火责任制,落实安全防火措施,备足灭火器材;

(9)未经允许严禁与施工无关的人员到栈桥上参观、游玩;

(10)栈桥建成投入使用后,将定期对栈桥进行检查、维修,重点观测桥梁基础沉降,及时对栈桥进行加固整修,以保证栈桥的使用安全。

8.质量保证措施

钢管桩制作加工质量要求:

(1)满足设计文件要求;

(2)钢管桩焊缝应用对接焊缝(单面焊双面成型工艺),并尽量采用平焊;

(3)焊缝外观要求:焊缝金属紧密,焊道均匀,焊缝金属采用与母材过渡平顺,不得有任何裂缝、未焊透等缺陷;

(4)焊缝质量应符合《钢结构工程施工质量验收规范》(GB50205-2001)中二级标准;

(5)钢管桩的制作、拼装质量及外形允许偏差应符合《钢结构工程施工质量验收规范》(GB50205-2001)及其它有关规定。

9.钢栈桥施工防污染措施

(1)施工前项目部组建环境保护小组,设专职负责人;

(2)对所有参建员工进行教育,提高保护意识,把学习和教育贯穿到工程施工的始终,使所有员工明确环境保护的重要性;

(3)做好栈桥搭设及使用过程中杂物、垃圾的处理措施,集中将杂物、垃圾打堆运至岸上,确保杂物、垃圾不抛入航道中;

(4)项目部定期派专人清理栈桥上杂物、垃圾;

(5)项目部环境保护小组定期开展环保检查,及时处理破坏环境的行为。

钢栈桥专项施工方案 ()

漳州沿海大通道漳浦段佛昙湾特大桥工程 钢栈桥及平台专项施工方案 编制人:丁桂生 审核人:罗小红 批准人:高向鹏

中国葛洲坝集团第五工程有限公司 漳州沿海大通道漳浦段佛昙湾、旧镇湾特大桥工程项目经理部 2014年12月1日

一、编制依据 (1)漳州沿海大通道漳浦段佛昙湾特大桥工程施工设计图纸 (2)漳州沿海大通道漳浦段佛昙湾特大桥工程岩土工程勘察报告。 (3)施工现场调查。包括施工场地和周边环境条件,水、电、路、临时租地和地材等情况,水文地质、气象、交通、机械、物资采购等资料。 (4)国家及福建省现行的施工技术规程、验收标准及质量、安全技术规程。 (5)根据我单位的综合施工能力及近年来参加类似工程的经验,投入的各类资源和技术、管理等。 二、工程概况 佛昙湾特大桥里程桩号K38+548.05—K41+49.25,起于整美村南侧,终于佛昙镇后社村渡头。佛昙湾特大桥主桥上部结构为77+140+77m的三跨变高度预应力砼连续刚构跨北港航道,引桥为30m标准跨径装配式预应力砼连续T梁,跨南港航道处为4×40mT 梁。主桥下部结构采用双肢薄壁实心墩、钻孔灌注桩基础。引桥下部结构采用柱式墩、肋板式台,钻孔灌注桩基础。全桥长2501.20m。 全桥约设置2420m的施工钢栈桥,布置在大桥左侧。钢栈桥宽度为6米,考虑水位及浪高,计划栈桥顶部高程6.0m,高于设计最高水位(3.58m)约2.4m。贝雷梁底部高程低于桥面约1.9m,考虑其阻水安全,实际最高设防水位按4.5m控制。栈桥、水上钢平台拟仅用于主桥下部结构施工,少量边跨膺架的安装。以砼罐车运输、35t汽车吊起重作业、50t履带吊零星起重作业,作为工况控制。 栈桥起点与桥头混凝土硬化的便道相接,各个桥墩设置钻孔平台,和栈桥相连。栈桥、桩基钢平台拟“L”字型布置,栈桥、钢平台采用钢管桩+贝雷梁+防滑钢桥面板的结构。18#、19#墩中间预留Ⅱ级航道通航孔,总净宽100m。 三、气象、水文、地质 项目所在区域属南亚亚热带海洋性季风气候,常年气候温和,冬暖夏凉,全年无

栈桥专项施工方案

栈桥施工方案 一、工程概况 27、28、29号主墩常年位于水中,根据柳江的水文、地质特点,水中部分桥墩施工拟采用施工通道钢栈桥配合钻孔桩基平台,变水中为陆地施工方案,北岸施工栈桥为27#~29#墩下部结构及27#~29#跨上部结构施工人员、材料及设备施工车辆、砼罐车运输通道并与施工作业平台相连,从而形成纵向临时通道。 栈桥与主桥轴线平行,栈桥桥面标高为82.50米。为方便水上钻孔桩施工,栈桥桥面于钻孔桩平台齐平, 栈桥与钻孔平台连成一个整体,栈桥及施工平台台面高出洪期水位0.7m。施工栈桥位于特大桥上游, 栈桥中线距离特大桥桥位中线17.5m,栈桥宽6.0米,跨度为12m,总长度为250m. 起始位置与下河便道及码头相连并尽量靠近桥墩承台,以方便施工运输。栈桥总体布置见图4-5、图4-6。 二、栈桥设计 1、荷载设计 栈桥最大车辆荷载考虑3 10m砼灌车,自重15T,砼重25T,共重40T,人行及其它荷载共重10T;动荷载系数取1.2,故栈桥检算荷载采用60T。 2、栈桥结构设计 栈桥自下而上依次: (1)栈桥方向开始每24m桩基选用二排三根Φ630mm钢管桩作一个刚性支

承墩,中间跨中位置选用单排三根Φ630mm钢管桩作一个临时支承墩, 刚性支承墩沿桥方向纵向间距为3米,横向间距为2*2.5m。钢管桩用打桩锤打入河床底覆盖层以下强风化岩层内30cm。钢管桩之间利用[20槽钢栓接作剪刀撑,桩内填充满砂砾。施工过程中,安排专人对河床冲刷深度进行定期测量,及时掌握冲刷深度。 (2) 钢管桩顶开槽铺纵向分配梁用2I36b工字钢,再横向用2I36b工字钢作分配梁. (3)栈桥跨度采用12m,上部采用三榀单层双排贝雷纵梁(非加强单层双排),贝雷梁与钢管桩顶横向2I36b工字钢分配梁固结。 (4)贝雷梁架面用I32b工字钢作横分配梁,间距1.0m,纵向布置2[14槽钢,间距30cm,再铺8mm花纹钢板,两边围栏用∠63*63*5角钢与槽钢焊接做立柱,高1.2米,用∠50*50*4角钢做扶手,中间纵穿Ф16圆钢加密。在栈桥和施工平台附近打设防撞桩,并悬挂警示标志和红色警示灯。 三、栈桥施工 ①钢管桩施工 钢管桩施工从北岸开始施工,栈桥使用浮吊吊振动锤下沉钢管桩,钢管桩沉放使用90KW振动锤。利用全站仪定位及校核。 水中栈桥钢管桩使用专用打桩船打设。打桩船抛锚定位后,利用浮船运输,浮吊起吊钢管并进行定位,依靠锤重和钢管桩重力插入覆盖层中,然后开动柴油锤打设钢管桩到位。钢管桩逐排打设,一排钢管桩打设完成后再移船至另一排。

