文档库 最新最全的文档下载
当前位置:文档库 › On the link between rotation, chromospheric activity and Li abundance in subgiant stars

On the link between rotation, chromospheric activity and Li abundance in subgiant stars

On the link between rotation, chromospheric activity and Li abundance in subgiant stars
On the link between rotation, chromospheric activity and Li abundance in subgiant stars

a r X i v :a s t r o -p h /0307196v 1 10 J u l 2003Astronomy &Astrophysics manuscript no.3186

February 2,2008

(DOI:will be inserted by hand later)On the link between rotation,chromospheric activity and Li

abundance in subgiant stars

J.D.do Nascimento Jr.1,B.L.Canto Martins 1,C.H.F.Melo 2,1,G.Porto de Mello 3and J.R.De Medeiros 1

1Departamento de F ′?sica,Universidade Federal do Rio Grande do Norte,59072-970Natal,RN.,Brazil 2European Southern Observatory,Casilla 19001,Santiago 19,Chile 3Observat′o rio do Valongo,Ladeira do Pedro Antonio,43,20080-090,Rio de Janeiro,RJ.,Brazil Received /Accepted Abstract.The connection rotation–CaII emission ?ux–lithium abundance is analyzed for a sample of bona ?de subgiant stars,with evolutionary status determined from HIPPARCOS trigonometric parallax measurements and from the Toulouse–Geneva code.The distribution of rotation and CaII emission ?ux as a function of e?ective temperature shows a discontinuity located rather around the same spectral type,F8IV.Blueward of this spectral type subgiants have a large spread of values of rotation and CaII ?ux,whereas stars redward of F8IV show essentially low rotation and low CaII ?ux.The strength of these declines depends clearly on stellar mass.The abundance of lithium also shows a sudden decrease.For subgiants with mass lower than about 1.2M ⊙the decrease is located later than that in rotation and CaII ?ux,whereas for masses higher than 1.2M ⊙the decrease in lithium abundance is located around the spectral type F8IV.The discrepancy between the location of the discontinuities of rotation and CaII emission ?ux and log n (Li )for stars with masses lower than 1.2M ⊙seems to re?ect the sensitivity of these phenomena to the mass of the convective envelope.The drop in rotation,which results mostly from a magnetic braking,requires an increase in the mass of the convective envelope less than that required for the decrease in log n (Li ).The location of the discontinuity in log n (Li )for stars with masses higher than 1.2M ⊙,in the same region of the discontinuities in rotation and CaII emission ?ux,may also be explained by the behavior of the deepening of the convective envelope.The more massive the star is,the earlier is the increase of the convective envelope.In contrast to the relationship between rotation and CaII ?ux,which is fairly linear,the relationship between lithium abundance and rotation shows no clear tendency toward linear behavior.Similarly,no clear linear trend is observed in the relationship between lithium abundance and CaII ?ux.In spite of these facts,subgiants with high lithium content also have high rotation and high CaII emission ?ux.Key words.stars:activity stars:abundances –stars:rotation –stars:interiors –stars:late-type

1.Introduction

The study of the in?uence of stellar rotation on chro-

mospheric activity and on the mixing of light elements

in evolved stars has undergone some important advances

during the past decade.Several authors have reported a

rotation-activity relation for evolved stars based on the

linear behavior of the chromospheric ?ux with stellar ro-

tation (e.g.:Rutten 1987;Rutten and Pylyser 1988;Simon

and Drake 1989;Strassmeier et al.1994;Gunn et al.1998;

Pasquini et al.2000).For a given spectral type,however,a

large spread in the rotation–activity relation is observed,

which suggests that rotation might not be the only rele-

vant parameter controlling stellar activity.Indeed,results

from Pasquini and Brocato (1992)and Pasquini et al.

2do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant

stars Fig.1.Distribution of subgiant stars in the HR diagram,

with the rotational behavior as a function of luminosity

and e?ective temperature.Luminosities have been derived

from the HIPPARCOS parallaxes.Evolutionary tracks at

[Fe/H]=0are shown for stellar masses between 1and

4M ⊙.The dashed line indicates the beginning of the sub-

giant branch and the dotted line represents the beginning

on the red giant branch.

lithium content.This is consistent with the predictions

of standard evolutionary models,according to which,ac-

tivity and abundance of light elements should depend on

stellar surface temperature,metallicity and age.In spite

of these important studies showing evidence of a connec-

tion in between abundance of lithium and rotation and in

between chromospheric activity and rotation,in practice,

for evolved stars,the mechanisms controlling such connec-

tions and their dependence on di?erent stellar parameters

like metallicity,mass and age are not yet well established.

In this paper,we analyze in parallel the behavior of the

chromospheric activity,stellar rotation and lithium abun-

dance along the subgiant branch.In the present approach,

the stars are placed in the HR diagram to determine more

clearly the location of the discontinuities for these three

stellar parameters based on a sample of bona ?de sub-

giants.2.Working Sample

For this study we have selected a large sample of 121sin-

gle stars classi?ed as subgiants in the literature,along the

spectral region F,G and K,with rotational velocity,?ux of

CaII and log n (Li )now available.The rotational

velocities Fig.2.Distribution of subgiant stars in the HR dia-gram,with the behavior of the F (CaII )surface ?ux as a function of luminosity and e?ective temperature.Luminosities have been derived from the HIPPARCOS parallaxes.Evolutionary tracks are de?ned as in Fig.1.

v sin i were taken from De Medeiros and Mayor (1999).By using the CORAVEL spectrometer (Baranne et al.1979)these authors have determined the projected rotational velocity v sin i for a large sample of subgiant and giant stars with a precision of about 1km s ?1for stars with v sin i lower than about 30km s ?1.For higher rotators,the estimations indicate an uncertainty of about 10%.The F (CaII )was determined from the CaII H and K line–core emission index S 1and S 2listed by Rutten (1987),using the procedure of conversion from the emission index S1to ?ux at the stellar surface F (CaII )given by Rutten (1984).The values of log n (Li )were taken from L`e bre et al.(1999)and Randich et al.(1999).Readers are referred to these works for discussion on the observational proce-dure,data reduction and error analysis.Stellar luminosi-ties were determined as follows.First,the apparent visual magnitudes m v and trigonometric parallaxes,both taken from HIPPARCOS catalogue (ESA 1997),were combined to yield the absolute visual magnitude M v .Bolometric correction BC ,computed from Flower (1996)calibration,was applied giving the bolometric magnitude which was ?nally converted into stellar luminosity.The e?ective tem-perature was computed using Flower (1996)(B ?V )ver-sus T eff calibration.The rotational velocity v sin i ,stel-

lar surface ?ux F (CaII ),abundance of lithium log n (Li )

do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant stars

3

Fig.3.Distribution of subgiant stars in the HR diagram,

with the behavior of Li abundance as a function of lumi-

nosity and e?ective temperature.Luminosities have been

derived from the HIPPARCOS parallaxes.Evolutionary

tracks are de?ned as in Fig.1.

and

stellar parameters of the entire sample are presented

in Table 1.3.Results

3.1.The discontinuity in Rotation,CaII emission Flux

and Li abundance

As a ?rst step,the stellar luminosity and the e?ective

temperature listed in Table 1were used to construct the

HR diagram to better locate the evolutionary stage of the

stars in the sample.In fact,such a procedure seems impor-

tant because in preceding studies on the link between ro-

tation and chromospheric activity in subgiant stars,only

the spectral type was used as a criterion for identifying

the stars.Evolutionary tracks were computed from the

Toulouse–Geneva code for stellar masses between 1and

4M ⊙,for metallicity consistent with solar–type subgiant

stars (see do Nascimento et al 2000for a more detailed

description).Here,in particular,we use the evolutionary

tracks computed with solar metallicity because most of

the stars in the present sample have [F e/H ]~0.The

HR diagram with the evolutionary tracks is displayed in

Figs.1,2and 3,which in addition show the behavior

of the rotational velocity v sin i ,surface ?ux CaII and

log n (Li )abundance respectively.In these diagrams the

dashed line indicates the evolutionary region where the Fig.4.log F (CaII )versus log (vsini )for the program stars.Open circles denote stars with (B ?V )≤0.55,?lled circles those with 0.55<(B ?V )≤0.75,triangles stars with 0.75<(B ?V )≤0.95and squares stars with (B ?V )>0.95.

subgiant branch starts,corresponding to hydrogen ex-haustion in stellar central regions,whereas the dotted line represents the beginning of the ascent of the red giant branch.One observes,clearly,that most of the stars in the present sample are e?ectively subgiants.Nevertheless a small number of stars located in particular on the cool side of the diagrams are rather stars evolving along the red giant branch.In this context,for the purpose of the present analysis,these deviating stars will not be consid-ered as subgiants,in spite of the spectral types assigned in the literature.Figure 1shows the well established rotational dis-continuity around the spectral type F8IV (e.g.:De Medeiros and Mayor 1990),corresponding to (B ?V )≈0.55(log T eff ~3.78).As shown by these authors,sin-gle subgiants blueward of this spectral type show a wide range of rotational velocities from a few km s ?1to about one hundred times the solar rotation,whereas subgiants redward of F8IV are essentially slow rotators,except for the synchronized binary systems.Fig.1shows clearly that single subgiants redward of the discontinuity with high v sin i are unusual.The root cause for such a discontinu-ity seems to be a strong magnetic braking associated with the rapid increase of the moment of inertia,due to evolu-tionary expansion,once the star evolves along the late F

4do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant

stars Fig.5.log n (Li )versus log (vsini )for the program stars.

