文档库 最新最全的文档下载
当前位置:文档库 › 交通信号控制系统的控制算法及应用

交通信号控制系统的控制算法及应用

交通信号控制系统的控制算法及应用
交通信号控制系统的控制算法及应用

HiCon 交通信号控制系统的控制算法及应用

一、引言

交通信号控制是交通工具现代化的产物。在平面交叉口,为了把可能发生冲突的车流从时空上分离,必须通过交通信号对交通流进行有效的引导和调度。1868 年,英国伦敦安装了世界上第一组交通信号灯。1914 年以及稍晚一些时间,美国的一些城市也出现了交通信号灯。1963 年,加拿大多伦多市建立了一套由IBM650 型计算机控制的交通信号协调控制系统,这标志着交通信号控制技术进入了一个新的发展时期。该系统第一次把计算机技术用于交通控制,大大提高了控制系统的性能和水平。在此之后,美国、英国、澳大利亚、法国、日本等国家相继建成以计算机为核心的区域交通控制系统。

上个世纪七八十年代,中国开始了研究和开发交通信号控制系统,并且得到了应用,但这些系统没有充分考虑中国的复杂的交通特征,所以应用效果不好。为了解决上述问题,我公司开发了实时自适应交通信号控制系统HiCon,该系统充分考虑国内城市的复杂特征,同时借鉴了国外交通信号控制系统的成功经验,从目前在福州的应用效果来看,系统的控制效果比较理想。

二、HiCon 交通信号控制系统简介

2.1 系统结构

HiCon 交通信号控制系统是我公司自主研发的适合复杂交通特征的控制系统,系统采用的是多层次分布式控制结构,结构如下图所示,控制结构共分为四层:

(1)控制平台层:提供与其它系统以及平台的

接口;

(2)控制中心层:具有管理、

控制、监视等功能,同时还能处理、

保存、查询交通信息等功能;

(3)通信层:能够采用多种接口实现通信功能

(4)路口层:具有控制、采集、存储等功能。系统提供的产品主要有包括中心软件和配置软件等软件产品,还有系列信号

机和检测器等硬件产品。

2.2 系统算法概述

HiCon 系统具有完整的算法体系,包括区域协调控制算法、感应式协调控制

算法、行人二次过街算法、城市快速出入口与城市路口的协调控制算法以及突发

事件的检测算法,这里只简要说明其中的区域协调控制算法、城市快速出入口与

城市路口的协调控制算法和突发事件的检测算法。

2.2.1 区域协调控制算法

交通信号控制的三要素是周期时长(Cycle)、绿信比(Split)和相位差(Offset)。交通信号控制系统的区域协调控制算法通过实时优化上述三个参数,实现对控制子区的合理控制。

HiCon 系统区域协调控制目标是:

A. 实现高峰时段最大的路网通行能力;

B. 实现平峰时段最小的车辆停车延误;

C. 实现低峰时段最少的停车次数。

D. 系统对三个控制要素的优化过程说明如下。

(1)信号周期信号周期的优化依据是交通强度,交通强度是本系统的一个独特概念,它表

示交叉口的交通负荷,是本系统优化周期的依据,信号周期的优化过程如下图所示。

图1 信号周期优化过程

(2)绿信比

交叉口的绿信比是根据交通信息和信号周期进行优化的,其过程如下图所示。

图2 绿信比优化过程

(3)相位差

交叉口的相位差是根据交通信息、信号周期和绿信比进行优化的,其过程如下图所示。

图3 相位差优化过程

2.2.2 城市快速出入口与城市路口的协调控制算法

HiCon 系统的快速路控制算法比较完善,包括单个出口、单个入口、成对出入口、出口与城市路口的协调、入口与城市路口的协调等控制算法。由于篇幅有限,本文仅介绍快速路出口与城市路口的协调算法。

快速路出口与城市路口的协调控制的目标:保证出口匝道与辅路车辆满足交通需求,保证车辆排队长度不至于堵塞出口匝道。

快速路出口与城市路口的协调控制的算法过程描述如下:

(1)辅路按照自己的周期、绿信比运行,当辅路流量较大时,车辆排队到达一定阈值,在路口周期时长不变的条件下,调节路口关键相位的绿灯时长。

(2)调节后,红灯期间车辆排队仍会阻塞出口,调节路口周期时长,同时调整关键相位的绿信比。

(3)如果上述调节效果不理想,说明出口匝道离交叉口距离太近,采取排队长度到达一定阈值截止辅路车辆的措施,保证出口匝道车辆排队不至于上溯到主线而导致快速路主线拥堵。