钢栈桥验收方案

浠水二桥钢栈桥验收方案 一、工程概况 为满足县政府目标工期要求,根据现场情况,拟定搭钢栈桥施工。 钢栈桥宽度为8m,跨径组合为6*12m,总长为72m,采用φ630*10的钢管桩。栈桥下部结构均采用钢管桩基础,上部结构采用贝雷梁、型钢组拼,桥面系采用专用桥面板。 二、执行标准和依据 1、工程施工合同文本 2、工程设计施工图及设计变更联系单 3、《建筑工程施工质量验收统一标准》GB50300-2013 4、《建筑地基基础工程施工质量验收规》GB50202-2002 5、《建筑桩基检测技术规》JGJ106-2014 6、《城市桥梁工程施工与质量验收规》(CJJ-2008); 7、《公路桥涵施工技术规》(JTG/T F50-2011); 8、《建筑桩基技术规》(JGJ 94-2008); 9、《建筑施工扣件式钢管脚手架安全技术规》(JGJ 130-2011)。 三、验收围 钢栈桥下部结构均采用钢管桩基础,上部结构采用贝雷梁、型钢组拼,桥面系采用专用桥面板。验收围包括钢栈桥全部施工容。 四、验收人员 1、总承包单位和分包单位技术负责人或授权委派的专业技术人员、项目负责人、项目技术负责人、专项施工方案编制人员、项目专职安全生产管理人员及相关人员; 2、监理单位项目总监理工程师及专业监理工程师; 3、有关勘察、设计和监测单位项目技术负责人。

4、安装施工单位技术负责人。 五、验收检查方法 按照浠水二桥钢栈桥施工验收表和《钢栈桥静载试验方案》的容进行验收。 六、验收程序 验收由生产经理主持,请监理工程师、测量工程师及有关人员参加。验收的结果及时填写相关工程验收记录表格,并请相关人员签认。 附件: 钢栈桥静载试验方案 一、试验目的 1、检验钢管桩单桩承载力; 2、检验钢栈桥结构焊接质量; 3、检验钢栈桥结构整体稳定性; 4、实测贝雷梁及钢管桩桩身弹性变形。 二、试验方法概述 本次试验选取浠水二桥钢栈桥作为试验对象,利用平板车、载重汽车作为加载平台,荷载物可以选择袋装水泥或各类型钢,分三级加载(卸载)。第一级加载(卸载)60%设计荷载,第二级80%,第三级100%。加载点位于跨中纵横桥轴线交叉处,以此模拟贝雷梁在最不利的位置受到最大汽车荷载作用效应,具体布置如图2-1所示:

钢栈桥施工方案2-(型钢)

钢栈桥施工方案 1、钢栈桥使用功能 (1)满足80t履带吊在桥面行走及起吊20t重物; (2)满足施工人、材、机通行要求。 (3)满足9m3混凝土罐车通行。 (4)钢栈桥限速5km/h。 2、栈桥构造 (1)钢管桩 采用φ630mmm×8mm钢管桩,横向均布两根,间距4.5m,加宽段加设1根;在联与联之间设置制动墩,纵向间距4.5m,制动墩处单排3根管桩,横向间距2.25m;桥台处两排钢管桩纵向间距3m,横向单排3根,间距2.25m;钢管桩间采用[20a连接系连接。 (2)连接系:[20a连接系焊接在管桩顶下50cm处,横向连接系为单根槽钢,纵向连接系为双拼槽钢。 (3)承重横梁:承重横梁采用双拼工45a型钢制作,在对应钢管桩顶位置设置加劲肋板。横梁嵌入钢管桩30cm,并用加劲钢板加固。 (4)承重纵梁 采用工45a型钢制作,在对应钢管桩顶位置设置加劲肋板,横向间距0.9m,贝雷梁每12m跨设20mm伸缩缝。 (5)分配梁:分配梁支承桥面板,采用I20a型工钢按间距75cm排列在承重纵梁上,采用固定件与纵梁固定。 (6)桥面板:桥面板尺寸为5.99×3m,面板为10mm厚花纹钢板,纵向板肋为I12.6工字钢按30cm间距焊接排列,横向肋为10mm钢板焊接在桥面板端头。采用固定件与下方分配梁与贝雷梁连接。 (7)桥面系:护栏采用φ48mm×3mm钢管焊接而成,6m一组,必要时可用螺栓连接。护栏高出桥面1.2m,竖杆1.9m一道,设三道横杆。线路平台为φ16mm圆钢按3m 间距焊接在分配梁上。 3、栈桥断面布置

钢栈桥标准断面(单位:mm ) 4、栈桥施工方案 4.1施工流程图 4.2施工工艺 4.2.1准备工作 准备工作包括人员及技术准备,机械及材料准备,场地准备。 人员及技术准备:确定相关人员的岗位职责并进行三级技术交底,制订检查流程 及相关表格。 机械及材料准备:钢管桩、贝雷梁、型钢等原材料,80t 履带吊、运输平板车、25t 汽车吊、交通船等。 场地准备:加工堆放材料场地的准备,施工便道的填筑以便材料和机械能到达栈桥搭设地点,履带吊作业场地的整平。 4.2.3钢管桩施工 1、振动锤选用 振动锤的选用:G P R a -= 式中: [] a R ——振动锤的激振力; P —单桩承载力,按774KN 计; G ——振动锤自重,取60KN ; 施工开始 机械及材料准备 安装桥台 打设钢管桩 钢管桩加工 铺设桩顶横梁及桩间连接系 吊装承重纵梁 桥台回填土 基底清表 铺设桥面板 安装护栏,铺设管线等 下一道工序 钢管桩找平、切槽、焊劲板 测量放样 铺设分配梁