Symbols are de?ned as in Fig.4spectral region (e.g.Gray and Nagar 1985;De Medeiros

and Mayor 1990).

Figure 2shows clear evidence of a discontinuity in the

surface ?ux F (CaII )paralleling the one observed in rota-

tional velocity.In fact,such a sudden decrease in CaII ?ux

of subgiants also parallels that in CIV emission ?ux found

by Simon and Drake (1989).Stars with typical subgiant

masses showing the highest CaII ?ux are located blueward

of this discontinuity.Such a drop in the surface chromo-

spheric ?ux is interpreted by Simon and Drake (1989)as

the result of the drop in rotation near the spectral type

G0IV.According to these authors,there is a development

of a dynamo in late F stars,which induces a strong mag-

netic braking in a preexisting wind that acts on the out-

ermost layers of the stellar surface.As a consequence the

stellar surface will spin down.

Figure 3shows the behavior of the lithium abundance,

with a sudden decrease in log n (Li )for subgiant stars with

mass lower than about 1.2M ⊙,located a somewhat later

than the discontinuity in rotation and in surface F (CaII ).

Evidence for this decrease in log n (Li )was ?rst pointed

out by do Nascimento et al.(2000).According to these au-

thors,such a drop in log n (Li )abundances of subgiants

seems to result from the rapid increase of the convective

envelope at the late F evolutionary stage.Due to the con-

vective mixing process,Li–rich surface material is diluted

towards the stellar interior.For higher masses,the drop

in log n (Li )shows a tendency to parallel the discontinu-Fig.6.log n (Li )versus log F (CaII )for the program stars.Symbols are de?ned as in Fig.4ities in v sin i and F (CaII ),near F8IV,corresponding to (B ?V )≈0.55(log T eff ~3.78).An additional trend is present in Figs.1and 2,which show that the fastest rotators and those subgiants with the highest CaII emission ?ux,namely the stars blueward of F8IV,are mostly stars with mass higher than about 1.2M ⊙.Subgiants with mass lower than about 1.2M ⊙show moderate to low rotation as well as moderate to low surface F (CaII ).In the region blueward of F8IV,the abundances of lithium show a more complex behavior for stars with masses between 1.2and 1.5M ⊙.Fig.3shows a number of stars in this mass interval with low to moderate log n (Li ).Such a fact appears to re?ect the so-called dip region observed by Boesgaard &Tripicco (1986).3.2.The relation Rotation –F (CaII )–log n (Li )As a second step of this study we have analyzed the di-rect relationship between rotation,F (CaII )and log n (Li )for the stars of the sample.Figure 4shows the sur-face F (CaII )versus the rotational velocity v sin i ,where stars are separated by intervals of (B ?V ).Stars ear-lier than the rotational discontinuity,typically those with (B ?V )≤0.55,are represented by open circles,solid cir-cles stand for stars with 0.55<(B ?V )≤0.75,triangles stand for stars with 0.75<(B ?V )≤0.95and squares represent stars with (B ?V )>0.95.The well established correlation between rotation and chromospheric emission ?ux (e.g.Simon and Drake 1989),here represented by the

do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant stars

5

Fig.7.The F (CaII )versus the Rossby number R 0.The

Symbols are de?ned as in Fig.4.

surface F (CaII ),is clearly con?rmed for the present sam-

ple of bona ?de subgiants.

Figure 5presents the behavior of log n (Li )as a func-

tion of the rotational velocity v sin i ,con?rming the trend

of a fair connection in between abundance of Li and v sin i

in subgiant stars already observed by other authors (e.g.

De Medeiros et al.1997).

Finally,Fig.6shows the surface F (CaII )as a function

of log n (Li ).In spite of more a limited number of stars

than in Figs.4and 5,we observe a trend for a connec-

tion between F (CaII )and log n (Li )following rather the

behavior observed in the v sin i versus log n (Li )relation.

3.3.The connection F (CaII )emission ?ux–Rossby

number

A close examination of the rotation versus F (CaII )rela-

tion presented in Fig.4shows that the amount by which

it deviates from a linear correlation depends on the (B–V)

color interval.A similar color dependence was observed by

Noyes et al.(1984),who removed such an e?ect by intro-

ducing the dimensionless Rossby number R 0=P rot /τconv ,

as a mesure of the rotational velocity.This dependence

was also noted by Simon and Drake (1989)for subgiant

stars,by analysing the relation F (CIV )versus rotation.

These results con?rm that rotation is not the only param-

eter expected to in?uence stellar chromospheric activity;

another is the stellar mass,or equivalently,the position

of the star in the HR diagram,which dictates the prop-erties of the stellar convective zone.The deepening of the convective zone,or its convective turnover time is,in par-ticular,expected to play a relevant role in the dynamo generation.The Rossby number,in fact,determines the extent to which rotation can induce both helicity and dif-ferential rotation required for dynamo activity in the con-vective zone.To analyse the connection F (CaII )emis-sion ?ux–Rossby number,we have computed R 0for all the stars of the present sample.The convective turnover time τconv was estimated from the iterated function in (B–V)given by Noyes et al.(1984),whereas the rota-tion period was estimated indirectly from the v sin i given in Table 1.A statistical correction of π/4was taken in consideration,to compensate for sin i e?ects.The stel-lar radii were estimated following the standard expres-sion as a function of e?ective temperature and luminosity.Figure 7presents the behavior of F (CaII )as a function of the Rossby number R 0,with two clear di?erent features.For stars with (B ?V )>0.55the correlation of chro-mospheric activity,given by F (CaII ),with R 0is signi?-cantly better than with rotational velocity,whereas stars with (B ?V )≤0.55show F (CaII )rather uniformly high and independent of the R 0.A similar result was found by Simon and Drake (1989),by analysing the F (CIV )versus R 0relation.3.4.The behavior of log n (Li )as a function of the deepening of the convective envelope The level of dilution of lithium depends strongly on the level of convection.In this context it sounds interesting to analyse the behavior of lithium abundance as a function of the deepening of the convective zone for the present sample of stars.For this purpose we have estimated the mass of each star M ?from the HR diagram presented in Sec.3.1and then estimated the mass of the convec-tive zone M CZ from an iterated function M CZ (M ?,Te?)constructed on the basis of the study by do Nascimento et al.(2000)on the deepening (in mass)of the convective envelope of evolved stars.These authors present the be-havior of M CZ as a function of Te?for stars with masses between 1.0and 4.0M ⊙.Figure 8shows the behavior of log n (Li )in the M CZ /M ?versus Te?diagram.It is clear that most of the stars with high lithium content present an undeveloped convective envelope,whereas stars with low log n (Li )have a developed convective envelope.4.Discussion At this point we can inquire about the root cause of the apparent discrepancy in the location of the discontinu-ities in v sin i and F (CaII )and that for log n (Li ).In fact,should one expect,from the evolutionary point of view,that the discontinuity in log n (Li )follows the one in v sin i as well as that in F (CaII )?First of all,let us recall that in the speci?c case of late–type evolved stars,chro-mospheric activity re?ects the presence of magnetic ?elds which are relevant for the heating of the chromosphere as

6do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant

stars

Fig.8.The deepening (in mass)of the convective envelope as a function of the e?ective temperature for the stars in the present sample.The symbol size is proportional to the Li abundances quoted in.well as for mass and angular momentum losses.The in-tensity and spatial distribution of magnetic ?elds are very probably determined by a dynamo process,whose mode of operation and e?ciency depends on the interplay between stellar rotation and subphotospheric convective motions.In this context one should expect a direct link between the discontinuities in v sin i and F (CaII ),with a drop at the same spectral region,if chromospheric activity is directly controlled by rotation.As shown by Fig.7,this is true,in particular,for stars located redward of the spectral region of the discontinuity.The question now turns to the apparent discrepancy in the location of the discontinuity in log n (Li )in relation to the location of the discontinuities in v sin i and F (CaII )for subgiant stars with masses lower than about 1.2M ⊙.This discrepancy can be understood as a result of the sen-sitivity of these phenomena to the mass of the convec-tive envelope.In the case of the rotational discontinuity,a small increase in the mass of the convective envelope is enough to turn the dynamo on.This same dynamo will be responsible to the magnetic braking causing a drop in the rotation rate and the consequent shutdown of the dy-namo https://www.wendangku.net/doc/f612075981.html,ter,the convective envelope will continue to deep reaching a region previously devoid of Li.At this point,the Li brought from the surface layers is diluted and its abundance drops.This fact explains clearly the discrepancy between the location of the discontinuity in

log n (Li )in relation to the one for vsini and F (CaII ),as

observed from Figs.1to 3.The fact that a magnetic brak-

ing might operate with very small changes in the mass of

the convective envelope is further reinforced by the loca-

tion of the discontinuity in the F (CaII )?ux at the late

F spectral region.Previous studies (e.g.:do Nascimento

et al.2000)show that the development of the convective

envelope towards the stellar interior starts at this spectral

region,reaching a maximum within the middle to late G

spectral region.In short,the drop in v sin i and F (CaII )

is earlier than that in log n (Li )because,in contrast to the

former,this latter requires a large increase in the mass of

the convective envelope.Figure 8shows that Li dilution

increases abruptly with the deepening of the convective

envelope.In fact,the observed discontinuity in log n (Li )

seems to be controlled directly by the increasing of the

deepening of the convective envelope.