2.2.3突发事件检测算法突发事件的判断过程说明如下

(1)通过检测器传输到控制中心的一分钟流量、速度和时间占有率数据计算得到每一断面的每辆车平均占有时间。

(2)若每辆车平均占有时间小于阈值,则说明没有发生拥挤,系统不进行处理。

(3)第i 检测站t 时刻每辆车平均占有时间值大于阈值,则说明发生拥挤,发出拥堵信号。拥挤是由所在第j 断面下游造成的。

(4)判断第i 检测站t 时刻和其下游第i+1 检测站的速度差是否大于阈值,若是则进一步确认拥挤,并可能发生事件。

(5)判断第i 检测站和其下游第i+1 检测站在t 和t-1 时刻速度差的差值是否大于阈值,若是则进一步确认拥挤,并可能发生事件。

图4 突发事件判别过程

三、HiCon 交通信号控制系统的应用

2003 年,HiCon 交通信号控制系统研发完成,信号机通过了国家公安部无锡所的检测,检测标准是《国家道路交通信号机GA47-2002》,信号机嵌入式软件通过了国家软件评测中心的NTCIP 符合性测试。2003 年年底,公司成功中标

青岛市黄岛区和龙口市交通信号控制系统,从此拉开了海信交通信号控制系统进军市场的序幕。到目前(2007 年7 月)为止,我公司已经在北京、福州、青岛、厦门、烟台、威海、淄博等城市建成了交通信号控制系统。

3.1 福州交通信号控制系统

3.1.1 交通概况

五一五四路是福州市的主要干道,流量大,道路的截面小时流量为4000 多辆,道路的饱和度为0.9,五一五四路上各路口的流量分布如下图所示。

图5 六个路口北进口的流量分布图

3.1.2 控制方式

五一五四路采用的控制方式为区域自适应优化控制方式,算法采用的是区域控制算法。

3.1.3 控制效果

根据交通调查数据显示,从湖东路口(该路口未列入协调子区)至台江路口的早、中、晚行程时间比定方案单向绿波协调控制时都有所缩短,比2006 年未进行信号协调控制之前有明显的改善,特别是平峰、晚高峰时段效果尤为明显。

(1)湖东至台江路口行程时间对比

表1 行程时间比较

2)湖东至台江路口停车次数对比

表 2

停车次数比较

(3)国货子区战略路口流量对比

图 5 国货子区战略路口流量对比

3.2 北京快速路交通信号控制系统

3.2.1 现状

北京市快速路包括四条环路:二环、三环、四环和五环,10 条快速联络线 道路,快速路总里程占市区道路总里程的 18%。

目前快速路最大的问题就是:快速路不快,主要表现在:

(1)交通负荷繁重,平均日高峰普遍>10 小时;

(2)高峰期间交通拥挤(断面平均统计速度<40km/h)、交通阻塞(断面平均统计速度<15km/h)现象比较严重;

(3)对于一些早期建设的简易苜蓿叶式、环岛式立交桥,由于引道转弯半径比较小,入口与出口之间的距离较近等原因,通常在高峰期间会形成比较严重的瓶颈效应;

(4)很多局部路段成为政治、文化、旅游以及重大社会活动(包括2008 奥运会)的主要勤务路线和交通集散通道。

3.2.2 控制方案针对北京市快速路的特点和每个出口、入口的不同,分别采

取不同的控制方

式,比如方案选择控制、实时优化控制和协调控制。

3.2.3 系统控制效果快速路系统的不同控制方式下,主路上游控制效果

表4 主路上游控制效果

总计26.75 31.20 16.62% 33.60 25.62%

快速路控制前后的出口车辆速度对比。

表4 快速路控制前后的出口车辆速度对比表

3.2.4事件检测效果北京快速路交通事件检测算法测试结果如下表所示。从表中可

以看出交通事

件检测算法准确率较高,约91%,如果统计拥堵和行驶缓慢的综合事件,准确率约96%,可以较好地检测偶发性拥堵。

表5 交通事件测试结果

智能交通信号灯控制系统设计

编号: 毕业论文(设计) 题目智能交通信号灯控制系统设计 指导教师xxx 学生姓名杨红宇 学号201321501077 专业交通运输 教学单位德州学院汽车工程系(盖章) 二O一五年五月十日