钢栈桥施工方案

钢栈桥施工方案 1.1编制依据 (1)、成都二绕城高速西段B2合同工程施工合同及招标文件(2)、成都二绕城高速西段B2合同工程二阶段施工图设计文件(3)、公路桥涵设计通用规范(JTG D60-2004); (4)、公路桥涵地基与基础设计规范(JTJ D63-2007);(5)、公路桥涵钢结构设计规范(GB50017-2003); (6)、公路工程水文勘测设计规范(JTG C30-2002); (7)、港口荷载规范(JTJ215-98); (8)、装配式公路钢桥多用途使用手册(广州军区工程科研所);(9)、公路桥涵施工技术规范(JTJ041-2000); (10)、公路工程质量评定标准(JTG F80/1-2004);

(11)、港口工程设计手册。 (12)、本公司在大海、长江、黄河项目施工中的栈桥设计与制安经验 1.2工程概况 1.2.1项目环境基本情况 成都二绕城高速西段B2合同工程府河特大桥工程,主桥为三跨连续箱梁桥,跨越府河。府河为季节性河流,河水较浅,常规深度约4~5米;水流湍急,估计2m/s左右;河中丁坝和溢流坝较多,多横跨府河;河滩较宽较平缓;河床淤积层估计约2~3米,其下为较厚的稍密实砂卵石层,卵石粒径2~40cm。 工程所在地外围交通较发达,需建设顺路线方向施工便道进入各个施工点。 1.2.2项目总体构造 府河特大桥主桥采用72+120+72m变截面连续箱梁。本栈桥为主桥施工和对岸引桥施工服务。 本栈桥考虑河床覆盖层浅、砂卵石层厚的特点,将栈桥桥跨布置为4×9+3+12+3+4×9m=90m布置。中间2个3米跨的钢管桩,各自4根连接成单元整体桥墩,以抵抗栈桥受水流冲击、河流漂浮物阻力、钢管桩埋置河床深度不足的影响。 1.2.3工程地质

钢栈桥专项设计施工方案

目录 一、概述 (2) 二、设计标准 (3) 三、钢桥设计及施工方法 (3) 四、钢便桥各部位受力验算 (5) 五、栈桥主要材料计划 (9) 六、机具使用计划 (10) 七、劳力资源计划 (10) 八、施工进度计划 (10) 九、钢桥施工质量保证措施 (10) 十、钢桥施工安全保证措施 (11) 十一、文明施工、环境保护保证措施 (11) 十二、其它事项 (13) 十三、栈桥的拆除 (13)

钢栈桥专项施工方案 一、概述 由我局承建的铁路工程因施工需架设两座经济实用又安全的钢栈桥。根据现场地形地貌并结合荷载使用要求,经过现场勘查我部架设的钢桥规模为:1#便桥长约150米(即鸡角屿大桥1#-5#墩栈桥),2#便桥长约80米(即鸡角屿特大桥35#-38#墩栈桥),桥面净宽均为4.5米,标准跨径为12米。桥位布置形式:考虑到下部结构(承台)套箱施工需要,两座便桥内边距离承台1.5米。 钢便桥结构特点如下: 1、基础结构为:钢管桩基础 2、下部结构为:工字钢横梁 3、上部结构为:贝雷片纵梁 4、桥面结构为:装配式公路钢桥用桥面板 5、防护结构为:小钢管护栏 如下图所示: ( 桥面板4.5×1.26m 贝雷片纵梁3.0×1.5m 工字钢横梁 钢管桩

便桥横向草图 二、设计标准 ①、计算行车速度:5km/h ②、设计荷载:载重500KN施工车辆 ③、桥跨布置:12m连续贝雷梁桥 ④、桥面布置:净宽4.5m 三、钢桥设计及施工方法 1、基础及下部结构设计 (1)钢便桥钢管桩基础布置形式: 单墩布置3根钢管(桩径ф32.5cm,壁厚6 mm),横向间距2.5m,桩顶布置2根28cm工字钢横梁,管桩与管桩之间用10cm槽钢水平向和剪刀向牢固焊接。如果个别墩位入土深度不足应施打6根钢管,设置成排架桩基础。 栈桥施工采用50t履带吊机配合振动打桩锤施打桩基础(如下图),利用履带吊分块吊装至栈桥顶进行组拼后,在栈桥顶利用履带

钢栈桥专项设计施工方案[优秀工程方案](14页)

目录 一、概述 (3) 二、设计标准 (4) 三、钢桥设计及施工方法 (4) 四、钢便桥各部位受力验算 (6) 五、栈桥主要材料计划 (10) 六、机具使用计划 (11) 七、劳力资源计划 (11) 八、施工进度计划 (11) 九、钢桥施工质量保证措施 (11) 十、钢桥施工安全保证措施 (12) 十一、文明施工、环境保护保证措施 (12) 十二、其它事项 (14) 十三、栈桥的拆除 (14)

钢栈桥专项施工方案 一、概述 由我局承建的铁路工程因施工需架设两座经济实用又安全的钢栈桥。根据现场地形地貌并结合荷载使用要求,经过现场勘查我部架设的钢桥规模为:1#便桥长约150米(即鸡角屿大桥1#-5#墩栈桥),2#便桥长约80米(即鸡角屿特大桥35#-38#墩栈桥),桥面净宽均为4.5米,标准跨径为12米。桥位布置形式:考虑到下部结构(承台)套箱施工需要,两座便桥内边距离承台1.5米。 钢便桥结构特点如下: 1、基础结构为:钢管桩基础 2、下部结构为:工字钢横梁 3、上部结构为:贝雷片纵梁 4、桥面结构为:装配式公路钢桥用桥面板 5、防护结构为:小钢管护栏 如下图所示: 贝雷片纵梁3.0×1.5m 工字钢横梁 钢管桩

便桥横向草图 二、设计标准 ①、计算行车速度:5km/h ②、设计荷载:载重500KN施工车辆 ③、桥跨布置:12m连续贝雷梁桥 ④、桥面布置:净宽4.5m 三、钢桥设计及施工方法 1、基础及下部结构设计 (1)钢便桥钢管桩基础布置形式: 单墩布置3根钢管(桩径ф32.5cm,壁厚6 mm),横向间距2.5m,桩顶布置2根28cm工字钢横梁,管桩与管桩之间用10cm槽钢水平向和剪刀向牢固焊接。如果个别墩位入土深度不足应施打6根钢管,设置成排架桩基础。 栈桥施工采用50t履带吊机配合振动打桩锤施打桩基础(如下图),利用履带吊分块吊装至栈桥顶进行组拼后,在栈桥顶利用履带吊机完