The observed trend for a same location,of the disconti-

nuities in v sin i and log n (Li )for stars with masses larger

than about 1.2M ⊙may also be explained by following the

behavior of the deepening of the convective envelope.As

shown by do Nascimento et al.(2000,see their Fig.4),the

changes in the mass of the convective envelope at a given

e?ective temperature in the range from log T eff ~3.75to

log T eff ~3.68,are more important for stars with masses

in the increasing sequence of masses from 1.0M ⊙to 2.5

M ⊙.The more massive the star is,in this range of masses,

the earlier is the increasing of the convective envelope.In

this context,a sudden decrease in log n (Li )of stars with

masses larger than about 1.2M ⊙,paralleling the rota-

tional discontinuity,should be expected.

The relationship between v sin i and surface F (CaII ),

as presented in Fig.4,con?rms the results found by other

authors for subgiant stars (e.g.:Strassmeier et al.1994)

and for other luminosity classes (Strassmeier et al.1994;

Pasquini et al.2000).In addition,one observes a trend

of increasing scattering in the v sin i versus F (CaII )rela-

tion,con?rming previous claims that rotation might not

be the only relevant parameter controlling chromospheric

activity.In this context,Pasquini et al.(2000)have found

for giant stars a clear dependence of F (CaII )?ux with

a high power of stellar e?ective temperature,whereas

Strassmeier et al.(1994)have found that the CaII ?ux

from the cooler evolved stars depends more strongly upon

rotation than the CaII ?ux from the hotter evolved stars.

The behavior of F (CaII )as a function of the Rossby

number R 0,presented in Fig.7,shows two clear trends:

For stars with (B–V)larger than about 0.55the F (CaII )

tends towards a linear correlation with R 0;stars with (B–

V)lower than about 0.55show F (CaII )rather uniformly

high and independent of R 0,pointing for a component of

chromospheric activity independent of rotation.Di?erent

authors (e.g.:Wol?et al.1986)suggest that the chro-

mospheres of early F stars may be heated by the shock

dissipation of sound waves,rather than by the dynamo

process that control the chromospheric activity in G–and

K–type stars.

do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant stars7

The dependence of lithium abundance upon rotation observed in Fig.5exists in the sense that the fastest rota-tors also have the highest lithium content.Nevertheless, there is no clear linear relation between these two pa-rameters.Fig.5also shows a large spread in the Li con-tent at a given v sin i value,covering at least2magni-tudes in log n(Li).Such a spread shows a clear ten-dency to increase with rotation and e?ective temperature. For v sin i lower than about10km s?1,in particular,the log n(Li)values range from about0.0to about3.0.Such a spread was also observed by De Medeiros et al.(1997) and do Nascimento et al.(2000).Finally,the behavior of log n(Li)as a function of CaII emission?ux presented in Fig.6seems to follow roughly the same trend observed for the relation v sin i versus log n(Li).Subgiants with high lithium content also show high F(CaII),but there is no clear linear relation between these two parameters.

5.Summary and conclusions

In the search for a better understanding of the in?uence of stellar rotation on chromospheric activity and lithium dilution,we have analyzed the relationship rotation–CaII emission?ux–Li abundance along the subgiant branch, on the basis of a sample of bona?de subgiants,reclassi-?ed from HIPPARCOS data.The evolutionary status of all the stars was determined from trigonometric parallax taken from this data base and evolutionary tracks com-puted from the Geneva–Toulouse code.The distributions of the rotational velocity and of the CaII emission?ux show similar behavior.For both parameters we observe a sudden decrease around the spectral type F8IV,con?rm-ing previous studies.Nevertheless,the extent of these dis-continuities depends on the stellar mass.Stars with masses around1.5M⊙show a more important decrease in rota-tion and CaII emission?ux,than stars with masses lower than about1.2M⊙.Clearly,stars blueward of F8IV,with masses higher than1.2M⊙,rotate faster and are more active than those with masses lower than about1.2M⊙. The distribution of Li abundance versus e?ective temper-ature,in spite of a sudden decrease in the late–F region shows a trend for a more complex behavior.First,stars with masses lower than about1.2M⊙show a discontinu-ity in log n(Li)somewhat later than the discontinuities in rotation and CaII emission?ux,whereas stars with higher masses present a decline in log n(Li)rather around the spectral type F8IV.In addition,a group of stars blueward of F8IV with masses between1.2and1.5M⊙shows mod-erate to low log n(Li),which seems to re?ect the e?ects of the so-called Boesgaard–Tipico dip region.The discrep-ancy in the location of the discontinuities of rotation–CaII emission?ux and log n(Li)for stars with masses lower than1.2M⊙,seems to be the result of the sensitivity of these phenomena to the mass of the convective envelope. The drop in rotation,resulting mostly from a magnetic braking,requires an increase in the mass of the convective envelope less than that required for the sudden decrease in log n(Li),this later resulting from the dilution due to the rapid increase of the convective envelope.The location of the discontinuity in log n(Li)for stars with masses higher than1.2M⊙,in the same region of the discontinuities in rotation and CaII emission?ux,may also be explained by following the behavior of the deepening of the convec-tive envelope.The more massive the star is,the earlier is the increase of the convective envelope.The present work con?rms that the dilution of Li depends strongly on the deepening of the convective envelope.

The relationship between rotation and CaII emission ?ux con?rms previous results found by other authors. CaII emission?ux shows a correlation with rotation. Nevertheless,the large spread in the CaII?ux–v sin i re-lation reinforces previous suggestions that rotation might not be the only relevant parameter controlling stellar chro-mospheric activity.In fact,the relation F(CaII)versus Rossby number con?rms that chromospheric activity of subgiant stars with(B–V)larger than about0.55depends rather linearly on rotation,whereas for stars with(B–V) lower than about0.55activity is rather independent of ro-tation.The relationship between log n(Li)and rotation shows a behavior less clear than that between CaII?ux and rotation.Of course the present study con?rms a de-pendence of lithium abundance upon rotation,in the sense that stars with the high rotation have also high lithium content.In spite of this fact,there is no clear linear re-lationship between these two parameters,with a spread more important than that observed in the F(CaII)–v sin i relation.The behavior of the relationship between lithium abundance and CaII emission?ux seems to follow that ob-served for log n(Li)–v sin i.Stars with the high activity also show high lithium content.In both cases there is a remarkable increase in scattering in the log n(Li)–v sin i and log n(Li)–CaII?ux relations with increasing v sin i and CaII?ux,respectively.Such a fact appears to indicate that the in?uence of rotation on stellar activity is greater than on lithium dilution.Finally,the present study point to a pressing need for new measurements of chromospheric emission?ux and lithium abundance for an homogeneous and larger sample of bona?de subgiant stars,with a larger range of metallicities,than that analyzed here.With these additional data it will be possible to analyze the in?uence of rotation upon activity and lithium dilution on a more solid basis,taking into account the stellar age and metal-licity.

Acknowledgements.This work has been supported by contin-uous grants from the CNPq Brazilian Agency.J.D.N.Jr.ac-knowledges the CNPq grant PROFIX540461/01-6.Special thanks to the referee,Dr.R.Cayrel for very useful comments, which greatly improved the quality of this paper. References

Baranne,A.,Mayor,M.,Poncet,J.L.1979,Vistas Astron.23, 279

Boesgaard,A.M.,Trippico,M.J.1986,ApJ302,L49

De Medeiros,J.R.,Mayor,M.1990,Cool stars,stellar systems, and the sun;Proceedings of the6th Cambridge Workshop, Seattle,Astronomical Society of the Paci?c,6,404

8do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant stars De Medeiros,J.R.,do Nascimento,J.D.,Jr.,Mayor,M.1997,

A&A317,701

De Medeiros,J.R.,Mayor,M.1999,A&AS139,433

De Medeiros,J.R.,do Nascimento,J.D.Jr.,Sankarankutty,

S.,Costa,J.M.,Maia,M.R.G.2000,A&A363,239

do Nascimento,J. D.Jr.,Charbonnel, C.,L`e bre, A.,de

Laverny,P.,De Medeiros,J.R.2000,A&A357,931

Duncan,D.K.1981,ApJ248,651

ESA1997,The Hipparcos and Tycho Catalogues,ESA SP-1200

Flower,P.J.1996,ApJ469,355

Gray,D.F.,Nagar,P.1985,ApJ298,756

Gunn,A.G.,Mitrou,C.K.,Doyle,J.G.1998,MNRAS296,

150

L`e bre,A.,de Laverny,P.,De Medeiros,J.R.,Charbonnel,C.,

da Silva,L.1999,A&A345,936

Noyes,R.W.,Hartmann,L.W.,Baliunas,S.L.,Duncan,D.