桥钢栈桥施工方案

巴达铁路Ⅱ标石梯巴河特大桥钢栈桥 专项施工方案 中铁十六局集团巴达铁路工程指挥部 二〇一〇年十一月

目录 1.工程概况 (4) 2.钢栈桥设计 (5) 2.1设计荷载 (5) 2.2规程规范 (5) 2.3栈桥设计 (5) 2.3.1桥面高程 (5) 2.3.2栈桥布置形式 (6) 2.3.3钢栈桥构造 (7) 2.4钢栈桥受力计算 (7) 3.钢栈桥、钢平台施工 (11) 3.1工期安排 (11) 2010年11日15日-2011年1月31日。 (11) 3.2人员、设备配备 (11) 3.3桩基施工 (14)

3.4 桩顶纵横梁施工 (15) 3.5栈桥上部结构安装 (15) 3.6 栈桥拆除 (15) 3.7 栈桥、平台施工要点 (16) 4.技术保障措施 (17) 5.安全保障措施 (17) 6.保证工程质量措施 (19) 7.计划保证 (19) 8.文明施工目标及技术措施 (20) 8.1文明施工目标 (20) 8.2文明施工管理体系 (20) 8.2文明施工措施 (20) 9.施工环保目标及措施 (21) 9.1环保目标 (21) 9.2环保措施 (21)

1.工程概况 石梯巴河特大桥位于广元至达州线巴中至达州段巴河达县河段上,设计里程范围为D1K90+242.38~D1K91+694.42,长度为1462.94m,中心里程:D1K90+723,由4跨连续刚构和37跨预制T梁组成,跨度布置为:1×24+10×32+(48+2×80+48)连续刚构+25×32+1×24m。 巴河通航等级为Ⅵ级。百年一遇的洪水标高为H[1/100]=274.06M,流量Q=35630m3/s,流速V=4.76m/s,施工水位为H1=255.6m,最低通航水位为H2=247.65m。 10月-来年4月份为枯水季节。 河床已无覆盖层,为泥质夹砂岩和砂岩。

临时钢栈桥施工方案(精)

北京新机场旅客航站楼及综合换乘中心(核心区)工程(一标段)临时钢栈桥施工方案 江苏沪宁钢机股份有限公司 2016年9月 北京新机场旅客航站楼及综合换乘中心(核心区)工程(一标段)编制: 审核: 审批:

临时钢栈桥施工方案 根据施工方案,F1层劲性结构吊装采用100吨汽车吊上F1层楼面,待F1层混凝土底板浇筑完成并达到规定的强度后,汽车吊由下图所示位置进入施工区域,且运输构件的平板车相应跟进,遇到混凝土后浇带时采用钢路基板架设临时通道,为了保护F1层底板,汽车吊行走通道下方B2层—F1层间的脚手架需全部保留不能拆除,汽车吊行走路线如下图所示:

(注:100吨汽车吊上F1层楼面作业相关计算详见“附录1:100吨汽车吊上F1层楼面安全验算”) 为了保证F1层劲性结构顺利安装,上图所示汽车吊通道及安装区域内脚手架需等劲性结构安装完成后再搭设。 根据现场实际情况,上图所示通道1、2、5入口处F1层楼面与外围地面存在高低差,为了保证100吨汽车吊顺利进入施工区域,需在各通道入口处搭设临时钢栈桥。钢栈桥采用格构支撑(规格:1.5米×1.5米)和路基箱(规格:0.3米×1.8米×8米)搭设而成,搭设示意图如下,具体尺寸根据现场实测确定。 (注:临时钢栈桥受力计算详见附录:100吨汽车吊行走吊栈桥验算) 附录5:100吨汽车吊行走吊栈桥验算 1、验算依据

《钢结构设计规范》GB 50017-2003 《建筑结构荷载规范》GB 50009-2012 100吨汽车吊相关资料 2、100吨汽车吊性能 100吨汽车吊性能参数如下: 100吨汽车吊性能参数 100汽车吊开行时,自重580kN ,1轴/2轴/3轴/4轴/5轴/6轴轴荷分别为 75kN 、75kN 、100kN 、125kN 、125kN 、80kN ,左右轮距取为2.5m ,则单侧轮压如下图所示:

钢栈桥及桩基平台施工方案

钢栈桥及桩基平台施工方案 一、工程简介 1、水文、地质 九龙江自北西向南东流入海洋,工程所在河段属感潮河段,处于九龙江下游潮流界范围内,工程河段水流运动形态主要受到上游径流和河口潮汐的双重影响。本河段潮流为往复式半日潮流。根据取水样分析,本标段地表水、地下水对混凝土无腐蚀性。设计中无通航要求,考虑到当地通航,中间在33#和34#之间设置通航,设计百年一遇最高水位5.44m。水下地质情况自上而下普遍为:软塑粉质粘土、硬塑粉质粘土、砂层、粗圆砾土。 2、钢栈桥施工结构设计 根据现场施工需要,拟采用施工钢栈桥。跨九龙江中港两端先采用麻袋垒填,并填砂以修筑施工便道,根据现场地形地貌并结合荷载使用要求,经过现场勘查、结合桩基平台需要钢栈桥规模拟定为:桥梁全长约600,标准跨径为12米、桥面净宽均为4.5米。钢栈桥结构如下: 1、基础结构为:钢管桩基础 2、下部结构为:工字钢横纵梁 3、上部结构为:贝雷片纵梁 4、桥面结构为:装配式公路钢栈桥用桥面板 5、防护结构为:小钢管护栏 考虑到地方通航,在33#墩和34#墩之间设置通航位置。为保障施工期间通航安全,在通航道两侧各设置4根Φ600×8mm钢管桩防撞墩,防撞墩长度为6m,高度高出最高潮位2.5m以上,并设置明显的警示标志,夜间及雾天均设置警示灯。栈桥钢管桩入土深度原则:对于一般粘性土层钢管桩入土深度以进入强风化岩层表面深度进行控制,具体入土深度将根据提供的详细的地质资料数据结合实际情况进行确定,可以采用钢管桩的灌入度进行控制,灌入度最后90秒不得大于3mm。对钢管桩的桩底入土深度不足部分的钢管桩,采用水下砼护脚,并在钢管桩周围抛填砂袋等进行防护。 3、钢栈桥其他设施 为确保大桥施工中水、电的供应,栈桥上设置有电缆管道和自来水供水管道,

钢栈桥施工方案

钢栈桥施工方案 1、编制依据 1.1、泉三高速公路泉州支线(南安至惠安)NHA1合同段施工图纸; 1.2、由建设单位提供的施工文件; 1.3、国家、行业、泉州市有关的建筑施工和施工质量、施工安全、文明 施工等方面的规范、规程、规则、标准等文件; 1.4、泉三高速公路泉州支线(南安至惠安)NHA1合同段施工组织设计; 1.5、现场考察情况; 1.6、本单位的施工能力、经验; 1.7、主要技术标准及规范 1.7.1《公路桥涵设计规范》(JTJ021—89) 1.7.2《公路桥涵钢结构及木结构设计规范》(JTJ025—86) 1.7.3《公路桥涵地基及基础设计规范》(JTGD063—2007) 1.7.4《公路桥涵施工技术规范》(JTJ041—2000) 1.7.5《装配式公路钢桥制造及检验、验收办法》 2、工程概况 2.1、工程概况 泉三高速公路泉州支线(南安至惠安)NHA1合同段仙石大桥左线桥有0#台~22#台,共23排墩台,其中:11#墩~20#墩横跨晋江,桥梁下部施工需要搭设钢栈桥及钢平台;右线桥有0#台~21#台,共22排墩台,其中:11#墩~19#墩横跨晋江,桥梁下部施工需要搭设钢栈桥及钢平台。钢栈桥搭设总长度为330米,工作钢平台19座。 2.2、地质状况

仙石大桥大桥桥址区位于晋江的现代河床及I级阶,墩位处属冲积平原地貌,河床标高为-1.1m~3.4m,晋江水位标高为6.6m左右,晋江水深7.7m~10m,上部岩性为亚砂土、亚粘土、粉细砂,局部分布软土层,流塑~软塑状,厚度较小;其下为中砂、圆砾、卵石层,呈密实状;下伏基岩为花岗岩,桥址区基岩面和其风化面起伏较大。 根据仙石大桥两阶段施工图纸,钢栈桥及钢平台所属区共有8个钻孔点,各钻孔点的岩性及厚度为: ZKS17-1(右线12#墩) 亚砂土(1.8 m)、亚粘土(7.9 m)、细砂(11.1 m) ZKS19(右线14#墩) 中砂(2.8 m)、卵石(12.9 m) ZKS21(右线16#墩) 中砂(3.9 m)、卵石(6.1 m) ZKS23(右线18#墩) 砾砂(10.4m) ZKS17(左线12#墩) 亚砂土(3.0 m)、亚粘土(5.3 m)、细砂(4.3 m) 、中砂(4.1 m) ZKS18(左线14#墩) 细砂(4.8 m)、含细砂淤泥质亚粘土(3.7m)、中砂(7.9 m)、砾砂(6.1 m) ZKS20(左线16#墩) 中砂(7.7 m)、卵石(4.5 m) ZKS22(左线18#墩) 中砂(2.7 m)、卵石(6.5 m) 2.3、总体设计 钢栈桥桥面宽度6.0m,栈桥每9m间隔设置单排和双排钢管桩组成的桥墩,双排钢管桩间距为2.2 m,栈桥每跨跨径为9m。 钢栈桥基础采用φ630mm×8mm钢管桩,单桩入土深度在河床处计划9m、在岸边淤泥层较厚处计划16m,振动沉桩时根据实际情况确定打入深度,横梁采用I36b双拼工字钢,纵梁采用321钢桥贝雷梁,I36b 工字钢和[14b槽钢分配梁,面板采用10mm的钢板。贝雷片间的连接采用销接,贝雷片与横梁用U型箍扣锁。栈桥每隔9m在右侧安装1盏路

栈桥施工安全专项方案

枣菏高速南四湖特大桥 栈桥施工安全专项方案 山东省路桥集团有限公司 二〇一七年四月

枣菏高速南四湖特大桥 栈 桥 施 工 安 全 专 项 方 案 编制: 审核:

目录 一、适用范围 (3) 二、编制依据 (3) 三、工程概况 (3) 四、钢栈桥总体布置 (4) 五、设计标准及结构形式: (6) 六、施工组织机构及安全目标 (12) 七、安全技术保障 .......................................................................................... 错误!未定义书签。 八、栈桥施工应急预案................................................................................... 错误!未定义书签。 九、应急响应程序 .......................................................................................... 错误!未定义书签。 十、文明施工及环境保护措施....................................................................... 错误!未定义书签。十一、其他说明 .............................................................................................. 错误!未定义书签。

钢栈桥施工技术

海上钢栈桥施工技术 1、前言 桥梁施工沿线一般都要设施工便道辅助施工,由于桥梁施工环境的特殊性,必须采用相应的措施,保证桥梁正常施工。海域桥梁基础施工一般都采用搭设钻孔平台辅助施工的方法进行,在海滩环境可采用吹填的施工方法构筑施工便道,跨河跨海桥梁施工便道可采用钢栈桥的形式,针对跨纳潮河特大桥施工环境特点,并综合考虑施工进度与工程造价问题,最终设计钢栈桥与钻孔平台辅助主桥施工,钢栈桥施工便道不仅能够解决海上桥梁施工没有合适的操作空间的技术难点,而且还提供了安全、舒适的海上施工作业平台,同时对于海域环境没有污染,桥梁建成后容易恢复沿线海域环境,并不影响设计通航。 1、2工程概况 纳潮河特大桥位于曹妃甸岛后浅滩,处于曹妃甸煤码头通路路基工程公路段以南,曹妃甸综合服务区围海造地二期工程以北,已建成通车的通岛路河规划一港池之间,滩面高程约-1.0m~0.7m,因周边工程取砂,本工程范围内局部分布有取砂坑,最深处约-17.9m。曹妃甸特大桥全桥长7477.46m,共242孔,位于水中部分约为1.44Km。该特大桥自191#至216#共有26个墩台在纳潮河水域施工。设计浅滩部位采用吹填的方法构筑施工便道,水域部分全部设钢栈桥及钻孔平台,钢栈桥全长897m,根据主跨基础结构尺寸与施工需求分别设为8m、12m、15m三种宽度。 2、方案选择 为满足大桥桩基及墩台施工需要,采用在主桥桥线旁建造临时钢栈桥以辅助主桥施工的方案。根据主桥施工需要,综合考虑当地气象、水文等资料,设计钢栈桥结构形式为:栈桥标准桥跨为15m长,每四个标准跨为一联并设伸缩缝。下部结构采用打入式钢管桩基础。钢管桩顶面采用2I45b工字钢为横向连接的垫梁,顶面铺设“321”型贝雷片组成的贝雷梁,梁部结构为间距0.9m的双排单层“321”贝雷桁架,梁高1.5m,贝雷梁上面铺设间距为0.6m的型号为I25a工字钢,工字钢长度比桥面宽度大1.0m,桥面采用[30b槽钢满铺。钻孔平台也采用此方案,平台顶面标高与栈桥顶面标高一致。 结合工程实际情况,将距承台边缘最近距离为2.5m处作为栈桥边缘对钢栈桥进行设计施工,由于沿线承台结构尺寸不同,栈桥桥面设有8m、12m、15m三种宽度,栈桥平面变宽形式如“图1”所示,综合考虑水文特点及施工需要,将钢栈桥桥面顶标高设为5m。