K.,Vaughan,A.H.1984,ApJ,279,763

Pasquini,L.,Brocato,E.1992,A&A266,340

Pasquini,L.,Liu,Q.,Pallavicini,R.1994,A&A287,191

Pasquini,L.,De Medeiros,J.R.,Girardi,L.2000,A&A361,

1011

Randich,S.,Gratton,R.,Pallavicini,R.,Pasquini,L.,

Carretta,E.1999,A&A348,487

Rutten,R.G.M.1984,A&A130,353

Rutten,R.G.M.1987,A&A177,131

Rutten,R.G.M.,Pylyser,E.1988,A&A191,227

Simon,T.,Drake,S.,A.1989,ApJ346,303

Strassmeier,K.G.,Handler,G.,Paunzen,E.,Rauth,M.1994,

A&A281,855

Uesugi,A.,Fukuda,I.,1982,Catalogue of stellar rotational

velocities(revised)

Wollf,S.C.,Boesgaard,A.M.,Simon,T.1986,ApJ310,360

do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant stars9 Table1.The stars of the present workimg sample with their physical parameters

HD ST log(L/Lo)T ef f v sin i F(CaII)log n(Li)

Sources:a–L`e bre et al.(1999);b–De Medeiros et al.(1997);c–Randich et al.(1999);f–Uesugi and Fukuda(1982);

10do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant stars Table1.Continued.The stars of the present workimg sample with their physical parameters

HD ST log(L/Lo)T ef f v sin i F(CaII)log n(Li)

Sources:a–L`e bre et al.(1999);b–De Medeiros et al.(1997);c–Randich et al.(1999);f–Uesugi and Fukuda(1982);

do Nascimento et al.:Rotation,chromospheric activity and Li abundances in subgiant stars11

Table1.Continued.The stars of the present workimg sample with their physical parameters

HD ST log(L/Lo)T ef f v sin i F(CaII)log n(Li)

Sources:a–L`e bre et al.(1999);b–De Medeiros et al.(1997);c–Randich et al.(1999);f–Uesugi and Fukuda(1982);

(完整word版)各种接口针脚定义大全,推荐文档

3.5mm插头 最常见的立体声耳机分三层,标准分布为“左右地红白”(从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的)。 最常见的是银白色的和铜黄色的,银色的是铜镀银,铜黄色的就是铜。由于银的稳定性和电子工程性优于铜,所以铜镀上银后可以升级使用该插头设备的用户体验。 USB接口 USB是一种常用的pc接口,他只有4根线,两根电源两根信号,故信号是串行传输的,usb接口也称为串行口,usb2.0的速度可以达到480Mbps。可以满足各种工业和民用需要.USB接口的输出电压和电流是: +5V 500mA 实际上有误差,最大不能超过+/-0.2V 也就是4.8-5.2V 。usb接口的4根线一般是下面这样分配的,需要注意的是千万不要把正负极弄反了,否则会烧掉usb设备或者电脑的南桥芯片:黑线:gnd 红线:vcc 绿线:data+ 白线:data-

USB接口定义图 USB接口定义颜色 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT- 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 黑色-地线: GND、Ground USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连接头)。 USB接口是一种越来越流行的接口方式了,因为USB接口的特点很突出:速度快、兼容性好、不占中断、可以串接、支持热插拨等等,

四年级一件难忘的事400字作文【五篇】

四年级一件难忘的事400字作文【五篇】 四年级一件难忘的事400字精选作文篇一 在童年里有许许多多的事情就像在海滩上捡贝壳,有绚烂的笑,是开心的往事;有黯淡的,像是勾起一段伤心的往事,都使我非常难忘。 早晨,风和日丽,我去帮妈妈和爸爸买早餐,等我去到早餐店,我发现早餐店旁有一大群人,我带着好奇心走去,让我大吃一惊,我发现那有一位老奶奶绊倒在地上。 我心想:为什么一位老奶奶搬绊倒在地上,但每一个人都无动于衷,还围观老奶奶,真是不尊重老人!我气得暴跳如雷,我就问我旁边的大人:“你们为什么不扶老奶奶”那人就说:“因为最近在新闻里,有很多老人成心绊倒在地上让路人扶起她。”谁知老人就说:扶起他的人是推他的人。老人还说:赔我钱。我听完就有一点不敢拉老奶奶了。 这时,一位青年人走过来,马上扶起老奶奶,旁边的人说,那个青年人真笨,青年人就说:“难道金钱比生活还重要吗?”青年人问奶奶要紧吗?奶奶说,不要紧,谢谢你,小伙子。青年人就说不用谢,说完就走了,我看到青年人的身影,我觉得很惭愧。 这一件事使我非常难忘,假如社会的人都献出一点爱心,那么社会就是充满爱心的。

四年级一件难忘的事400字精选作文篇二 每一个人都有自己最难忘的事,我最难忘的事就是三年级那次集体打连响儿。 记得那一次我们拿着漂亮的连响儿,排着整齐的队伍,伴随着美好的音乐,踏着坚决的步伐,熟练地打了起来。 看到这样整齐划一的队伍,我不由心生骄傲:看来我的努力还是没有白费呀!但放眼又一望,我们四周可以说是人山人海,有无数双眼睛正盯着我们,我心里不知从哪里来了一种莫名的紧张,我头上冒着冷汗,腿不由的发着抖。就在这一霎时,我做错了一个动作,登时,我感觉所有人的目光都投向了我一个人,我这颗本来就不平静的心,现在显得更加紧张了、更加不安了,我一下子都不知该干什么了,我真想有一个洞,让我钻到洞里去,我以前打的是那么灵敏,可现在却有气无力,仿佛有一个小精灵把我这活泼的精神给夺走了,经过漫长的煎熬,我好不容易才等到了结束的那一刻。 我回家把这件事告诉我妈妈,妈妈说:想做好一件事就要加倍的努力,不要认为自己会做了就可以了,妈妈的这次教导,将使我一生受益。 四年级一件难忘的事400字精选作文篇三 我家有各种各样的陶瓷器皿,比如:碗,花瓶,勺子,水杯等。它们形态各异,五彩缤纷。它们站在一起,仿佛都在展示自己曼妙的

人教版四年级(上册)数学专项训练

人 教 版 四年级(上册) 数 学 基 础 知 识 专 项 训 练

人教版四年级上册数学基础知识填空题专项训练 1、由5个千万、4个万、8个十和9个一组成的数是(),读作(),取近似值到万位约是()。 2、406000000读作(),这个数中的6在()位上,表示(),改写成用万作单位是()。 3、一周角=()平角=()直角。 4、367÷23把23看作()来试商比较方便。 5、下午3:00时针和分针夹成的最小角是()度。 6、在数位顺序表中,从右起第四位是()位,这个数的计数单位是(),如果这个数位上的数字是8,8表示()。 7、5个一百万、4个十万、2个千和4个一组成的数是()。读作(),它有()个计数单位。 8、在9、8中间添()个0,这个数才是九千万零八。 9、一个数加上2的和比最小的五位数多1,这个数减2是( 10、在数位顺序表中,从右起第四位是()位,这个数的计数单位是(),如果这个数位上的数字是8,8表示()。 11、5个一百万、4个十万、2个千和4个一组成的数是()。读作(),它有()个计数单位。 12、在9、8中间添()个0,这个数才是九千万零八。 13、一个数加上2的和比最小的五位数多1,这个数减2是() 14、120分米=()米 540秒=()分 72小时=()天 132个月=()年 15、计量角的单位是()。()是量角的工具。 16、角的大小要看两边(),()越大,角越大。 17、线段有()个端点。把线段的一端无限延长,就得到一条(),把线段的两端无限延长,就得到一条(),它()端点。 18、过一个点可以画()条直线,过两点可以画()条直线。 19、按照从大到小的顺序排列下面各数 88000 80800 80008 80080 ________________________________________________ 20、把锐角、平角、钝角、直角、周角按下列顺序排列。 ()>()>()>()>() 21、4293÷4口,要使商是二位数,口可以填()

CameraLink接口数字相机图像显示装置解读

Camera Link接口数字相机图像显示装置(技术)摘要:由于目前基于CameraLink接口的各种相机都不能直接显示,因此本文基于Xilinx公司的Spartan3系列FPGA XC3S1000-6FG456I设计了一套实时显示系统,该系统可以在不通过系统机的情况下,完成对相机CameraLink信号的接收、缓存、读取并显示。系统采用两片SDRAM作为帧缓存,将输入的CameraLink信号转换成帧频为75Hz,分辨率为1,024×768的XGA格式信号,并采用ADV7123JST芯片实现数模转换,将芯片输出的信号送到VGA接口,通过VGA显示器显示出来。设计的系统可以应用于各种基于CameraLink接口的相机输出信号的实时显示。 关键词:CameraLink; FPGA; SDRAM控制器;实时显示 Research on the Real-time Display Technology Based on CameraLink Abstract: All cameras based on the CameraLink interface cannot be displayed directly at present. Therefore, we designed a real-time display system based on the Xilinx Spartan3 FPGA XC3S1000-6FG456I.Our system could receive, store, read and display the CameraLink signal without the system computer. Two SDRAMs were used as frame storage. Input CameraLink signal was converted to XGA signal with 1024×768 pixles/frame at 75 frame/s. The ADV7123JST was used as D/A convertor. Its output signal was transmitted to the VGA interface and displayed on the screen of the VGA monitor. Our system could display the output signal of all cameras based on the CameraLink interface. Keywords: CameraLink; FPGA; SDRAM controller; real-time display