钢栈桥、钢板桩围堰施工方案

1.工程概况 2.钢栈桥设计 2.1设计荷载 因为是施工临时设施,具体计算荷载根据实际施工的情况进行考虑,按70T履带自行式起重车吊重不超过30吨,按1.1系数进行计算。 2.2规程规范 中华人民共和国交通部部标准《公路工程施工安全技术规程》(JTJ076-95); 国家标准《钢结构工程施工及验收规范》(GB50205-95); 建设部《建筑钢结构焊接规程》(JGJ81-91); 中华人民共和国交通部部标准《公路桥涵施工技术规范》(附局部修订条文)(JTJ041-2000);等相关规范。 2.3栈桥设计 ?栈桥为钢板桩止水帷幕辅助设施,栈桥合计长度1000m。因为是施工临时设施,具体计算荷载根据实际施工的情况进行考虑,按70T履带自行式起重车吊重不超过30吨,按1.1系数进行计算。 ?规程规范 ①中华人民共和国交通部部标准《公路工程施工安全技术规程》(JTJ076-95); ②国家标准《钢结构工程施工及验收规范》(GB50205-95); ③建设部《建筑钢结构焊接规程》(JGJ81-91); ④中华人民共和国交通部部标准《公路桥涵施工技术规范》(附局部修订条文)(JTJ041-2000); ⑤《装配式公路钢桥使用手册》-98等相关规范。

2.3.1桥面高程 根据水文地质情况,钢桥面高程暂定为:19.5m 2.3.2栈桥布置形式 栈桥基础采用φ630㎜,δ=12mm的钢管桩。为保证机械作业面要求,需设置栈桥。为方便机械进出作业,栈桥高度与入河处原挡墙顶高程同高。 栈桥在河道护砌范围外0.5m处布置,桥面宽度6m,栈桥桩基采用Φ600(厚12mm)钢管桩,单根长度15m。横向布置为每排4根钢管桩,间距2m,纵向布置间距5.5m。 管桩顶面横桥向架设45b型双拼工字钢横梁,每排桩布置1条,在其上方沿纵桥向架设45b型单拼工字钢纵梁,单拼工字钢横向间距为1m。单拼工字钢纵梁工字钢架设完毕后,在其上铺设20mm厚钢板。 栈桥结构断面图 河中墩栈桥下部结构为约15m长钢管桩,施工采用70T履带吊吊

钢栈桥施工方案(最终版).

天津汉沽寨上大桥工程 栈 桥 及 施 工 平 台 施 工 方 案 编制单位:天津第三市政公路工程有限公司编制时间:2014年8月天津汉沽寨上大桥工程 栈桥及施工平台施工方案 编制: 审核: 批准: 目录 一、工程概况 (1 二、栈桥方案编制依据 (1 三、现场水文地质特征 (1 四、钢栈桥整体设计思路 (2 五、钢栈桥构造 (4

六、栈桥搭建施工工艺 (6 七、栈桥拆除施工工艺 (13 八、河道通航孔设置 (14 九、栈桥施工专项安全保证措施 (14 十、栈桥施工投入主要机械设备和材料计划 (17 十一、施工栈桥计算书 (18 (一条件参数 (18 (二相关计算 (19 (三计算结果汇总 (43 (四构件计算 (43 钢栈桥及施工平台施工 一、工程概况 天津汉沽寨上大桥位于汉沽中心城区太平街上,是蓟运河汉沽中心城区东西两岸的重要交通通道,西起四纬路与一经路平交路口环岛位置,终点位于太平街与新开南路的交口,路线全长约840.235米,采用双向四车道城市主干道标准,设计车速为50公里/小时,其中桥梁长度约为237.26米,桥梁面积约7117.8平米;道路面积约32580平米;地道面积约1066平米,地道断面面积约185平米,最大基坑深度4.5米,施工内容包括道路工程、桥梁工程、排水工程、照明工程、交通工程等。 本工程在施工时先在现状桥南侧新建一幅桥,待其通车后,再拆除旧桥,然后在旧桥位置新建一幅桥。本工程跨蓟运河大桥桥梁起点桩号K0+319.734,桥梁终点桩号K0+556.994,桥梁总长为237.26m,分左右幅实施,此外含滨河路下穿地道、南北侧辅道、医院路通道、人行及自行车上下梯道等。 蓟运河主桥宽度31m,跨径布置(20+3×31+(3×31+27.5,结构型式采用预制简支变连续小箱梁桥,桥梁面积7117.8m2;考虑行人和非机动车过桥,在蓟运河两岸引路处布置4座纵坡1:4的人行梯道,人行梯道宽度4.5m,总长度128.9m。 新建滨河路地道,地道断面全宽23.6m,地道长度31.016m,地道面积732m2,新建医院路通道,通道断面全宽13.8m,通道长度31m,通道面积427.8 m2,寨上大桥工程是连接海河东西两岸的一个重要节点工程,也是该地区重要的景观工程。 二、栈桥方案编制依据

钢栈桥桥设计方案

钢栈桥桥设计方案

沈海公路复线柘荣至福安段A9标跨交溪便桥设计方案 设计: 复核: 审核: 审批: 中铁一局沈海A9标项目部 二O一三年一月

沈海公路复线便桥设计方案 一、沈海公路便桥设计概况 沈海公路跨交溪便桥,位于坂中乡水质检测站上游100m位置,主要用途是满足工程车辆通行,设计最大载重量80t。 沈海公路跨交溪便桥设计采用多跨贝雷梁钢便桥跨越交溪,便桥总长210米,梁跨为 14×15米,便桥设计纵向与交溪垂直,桥面宽度为6.5m。基础采用直径1.0m钻孔桩基础,嵌入河床面以下微风化1米。上部采用4榀8片贝雷纵梁,2榀贝雷纵梁按70cm间距布置,横向每3m间距采用支撑架(900mm×1180mm)连成整体;桥面板采用20cm厚钢筋混凝土预制板,桥面系设总宽6.5米。防护护栏严格按照防护栏杆安全要求设置;便桥基础采用重力式桥台,详见沈海公路跨交溪便桥设计图。 便桥设置高度参照交溪常水位通航要求进行设置。 二、水文地质情况 便桥位置位于剥蚀丘陵间冲洪积河谷地貌,交溪实测(2012年12月4日测)水面标高21.5米,河水深度2-7米,水面宽度210米,水流流速较快。河床底面为全裸岩石,表面坚硬,且成斜面。 根据现场调查,沈海公路跨交溪便桥有通航要求,故便桥净空高出常水位4.5米设置。 三、便桥施工方案 根据图纸地质资料说明及现场实地考察,首先量测出两岸间距为210m,中央水深最深为7m,河滩最浅为1m,由于水深影响导致水上设备(浮吊、浮箱)不能到位,其次河床底覆盖层浅,洪水期水流冲击便桥横向稳定性差,所以无法用钢管桩直接插打锚固,结合以上原因,经多方研究采用以下方案施工。

钢栈桥桩基平台钢护筒专项施工方案

目录 目录 一、编制说明 (2) 二、工程概况 (2) 三、桥址地形、地貌概述 (2) 四、水文 (2) 五、钢栈桥施工方案 (2) 六、桩基施工平台施工文字说明和施工验算 (6) 七、钢护筒制安方案 (7) 八、工程施工质量保证措施 (8) 九、工程施工安全保证措施 (9) 十、栈桥使用注意事项 (10) 十一、突发事件的应急 (10) 十二、职业健康保障措施 (10) 十三、附件:各施工方案图纸 (12)

一、编制说明 (1)、编写依据 1、根据招标文件、合同文件。 2、依据我公司现场勘查,桥址为峡谷地形地貌上属河床及山坡地带,两岸地势较陡河道微弯且最大水深为8.5米等数据。 3、依据交通部颁发《公路工程技术规范》,《公路工程质量检验评定标准》等现行的相关规范标准。 (2)、编制原则 1、原则遵循合同文件原则,施工组织设计的编制满足合同条款,严格按照 合同文件规定的标准要求执行。 2、坚持施工全过程严格管理的原则,制定本栈桥施工方案。 3、确保工期的原则,制定施工方案,突出重难点项目的施工方案及技术措 施,确保按期完成合同施工任务。 二、工程概况 本标段路线起点位于永安热水村原水南大桥下游附近,起点测设桩号K2+840.116,在水南大桥下游约200m处建热水大桥跨过九龙溪,再沿九龙溪右岸旧有村道西行,经过水南村、设荼仔林小桥,终至水礁村与后山交界附近,路线终点测设桩号为K6+386.376。 热水大桥起址里程为:K3+183.64~K3+374.60,全长190.96m,大桥位于河中,桥址枯水期水深约5~9m。热水大桥下部结构均为钻孔灌注桩基础。桩基及下部构造施工受河水影响,河中桥位处地质覆盖层普遍为:粉质粘土层、细砂层、卵石层(2~5m)、碎块状强风化粉砂岩层。 为保证热水大桥水中墩桩基施工需要、同时满足纵向便道通行要求,拟架设一座经济实用又安全的钢栈桥和三座桩基施工平台。根据现场勘查并结合荷载使用要求,拟架设的钢栈桥规模均为:钢栈桥桥长约为120米、桥宽为4.5m;桥面高程拟定为+195.0m(以纵梁底高程高出汛期水位50cm确定桥面高程);桥位布置形式为:钢栈桥布置在新建桥梁上游。钻孔平台及墩身操作平台沿栈桥的下游侧修筑:桩基础单个钻孔平台宽6.0m、墩身操作平台宽度为6.0m,平台长度为12m。 三、桥址地形、地貌概述 拟建桥址位于原热水大桥下游,桥址为河谷地形,地貌上属河床及山坡地带,两岸地势较陡河道微弯且最大水深为8.5米。结构地层岩性为二叠系童子岩组强风化砂岩及中风化砂岩,其岩层强风化砂层节理,裂缝发育,地层产状较为平缓。 四、水文 1、设计图纸、设计单位提供1的数据。九龙溪河常年流水不断,根据安砂站下泄流量为5740 m3/s;常水位高程为190.50 m。 2、根据水文调查1994年5月洪水标高为200.43m。 五、钢栈桥施工方案 1、主要设计标准、参考资料和验收标准

钢栈桥施工方案

深茂铁路江门至茂名段JMZQ-6标段钢栈桥及钢平台施工方案 中交二航局深茂铁路JMZQ-6标工程指挥部 二〇一五年九月

深茂铁路江门至茂名段JMZQ-6标段钢栈桥及钢平台施工方案 编制: 审核: 批准:

目录 一、概述 (1) 1.1编制依据 (1) 1.2 工程概况 (1) 1.3 地质构造 (5) 二、栈桥设计 (5) 2.1设计条件 (5) 2.2栈桥结构 (5) 三、施工平台设计 (10) 3.1 设计条件 (10) 3.2 施工平台结构 (10) 四、总体施工方案及施工工艺流程 (11) 五、主要施工方法 (12) 5.1钢管桩施工 (12) 5.2 平联安装 (15) 5.3 主横梁安装 (16) 5.4 贝雷梁安装 (16) 5.5 桥面板体系安装 (17) 5.6 附属设施安装 (18) 5.7 栈桥及施工平台拆除 (19) 六、施工组织及进度计划 (19) 6.1 人员组织安排 (19) 6.2主要施工设备 (20) 6.3进度计划 (20) 七、施工保证措施 (21) 7.1质量保证措施 (21) 7.2安全保证措施 (21) 7.3文明施工与环保措施 (22)