完整word版各种接口针脚定义大全

3.5mm 插头 最常见的立体声耳机分三层,标准分布为“左右地红白”(从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的)。 最常见的是银白色的和铜黄色的,银色的是铜镀银,铜黄色的就是铜。由于银的稳定性和电子工程性优于铜,所以铜镀上银后可以升级使用该插头设备的用户体验。 USB接口 USB是一种常用的pc接口,他只有4根线,两根电源两根信号,故信号是串行传输的,usb接口也称为串行口, usb2.0的速度可以达到480Mbps。可以满足各种工业和民用需要.USB接口的输出电压和电流是: +5V 500mA 实际上有误差,最大不能超过+/-0.2V 也就是4.8-5.2V 。usb接口的4根线一般是下面这样分配的,需要注意的是千万不要把正负极弄反了,

否则会烧掉usb设备或者电脑的南桥芯片:黑线:gnd 红线:vcc 绿线:data+ 白线:data- 1 USB接口定义图 USB接口定义颜色 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT- 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 黑色-地线: GND、Ground USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连

接头)。 USB接口是一种越来越流行的接口方式了,因为USB接口的特点很突出:速度快、兼容性好、不占中断、可以串接、支持热插拨等等, 2 所以如今有许多打印机、扫描仪、数字摄像头、数码相机、MP3播放器、MODEM等都开始使用USB做为接口模式,USB接口定义也很简单: 1 +5V 2 DATA-数据- 3 DATA+数据+ 4 GND 地 串口 主板一般都集成两个串口,可Windows却最多可提供8个串口资源供硬件设置使用(编号COM1到COM8),虽然其I/O地址不相同,但是总共只占据两个IRQ(1、3、5、7共享IRQ4,2、4、6、8共享IRQ3),平常我们常用的是COM1~COM4这四个端口。我们经常在使用中遇到这个问题——如果在COM1上安装了串口鼠标或其他外设,就不能在COM3上安装如Modem之类的其它硬件,这就是因为IRQ设置冲突而无法工作。这时玩家们可以将另外的外设安装在COM2或4。 标准的串口能够达到最高115Kbps的数据传输速度,而一些增强型串口如ESP(Enhanced Serial Port,增强型串口) 、Super

关于难忘的一件事四年级作文3篇

关于难忘的一件事四年级作文3篇 【导语】每个人都有难忘的事,我当然也不会例外。下面是小编为大家整理的关于难忘的一件事四年级作文,仅供参考,欢迎大家阅读。 关于难忘的一件事四年级作文一 六岁那年,发生了一件令我难忘的事情——在商场里我差点儿走丢了! 那天,天气很冷,我们一家人去商场买东西。买完后,我们在一楼闲逛。走着走着,我松开了妈妈的手,跑去看一款造型独特的吸尘器,当回过头时,爸爸妈妈已经走得无影无踪了。商场里人很多,我非常害怕,心想:“妈妈也一定急坏了!怎么办?” 我在商场里转了一圈,越来越害怕、恐惧,忽然,我想起爸爸的车在路边停着,干脆就“守株待兔”吧!所以就跑去爸爸的车旁边等。过了一会儿,爸爸妈妈终于找到我了,妈妈冲过来,一把把我紧紧地搂进怀中,口里不停的说:“吓死妈妈了,妈妈腿都软了!”然后又语无伦次的夸我聪明,没瞎跑,唉!我心里就像打翻了五味瓶一样,说不出的'滋味儿! 从那以后,我再也不敢轻易放开妈妈的手了。 关于难忘的一件事四年级作文二

一个美丽的晚霞中,那七元五角的事使我永刻不能忘怀。 我背着书包回了家,对妈妈和蔼地说:“妈咪,我回来了!哦,对了妈咪,老师吩咐我们要买一支黑笔,您可不可以给我两块半。”说完,妈咪点了点头,从黑纹色的包里拿出了两块半,我拿起了钱就往商店里奔驰去。 从商店里拿起了一支晶亮的黑笔,到收银台付了钱,就发现了里头还藏了个五元,我的贪婪之心有苏醒了。付了钱后就在半路上犹豫到底要不要把这五元给妈咪呢?在犹豫时就看见了一个小妹妹,她看见前面的叔叔掉了十元钱,就还给了那个叔叔,我就在想,连一个比我还小的妹妹都那么听话,我不能落后,就跑回了家,把五元还给了妈咪。 做人要道德,道德只是个简单的是与非的问题,实践起来却很难,把五元还给妈咪,一个人要是从小就受到这样的教育的话,就会获得道德实践的勇气和力量。 关于难忘的一件事四年级作文三 在我的脑海里发生过许多难忘的事情,但是有一件事令我记忆犹新,那是发生在去年的一件事。 那是一天下午我在我在学校上学的时候,我借了刘利娜的语文作业抄,下课了,我抄完了。就和女同学玩橡皮筋。正在这时候周老师来了,我们吓得腿都软了。 在回家得路上我心里忐忑不安,心想这样做对不对呢?

2020年四年级数学上册解决问题专项综合练习

2020年四年级数学上册解决问题专项综合练习 1. 某小学学生向汶川地震灾区踊跃捐款,请根据下图填空. (1)______年级的捐资金额最多,是______元. (2)六个年级捐资金额这组数据的中位数是______元. (3)二年级捐资金额是四年级捐资金额的______%. (4)四年级捐资金额比五年级少______%. 2. 特快列车每小时行170千米,普通列车每小时行107千米 (1)特快列车40小时行多少千米? (2)普通列车40小时行多少千米? 3. 2010年第六次全国人口普查显示,我国人口总数大约是1339720000 人,读横线的数。 4. 如图是广本汽车销售店2013年一月至五月的销售情况统计图.

请你根据上图,完成以下的填空: (1)______月的销售量最少. (2)二月份的销售量比一月份多______台. (3)五月份的汽车销售量是三月份的______%. (4)四月份的汽车销售量比二月份增加了______%. 5. 下图显示的是某班20人在“献爱心”活动中捐图书的情况,该班级人均捐了多少册书? 6. 小强拆了甲、乙两架纸飞机,下面是这两架飞机前5次试飞情况的统计图. (1)估一估,前5次试飞,哪一驾纸飞机飞行的距离远一些? (2)第6次试飞,甲飞机的飞行距离是21米,乙飞机的飞行距离是10米.在图中画出表示这架纸飞机第6次试飞飞行距离的直条,并计算这架纸飞机6次飞行距离的平均数各是多少.

7. 早餐店炸油饼,油锅一次最多能炸2张饼,炸熟一张饼要4分钟(正反面各2分钟).如果一个客人要9张饼,早餐店老板最快多少分钟可以把油饼给他? 8. 某机床厂各车间男、女工人统计图. 看上面的统计图回答下面的问题. (1)三个车间共有工人______人,其中女工共______,男工共______人.(2)三个车间平均每车间有______人. (3)第三车间男工人数比第二车间男工人数多______ %. 9. 学校进行团体操表演,每行站20人,正好站24排.如果要站成16排,那么每行需要站多少人? 10. 50枚棋子围成圆圈,编上号码1、2、3、4、…50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢? 11. 估一估,哪个算式的商最接近圈中的数,画上“√”。 先估算出每个圆中的四个算式的商是多少,再比较一下,看哪个算式的商最接近圈中的数。 12. 小红在计算一个数乘2.5时,忽略了2.5的小数点,得到的结果是75,正确的结果是多少?

四年级难忘的一件事作文400字

每个人的每一天都充满着快乐、伤心、害怕或者难过,并且会有一些难忘的事情。你难忘的一件事是什么呢?下面是小编和大家分享的“四年级难忘的一件事作文400字”,一起来看看吧,希望大家喜欢。 四年级难忘的一件事作文400字(一) 虽然我才上四年级,但是我的生活里也有很多难忘的事。我就给大家讲一件让我难忘的事吧。有一次爸爸让我做大米饭,给我留下了深刻的印象。 那天中午,爸爸对我说:“今天中午你来帮妈妈做大米饭吧,正好也锻炼锻炼。”我听了以后高兴地说:“好啊,小菜一碟。”说完以后我就开始动手了。我先把大米放在盆里淘干净,再倒进锅里,放在炉子上就到客厅去看我喜欢看的电视去了。在我看得正高兴的时候,忽然就闻到厨房里传出来一股烧糊的味儿来。我一看表,已经过去了半个小时了,我马上跑进厨房,把锅端下来。打开锅盖,就看见了变黑的锅底。可我没有放弃,又做了一次。 我又把米淘干净倒进锅里以后,我又去写作业去了。过了一会儿,我又闻到了那股烧糊的味道。我跑到厨房一看,锅底又黑了。这一看,我的眼泪都快掉下来了,这可怎么办啊?这时候,爸爸来了,对我说:“不用哭,做什事都要专心,再来一次。”我点了点头。第三次,我终于把大米饭做熟了,看见自己的成果,我感到很高兴。 这件事让我明白了:做什么事都要专心致志,不能三心二意。 四年级难忘的一件事作文400字(二) 今天,是我和姐姐第一次去买菜。 妈妈给了我们钱,说:"要注意安全哦。"我们说:"知道了。" 一路上,我的心在扑通扑通地跳。来到菜市场,我都目瞪口呆了,各种各样的蔬菜放在我面前,有西兰花、芫茜、冬瓜……还有许多嘈杂声呢! 我回忆起妈妈要我买的菜,哦!要买鱼。我走进市场左看看,右望望,嘿,找到了!我走过去,正准备对卖鱼的叔叔说话,一位阿姨便先说了一步。阿姨买完了鱼,我又准备说,谁知,又有一位阿姨要买。5分钟过去了,我还没买到,我着急了,对着叔叔大声说:"叔叔,请给我一块鲜鱼肉!"叔叔笑眯眯地说:"你要多少呀?""4元。"我回答说。叔叔弄好了鱼,用袋子好了给我,我付了钱并说了一声"谢谢"就走了。 我又想到要买菜,对了,还有芫茜!我找到了买我所需要的地方,就跟那位婆婆要了一点。当我走出市场时,天空下起了牛毛似的雨,我跟姐姐说:"我们快走吧!"接着,我们骑着自行车,飞快地奔回家。 骑到半路,雨就更大了,我们到了一棵树下遮雨,但是好久都不见天空好转。为不拖延时间,我和姐姐顶着风冒着雨冲回家。

四年级上册数学专项练习

薄弱环节专项全练全测(一) 数与代数【薄弱点一】大数读、写的准确性 一、读出或写出下列各数。(8分) 30050082 读作:______________________ 3960400090 读作:______________________ 一千零四十万四千零二十写作:________________ 七千零三亿零二十万零五写作:________________ 二、求近似数。(8分) 1.省略万位后面的尾数。 16493560≈9528641≈ 2.省略亿位后面的尾数。 2709546312≈9953364778≈ 三、选择。(6分) 1.下面三个数中,一个0也不读出来的是( )。 A.50000800 B.50080 C.5008000 2.下面各数中,用9,8,7,5,0这五个数字组成的最接近8万的数是( )。 A.89750 B.80579 C.85079 3.74□7600000≈75亿,□里最大能填( )。 A.8 B.9 C.7 【薄弱点二】乘、除法计算的准确性 四、改错。(12分)

五、笔算下面各题,带※号的要验算。(24分) 240×38=207×40=※360×50= 380÷70= 694÷72=※633÷21= 【薄弱点三】用乘、除法知识解决问题的正确性 六、解决问题。(34分) 1.一块长方形草坪的面积是120平方米,改建后,长扩大到原来的4倍,宽扩大到原来的3倍,改建 后草坪的面积是多少?(8分) 2.某花店在教师节到来之际,搞促销活动:每盆月季花16元,买3盆送1盆。 照这样计算,买4盆花,每盆比原来便宜多少钱?(8分) 3.一根木头长15米,把它平均分成5段,每锯一段需8分钟,锯完一共要花多少分钟?(8分) 4.一辆长途客车6小时行了348千米。照这样的速度,它12小时可以行多少千米?(10分) 解法1:先求客车1小时行驶多少千米,再求12小时可以行驶多少千米。 解法2: 先求12小时中有几个6小时,再求几个348千米是多少。 【薄弱点四】合理安排时间 七、小红家来了客人,她要沏茶招待客人。(8分) 找茶叶:1分钟沏茶:3分钟接水:1分钟洗杯子:2分钟洗水壶:2分钟烧水:10分钟 应该怎样安排时间才能使所用时间最短?至少要多长时间?

JTAG各类接口针脚定义及含义

JTAG各类接口针脚定义及含义 JTAG有10pin的、14pin的和20pin的,尽管引脚数和引脚的排列顺序不同,但是其中有一些引脚是一样的,各个引脚的定义如下。 一、引脚定义 Test Clock Input (TCK) -----强制要求1 TCK在IEEE1149.1标准里是强制要求的。TCK为TAP的操作提供了一个独立的、基本的时钟信号,TAP的所有操作都是通过这个时钟信号来驱动的。 Test Mode Selection Input (TMS) -----强制要求2 TMS信号在TCK的上升沿有效。TMS在IEEE1149.1标准里是强制要求的。TMS信号用来控制TAP状态机的转换。通过TMS信号,可以控制TAP在不同的状态间相互转换。 Test Data Input (TDI) -----强制要求3 TDI在IEEE1149.1标准里是强制要求的。TDI是数据输入的接口。所有要输入到特定寄存器的数据都是通过TDI接口一位一位串行输入的(由TCK驱动)。 Test Data Output (TDO) -----强制要求4 TDO在IEEE1149.1标准里是强制要求的。TDO是数据输出的接口。所有要从特定的寄存器中输出的数据都是通过TDO接口一位一位串行输出的(由TCK驱动)。 Test Reset Input (TRST) ----可选项1 这个信号接口在IEEE 1149.1标准里是可选的,并不是强制要求的。TRST可以用来对TAPController进行复位(初始化)。因为通过TMS也可以对TAP Controll进行复位(初始化)。所以有四线JTAG与五线JTAG之分。 (VTREF) -----强制要求5 接口信号电平参考电压一般直接连接Vsupply。这个可以用来确定ARM的JTAG接口使用的逻辑电平(比如3.3V还是5.0V?) Return Test Clock ( RTCK) ----可选项2 可选项,由目标端反馈给仿真器的时钟信号,用来同步TCK信号的产生,不使用时直接接地。System Reset ( nSRST)----可选项3 可选项,与目标板上的系统复位信号相连,可以直接对目标系统复位。同时可以检测目标系统的复位情况,为了防止误触发应在目标端加上适当的上拉电阻。 USER IN 用户自定义输入。可以接到一个IO上,用来接受上位机的控制。 USER OUT 用户自定义输出。可以接到一个IO上,用来向上位机的反馈一个状态 由于JTAG经常使用排线连接,为了增强抗干扰能力,在每条信号线间加上地线就出现了这种20针的接口。但事实上,RTCK、USER IN、USER OUT一般都不使用,于是还有一种14针的接口。对于实际开发应用来说,由于实验室电源稳定,电磁环境较好,干扰不大。

四年级作文 一件难忘的事

大年三十,踩气球 白雪皑皑的夜晚,从一间小屋里传出了阵阵欢快的笑声。那是大年三十,人们正忙着发压岁钱。只见家人们从裤兜里掏出一张比一张大的钱,塞到满怀欣喜的孩子们的手里。我们拿着钱就去买了许许多多的气球。 我们一家人开始给气球打气。我们不知疲惫地打了一个又一个。不一会儿,整整地堆满了一间大房子。气球的颜色和形状各不相同,有大的、有小的、红的、绿的、白的……在灯光的照耀下,非常漂亮。 我挑了一些漂亮点儿的气球,挂了起来,把客厅装扮得像春节联欢晚会现场一样光彩亮丽。时钟刚好走到12点时,我便急得像上锅的蚂蚁一样,立即跳向气球堆。“啪啪……”气球发出响亮的爆炸声。这清脆的爆炸声吸引了爸爸妈妈和弟弟的围观。他们被我那热乎劲儿感染了,也过来跟我一起踩气球。“噼噼啪啪……”一阵响,就像放鞭炮一样,既吓人又好玩。清脆的爆炸声给热闹的夜晚增添了一份别具一格的色彩。 不一会儿,整整一屋的气球就只踩剩一个了。我上前去一踩,没想到它竟然跑了,气得我张牙舞爪直瞪眼,恨不得一脚把它踩扁。我那滑稽的举动惹得爸妈们突地大笑起来。我不服气,气鼓鼓的又跑上去,对着气球狠狠地一踩,心想这回肯定能踩扁它。可谁知,我一个不小心,脚下一滑,便跌坐在气球上。“啪……”完了,气球在我的屁股上炸开了花。这下子,可把我的爸妈们逗得更乐了。 欢快的笑声在小屋的四周回荡,也回荡在我生命的旋律中…