深茂铁路JMZQ-6标工程指挥部钢栈桥及平台设计施工方案 一、概述 1.1编制依据 (1)《广东深茂铁路有限责任公司标准化》 (2)深茂铁路现场详细的踏勘调查资料 (3)深茂铁路相关设计图纸、工程量清单 (4)《高速铁路桥涵工程施工质量验收标准》(TB10751-2010)(5)国家有关方针政策和国家、铁路总公司有关标准规范、验标和规程等 (6)《中交二航局工程质量管理办法》;中交二航局通过质量体系认证中心认定的ISO9001:2000《质量手册》和《程序文件》(7)新建铁路深圳至茂名线江门至茂名线JMZQ-6标投标文件(8)《高速铁路桥涵工程施工技术指南》铁建设【2010】241号(9)《铁路混凝土工程施工技术指南》铁建设【2010】241号(10)《高速铁路工程测量规范》(TB10601-2009) (11)《铁路工程基本作业施工安全技术规程》(TB10301-2009)(12)《铁路桥涵工程施工安全技术规程》(TB10303-2009) (13)《建筑钢结构焊接技术规程》(JTJ81-2002) (14)《钢结构工程施工质量验收规范》(GB50205-2001) (15)《钢结构设计规范》(GB50017-2003) 1.2 工程概况 新建深圳至茂名铁路江门至茂名段站前工程JMZQ-6标段位于广东省阳江市境内,起止里程为DK245+200~DK290+200。施工总平面位置示意图见图1-1。 本标段栈桥设计总长度为3311.6米。钢栈桥主要分布在四座特大型桥梁:西部沿海特大桥、那龙河2#特大桥、漠阳江特大桥、阳阳高速特大桥。钢栈桥详细统计见表1-1。本方案主要以那龙河2#特大桥127#墩-130#墩段钢栈桥为例进行介绍。 钢栈桥及施工平台总体布置图见图1-2。

钢栈桥施工方案

八号便道麻子涌钢栈桥施工方案 1、工程概况 1.1、工程简介 中山四标麻斗高架桥横跨麻子涌,为了施工方便项目部决定修建一座钢栈桥横跨麻子涌。麻子涌为IX级航道。线位处河道在曲线内,河宽29.3M,污染严重,罕有船通过。拟采用直径为630*8MM的钢管桩,采用8*2M+7*2M。横梁和纵梁拟采用工字钢。 1.2、水文条件 中山市处于北回归线以南,属南亚热带湿润季风气候区,光照充足,热量丰富,气候温暖。据中山市气象站多年观测资料,最高气温36.5℃,最低气温1.1℃,平均气温22.6℃。年均降水量1740mm,4-9月为汛期,占全年降水量的79%-82%,大的降水主要集中在6-8月,台风侵袭时,一次性降水量最高可达100-200mm;年均蒸发量1432.2mm;年均相对湿度82%。枯、丰水期流量相差悬殊,枯水期水量较小,丰水期暴涨暴落。麻子涌历史最高水位2.19米。 1.3、地质情况 根据钻孔资料及地调资料,麻斗高架桥基地层主要由第四系人工填土层(Q ml)、冲击层(Q al)、坡残积层(Q el+dl)和寒武系(ε)组成,局部基岩为加里东运动侵入岩(mr)。 2、施工栈桥设计 为方便施工,提高作业效率,结合施工现场的实际情况,考虑桩基施工砼灌注采用砼运输车(田螺车)直卸与泵送工艺,以及上部结构施工时砼输送泵放置在主墩平台上,田螺车可达各主墩,因此,需在设计一座五米宽的刚栈桥,桥长30.63米。 施工栈桥最大荷载按通过一辆50t汽车吊和10m3的混凝土罐车同时作用在桥上考虑,栈桥面宽5.0m,基础采用单排(3根)Φ630×8mm钢管桩,管桩一般纵向间距为8*2M+7*2M,局部略作调整,横向间距为4.0m,水流方向同排钢管桩间焊[16a槽钢斜撑,I56b工字钢做纵梁(3排单层),工字钢纵梁上依次铺

跨河水中桥施工临时钢栈桥设计方案介绍

跨河水中桥施工临时钢栈桥设计方案介绍 摘要:在工程建设当中,经常遇到跨河修建水上桥梁,为了车辆通行和水上作业需要,往往需要在水中搭设临时钢栈桥,以方便桥梁施工,本文结合在广明高速陈村至西樵第一合同段工程施工中的应用,简要介绍水中临时钢栈桥的施工设计方案。 关键词:跨河水中桥施工钢栈桥设计方案 1、工程概述 广明高速陈村至西樵第一合同段位于佛山市顺德区陈村镇,主要工程为吴家围互通立交,是实现广明高速与广珠西线高速交通转换的快捷通道,主线桥长1522m,8座匝道桥共长6180m,其中主线桥和匝道桥共8次跨越文海河主河道和支流,主河道宽80~100m,支流宽10~20m,主河道为Ⅶ级航道。为了水中桥梁施工需要,本工程共搭设20~100m长跨河水上临时钢栈桥6座。 2、适用条件 跨河桥梁连续多排墩位于河道中,河道较宽,下部结构为桩基+承台(系梁)+墩柱结构型式,上部结构为预制梁或支架法现浇箱梁。 3、栈桥结构简介 栈桥采用型钢搭设,为保证安全,按单向行车设计,栈桥结构见下图: (1)栈桥宽度:5.4m。 (2)栈桥高度:栈桥桥底距最高水位净高1.5m。 (3)栈桥跨径:根据现场调查,河道只有小船通行,栈桥纵向跨径按4.5m 设计。 (4)栈桥基础:栈桥基础采用υ529×10mm钢管桩,长16m,其中出土长度5.46m,入土深度大于10.54m。横向每排设置3根,间距2.4m,纵向间距4.5m,为加强钢管桩基础的整体稳定性,在钢管桩每排横向和隔跨纵向间采用双[16槽钢做剪力撑连接。 (5)栈桥横、纵梁:钢管桩顶设置2根长5.4m的I32b工字钢做下横梁,下横梁上顺纵桥向布置7根I40c工字钢做纵梁,间距80cm,纵梁上横向布置I12.6工字钢做分配梁,间距20cm。 桩顶设16mm厚钢板,钢板与下横梁、下横梁与纵梁、纵梁与分配梁、

相关文档