捉螃蟹 记得去年冬天的一个早晨,天气晴朗,阳光明媚,我和表妹一起到河边的沙滩上捉螃蟹。 河里的水非常的少,到处都是石头。螃蟹,就藏在这些奇形怪状的石头下面。我们一边沿着岸边走,一边翻着旁边的石头。突然,表妹发现了一只螃蟹,激动万分地对我说:“哥哥,这块石头下面好像藏了一只螃蟹。”我们连忙轻轻地走过去,慢慢地蹲下去,小心翼翼地把石头搬开,快速伸过手去捉它,没想到螃蟹用两只大钳子把我的手狠狠地夹住了,痛得我脸都涨红了。我赶紧用力的把手往外一甩,才摆脱掉这该死的螃蟹。“呀!流血了!”表妹惊呼道。我低头一看,才发现是自己的手被螃蟹夹了一条大口子,直流血。我淡然地擦擦手说没事,可怎知表妹被我那流血直流的手吓得大哭起来。忍者疼痛,我迅速一抓,就把螃蟹扔进了瓶子里,表妹立即破涕为笑。 我们终于捉了一只螃蟹,心里有说不出的高兴,我那鲜红的手指和表妹那还挂着晶莹泪珠的脸,在阳光下,闪闪发光……

四年级数学上册专项练习

填空题 1、当除数是34时,试商时可以把除数看作( ),这样初商容易偏( )。 2、()个26相加的和是468;()比12个15多20。 334=21),这时被除数是()。 4、在括号里填上合适的数。 480秒=()分540厘米=()分米624时=()日 5、我们戴的红领巾上有一个()角,两个()角。 6、钟面上,分针转动360度,相应地时针转动()度。 从3:00走到3:15,分针转动了()度。 6点时,时针和分针所组成的角是()度,是()角, 3点时,时针和分针所组成的角是()度,是()角。 7、把“78÷26=3,26+3=29”合并成一个综合算式是()。 8、在5○1÷58中,如果商的最高位在十位上,○中最小填(),还可以填()。如果3□2÷36的商是一位数,□里的数最大可以填(),最小可以填()。在算式□17÷53中,要使商是两位数,□最小填();要使商是一位数,□最大填()。 9、在公路上有三条小路通往小明家,它们的长度分别是125米、207米、112米,其中 有一条小路与公路是垂直的,那么这条小路的长度是()米。 10、李阳从1楼到3楼用了12秒,她从一楼到六楼需要()秒。 11.二百零六亿八千万写作(),改写成用“万”作单位的数是()万,用“亿”作单位这个数的近似数是()亿。 12.2个千万、7个万、8个百和5个十组成的数是(),这个数读作()。 13.由6、7、5、1、0组成的最大数是(),最小数是()。14、计算除法时,错将除数36看成63,结果得到商12。请你帮他算一算,正确的商应该是()。

15.一个边长24厘米的正方形面积是()平方厘米。 16、把两道算式组成综合算式,再用递等式计算。 14×2=28 21×4=84 10×5=50 28-15=13 200-84=116 30+50=80 ()()() 选择、判断题 1、30度的角被投影仪投到屏幕上时角就变大了。() 2、570÷40=14……1。() 3、在方向板上,北和西南之间夹角是135°。() 4、在同一平面内,两条直线不是相交就是平行。() 5、在同一平面内,两条直线不是平行就是垂直。() 6、4个同样大的正方体可以拼成一个较大的正方体。() 7、在10倍的放大镜下看15度的角就变成了150度。() 8、六位数一定比七位数小。() 9、平角就是一条直线,周角就是一条射线。() 10、三位数除以两位数,商不可能是三位数。() 11、三位数除以两位数,商最多是两位数。() 12、过一点能画无数条直线。()13.两条直线相交成直角时,这两条直线就互相垂直。()14.观察物体时,在同一位置看到相同的形状可能有不同的摆法。()15、两条不相交的直线叫做平行线。() 1、在4□7÷46的商是两位数,□中的数最小是()。 ①7 ② 6 ③5 2、想使物体从斜面上向下滚动时尽可能地快,下面的选项中,木板与地面的夹 角是()度最符合要求。 ①20 ②38 ③10 ④80

CameraLink 图像采集接口电路1 (2)

CameraLink 图像采集接口电路 1.Camera Link标准概述 Camera Link 技术标准是基于 National Semiconductor 公司的 Channel Link 标准发展而来的,而 Channel Link 标准是一种多路并行 LVDS 传输接口标准。 低压差分信号( LVDS )是一种低摆幅的差分信号技术,电压摆幅在 350mV 左右,具有扰动小,跳变速率快的特点,在无失传输介质里的理论最大传输速率在 1.923Gbps 。 90 年代美国国家半导体公司( National Semiconductor )为了找到平板显示技术的解决方案,开发了基于 LVDS 物理层平台的 Channel Link 技术。此技术一诞生就被进行了扩展,用来作为新的通用视频数据传输技术使用。 如图1 所示, Channel Link 由一个并转串信号发送驱动器和一个串转并信号接收器组成,其最高数据传输速率可达 2.38G 。数据发送器含有 28 位的单端并行信号和 1 个单端时钟信号,将 28 位 CMOS/TTL 信号串行化处理后分成 4 路 LVDS 数据流,其 4 路串行数据流和 1 路发送 LVDS 时钟流在 5 路 LVDS 差分对中传输。接收器接收从 4 路 LVDS 数据流和 1 路 LVDS 时钟流中把传来的数据和时钟信号恢复成 28 位的 CMOS/TTL 并行数据和与其相对应的同步时钟信号。 图1 camera link接口电路 2.Channel Link标准的端口和端口分配 2.1 .端口定义 一个端口定义为一个 8 位的字,在这个 8 位的字中,最低的 1 位( LSB )是 bit0 ,最高的 1 位( MSB )是 bit7 。 Camera Link 标准使用 8 个端口,即端口 A 至端口 H 。

最新各种接口针脚定义大全

各种接口针脚定义大 全

3.5mm插头 最常见的立体声耳机分三层,标准分布为“左右地红白”(从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的)。 最常见的是银白色的和铜黄色的,银色的是铜镀银,铜黄色的就是铜。由于银的稳定性和电子工程性优于铜,所以铜镀上银后可以升级使用该插头设备的用户体验。 USB接口 USB是一种常用的pc接口,他只有4根线,两根电源两根信号,故信号是串行传输的,usb接口也称为串行口,usb2.0的速度可以达到480Mbps。可以满足各种工业和民用需要.USB接口的输出电压和电流是: +5V 500mA 实际上有误差,最大不能超过+/-0.2V 也就是4.8-5.2V 。usb接口的4根线一般是下面这样分配的,需要注意的是千万不要把正负极弄反了,否则会烧掉usb设备或者电脑的南桥芯片:黑线:gnd 红线:vcc 绿线:data+ 白线:data-

USB接口定义图 USB接口定义颜色 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT- 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 黑色-地线: GND、Ground USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连接头)。

USB接口是一种越来越流行的接口方式了,因为USB接口的特点很突出:速度快、兼容性好、不占中断、可以串接、支持热插拨等等,所以如今有许多打印机、扫描仪、数字摄像头、数码相机、MP3播放器、MODEM等都开始使用USB做为接口模式,USB接口定义也很简单: 1 +5V 2 DATA-数据- 3 DATA+数据+ 4 GND 地 串口 主板一般都集成两个串口,可Windows却最多可提供8个串口资源供硬件设置使用(编号COM1到COM8),虽然其I/O地址不相同,但是总共只占据两个IRQ(1、3、5、7共享IRQ4,2、4、6、8共享IRQ3),平常我们常用的是COM1~COM4这四个端口。我们经常在使用中遇到这个问题——如果在COM1上安装了串口鼠标或其他外设,就不能在COM3上安装如Modem之类的其它硬件,这就是因为IRQ设置冲突而无法工作。这时玩家们可以将另外的外设安装在COM2或4。 标准的串口能够达到最高115Kbps的数据传输速度,而一些增强型串口如ESP(Enhanced Serial Port,增强型串口) 、Super

难忘的一件事作文400字四年级_1

难忘的一件事作文400字四年级 难忘的一件事作文400字四年级 最令我难忘的一件事,就是偷吃四色小辣椒了,那四色辣椒的滋味,真是难以形容,令人难忘。在我家楼下有一个小菜园,那里是爷爷的乐园,他每天都会去那,乐呵呵地给他种的蔬菜浇水。在这个菜园里,有白菜、罗卜和辣椒。最引起我主意的就是辣椒了。爷爷种的不是一般的辣椒,是四色小辣椒。四色小辣椒是一种能变色的小辣椒,在每个季节变一种色,春天是绿色、夏天是黄色、秋天是紫色、冬天是红色,非常神奇。一天我在楼下散步,当时正是秋天的一个。我走到菜园时,看见里面的小辣椒,紫紫的,看起来很好吃。心想:着么紫的小辣椒难道还会辣吗?肯定能好吃,心中便有了一种想法,摘一个尝一尝,反正爷爷也不在。我以飞一般的速度跑了过去。用手一拽,边摘了下来。我像得了一件宝贝似的,小心翼翼地捧着四色小辣椒,向家跑去。到了家,见没人,才放了心。跑进厨房把四色小辣椒洗干净,然后把放四色小辣椒放进嘴里嚼,不嚼不要紧,一嚼可坏了。顿时,舌头、喉喽就像要喷火一样,辣的我说不出话来。我跑到水

龙头前大口大口的喝起水来。这才好点,没想到这四色小辣椒比别的辣椒辣上十倍。这件事一直刻在我的心头,甩也甩不掉呢。 四年级:戴恋佳 难忘的一件事作文400字四年级 最令我难忘的一件事,就是偷吃四色小辣椒了,那四色辣椒的滋味,真是难以形容,令人难忘。在我家楼下有一个小菜园,那里是爷爷的乐园,他每天都会去那,乐呵呵地给他种的蔬菜浇水。在这个菜园里,有白菜、罗卜和辣椒。最引起我主意的就是辣椒了。爷爷种的不是一般的辣椒,是四色小辣椒。四色小辣椒是一种能变色的小辣椒,在每个季节变一种色,春天是绿色、夏天是黄色、秋天是紫色、冬天是红色,非常神奇。一天我在楼下散步,当时正是秋天的一个。我走到菜园时,看见里面的小辣椒,紫紫的,看起来很好吃。心想:着么紫的小辣椒难道还会辣吗?肯定能好吃,心中便有了一种想法,摘一个尝一尝,反正爷爷也不在。我以飞一般的速度跑了过去。用手一拽,边摘了下来。我像得了一件宝贝似的,小心翼翼地捧着四色小辣椒,

最新四年级数学上册单元专项练习

第一单元专项练习 一、填空。 (2)从个位起,往左第五位是()位,第()位是亿位,万位的左面第一位是()位,最高位是百亿位的数是()位数。 (3)在854006007中,“8”在()位上,表示(),“5” 在()位上,表示(),“6” 在()位上,表示()。 (4)10个10亿是(),10个()是一千万,()个一千万是一亿。(5)四十六万八千零四十是由()个十万,()个万,()个千和()个十组成,它写作()。 (6)十位上和千位上都是4的五位数中,最大的数是(),最小的数是()。它们相差()。 (7)最小的七位数是(),最大的六位数是(),它们的和是(),差是()。 (8)一个十一位数,最高位是6,第七位是8,最低位是3,其余各位是0,这个数写作(),读作(),四舍五入到亿位写作()。 (9)一个九位数,最高位和最低位上的数字都是6,十万位上的数字是5,其余数位上的数字都是0,这个数写作(),读作()。(10)由五个千万,六个万,七个百和八个十组成的数写作()。二、写出或读出下列各数。 八万三千零八写作();一千零一十万二千写作();六亿零七千写作(); 五百六十亿零三万写作();814200读作(); 108078000读作();200003050读作();603000004读作(); 三、在○里填上“>” “<”或“=”。(8分)

84亿○8400000000 639925○64亿 790000○709999 3404万○30440000 8888788○8887888 79018万○8亿 1101万○11010000 9999899○9998999 四、判断题。 (1)一千一千地数,数十次是一万。() (2)最大六位数与最小六位数相差1。() (3)两位数共有九十个。() (4)8亿是8位数。() (5)984650改写成万作单位约98万。() 五、选择题。 (1)最高位是万位的数是()。 A.五位数 B.六位数 C.七位数 D.十位数 (2)比10000少1的数是()。 A.9000 B.9900 C.9009 D.9999 (3)八个千和八个十组成的数是()。 A.800080 B.808 C.8080 D.8800 (4)把594900四舍五入到万位约是()万。 (5)A.60 B.59 C.61 D.595 (5)李村去年工农业纯收入六百四十万零七十元,写作()元。 A.64070 B.6407 C.6400070 D.640070 (6)四十、四万、四亿组成的数是()。 A.4000040040 B.400040040 C.400004040 D.4000004004 (7)比最小的九位数少1的数是()。 A.99999999 B.999999999 C.1000000001 D.9999999 六、把下列各数改写成用“万”或“亿”作单位的数。 230000=()万 36700000=()万 635000000=()万

CameraLink接口 时序控制

CameraLink接口 1.CameraLink接口简介 1.1CameraLink标准概述 Camera Link 技术标准是基于 National Semiconductor 公司的 Channel Link 标准发展而来的,而 Channel Link 标准是一种多路并行 LVDS 传输接口标准。 低压差分信号( LVDS )是一种低摆幅的差分信号技术,电压摆幅在 350mV 左右,具有扰动小,跳变速率快的特点,在无失传输介质里的理论最大传输速率在 1.923Gbps 。 90 年代美国国家半导体公司( National Semiconductor )为了找 到平板显示技术的解决方案,开发了基于 LVDS 物理层平台的 Channel Link 技术。此技术一诞生就被进行了扩展,用来作为新的通用视频数据传输技术使用。 如图1.1所示, Channel Link 由一个并转串信号发送驱动器和一个串转并信号接收器组成,其最高数据传输速率可达 2.38G 。数据发送器含有 28 位的单端并行信号和 1 个单端时钟信号,将 28 位 CMOS/TTL 信号串行化处理后分成 4 路 LVDS 数据流,其 4 路串行数据流和 1 路发送 LVDS 时钟流在 5 路 LVDS 差分对中传输。接收器接收从 4 路 LVDS 数据流和 1 路 LVDS 时钟流中把传来的数据和时钟信号 恢复成 28 位的 CMOS/TTL 并行数据和与其相对应的同步时钟信号。 图1.1 camera link接口电路

1.2CameraLink端口和端口分配 1.2.1端口分配 在基本配置模式中,端口 A 、 B 和 C 被分配到唯一的 Camera Link 驱动器 / 接收器对上;在中级配置模式中,端口 D 、 E 和 F 被分配到第二个驱动器 / 接收器对上;在完整配置模式中,端口 A 、 B 和 C 被分配到第一个驱动器 / 接收器对上,端口 D 、 E 和 F 被分配到第二个驱动器 / 接收器对上,端口 G 和 H 被分配到第三个驱动器 / 接收器对上。表1.1给出了三种配置的端口分配, Camera Link 芯片及连接器的使用数量情况。 表1.1 3种配置模式的端口分配 图1.2 各种配置下的端口连接关系

四年级难忘的一件事400字作文

大家都经历过让自己难忘的事,究竟是哪件事让你印象深刻至今难忘呢?下面是小编整理的“四年级难忘的一件事400字作文”,仅供参考,欢迎阅读,希望对大家有所帮助。 四年级难忘的一件事400字作文(一) 我已在世上度过了十个春秋,在我的记忆里,好多事已随着时间的流逝变得模糊啦,可是有件事像是烙在了我的脑海里,使我怎么也忘不掉。 记得那是一年夏天,天热的出奇,我和爸爸妈妈去文化宫玩,当时我穿着一件小背心和一条小短裤,鞋子走起路来还会发出“吱吱”的响声,我和爸爸妈妈坐在凳子上乘凉,我看到一群鸽子飞来,好美呀!有白的有灰的,可鸽子为什么又叫和平鸽呢?我疑惑的问爸爸,爸爸说:“传说在古代的时候,鸽子可以传递消息,因为鸽子象征着和平象征着祖国美好的未来,所以鸽子又叫和平鸽。”哦!原来是这么回事,那我就要犒劳犒劳它们啦,我买了一包玉米去喂鸽子,有一只鸽子很丑,好象是安徒生笔下的丑小“鸽”,可是,它并没有为它自己的丑而感到自卑,当我喂它们食物时它也和别的鸽子来抢食物,它的嘴啄一粒,就慢慢的吞下去,那样子真有趣,等它吃饱了,它就用翅膀盖住身子和头在那睡上了大觉!我喜欢上了那只“灰小鸽”,喜欢它那种自信,喜欢它那种乐观向上,喜欢它那种永不放弃。 每当我一看到鸽子,我就想起那只“灰小鸽”这也就成了我记忆最深的一件事,因为它使我明白了一个做人的道理,要自强-自信-自立! 四年级难忘的一件事400字作文(二) 在我的成长历程里,有许多让我难忘的事,但它们都如过眼云烟,但今年暑假的这件事最让我刻骨铭心。 不知道从什么时候起,我的眼睛变的斜视,虽然不影响视力,但是却不美观。到医院去检查医生说:“需要做个小手术,不然长大后就不好做了。” 于是爸爸和奶奶带我到沈阳爱尔医院去做手术。在做手术之前经过一系列的检查后,准备做手术,爸爸和奶奶都很担心,妈妈也很挂念我,一个接一个的电话打过来,问我害怕吗?我还听见她在电话里哭了。其实,我很兴奋,一点也不害怕,因为我终于等到了那一刻,走进了手术室后,医生给我打上了麻醉针,我就什么也不知道了,美美的睡了一觉,当我醒来的时候,爸爸已经守护在我的床边,问长问短,我觉得很幸福。这时候妈妈又一个电话追来问我做的怎么样,爸爸说:"做得很成功",妈妈心里的一块石头终于落地了。 第二天,打开纱布,我照镜子发现只是眼睛又红又肿,但是一点也不疼,在爸爸和奶奶的精心照顾下我终于出院了。 我觉得我很勇敢,我想大声对爸爸妈妈说:“我长大了,不要太为我担心了。” 四年级难忘的一件事400字作文(三) 今年暑假,社区组织我们参加“老少共读一本书《跨越时代的呼唤----焦裕禄》”活动。

相关文档
相关文档 最新文档