德州学院毕业论文(设计)中期检查表

目 录 1 绪论............................................................................................................................ 1 1.1交通信号灯简介...................................................................................................... 1 1.1.1 交通信号灯概述.................................................................................................. 1 1.1. 2 交通信号灯的发展现状...................................................................................... 1 1.2 本课题研究的背景、目的和意义 ......................................................................... 1 1. 3 国内外的研究现状 ................................................................................................. 1 2 智能交通信号灯系统总设计.................................................................................... 2 2.1 单片机智能交通信号灯通行方案设计 ................................................................. 2 2.2 功能要求 ............................................................................... 错误!未定义书签。 3 系统硬件组成............................................................................................................ 4 4 系统软件程序设计.................................................................................................... 5 5 结论和展望................................................................................................................ 6 参考文献...................................................................................... 错误!未定义书签。 杨红宇 要: 但是传统的交通信号灯不已经不能满足于现代日益增长的交通压力,这些缺点体现在:红绿 以及车流量检测装置来实现交通信号灯的自控制,随着车流量来改变红绿灯1 绪论 1.1 1.1.1 为现代生活中必不可少的一部分。

交通信号控制系统方案

交通信号 控制系统(ATC)设计方案 x x x x有限责任公司

目录 1.概述 (1) 1.1系统简介 (1) 1.2设计原则 (2) 1.3系统设计依据及执行标准 (4) 2.总体设计方案 (6) 2.1控制系统总体功能 (6) 2.2通信系统总体结构 (6) 2.3通信系统主要优势 (8) 3.详细设计方案 (9) 3.1监测点设备 (9) 3.1.1设备功能描述 (9) 3.1.2监测点设备组成、结构及特点 (9) 3.2防雷保护及安全设计 (14) 3.3详细设备说明 (15) 3.3.1高清晰摄像机 (15) 3.3.2标清视频检测 (15) 3.3.3补光设备 (15) 3.3.4嵌入式存储 (15) 3.3.5 GOE210千兆工业以太网交换机 (15) 3.3.6 POE工业以太网光纤收发器 (17) 3.4系统典型配置清单 (18)

1.概述 城市发展交通智能信号灯,减少道路拥堵,最终达到智能化区域交通信号控制系统。智能交通信号灯迎合实现绿色经济的时代潮流,为了解决这个问题,提出智能交通信号灯及网络技术,会根据路口车辆多少,自动调节时间,可减少等候时间在75%以上,从而大大节省了人们的出行时间,减少了路口的无效等候,使出行更快捷。 在智能交通系统中,以往的常规摄像机是对所有通过该地点的机动车辆的车牌进行拍摄、记录与处理。由于受到图像采集设备分辨率的制约,图片仅能反映出车型、车身颜色、车牌号码等简单信息。公安执法部门对部分治安案件、交通肇事案件的取证要求上,希望能掌握更详细更清楚的资料,如驾驶员的面貌特征、车内驾驶室的情况、清晰的车辆信息、货车的装载情况。采用高清晰摄像机做前端采集,可以实现所抓拍的图像中用肉眼清楚地分辨:车辆的颜色、特征、车牌的号码、车牌颜色、司乘人员的面部特征。 如此一来智能化同时也带来了网络数据流量的剧增,对网络通信的可靠传输提出了更高的要求。工业以太网交换机在区域交通信号控制系统网络中稳定性、高可靠性、高安全性成为关键中的关键。 1.1系统简介 区域交通信号控制系统(ATC) 智能化区域交通信号控制系统采用百万像素的数字化网络摄像机(1600×1200 CCD传感器),一台摄像机覆盖两条车道,准确抓拍正常行驶、压线行驶、并行通过的车辆,并自动识别车牌号码,抓拍的车辆图片可清晰地显示车辆特征及前排司乘人员的面部特征。摄像机工作于外触发方式,通过视频分析、环形线圈或者窄波雷达检测通过车辆,在抓拍车辆的同时可获取车辆的行驶速度。两条车道共用一台高清数字摄像机的方式在保障系统性能的前提下,大大降低了系统成本。

智能交通信号灯控制系统设计

智能交通信号灯控制系 统设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

智能交通信号灯控制系统设计 摘要:本文对交通灯控制系统进行了研究,通过分析交通规则和交通灯的工作原理,给出了交通灯控制系统的设计方案。本系统是以89C51单片机为核心器件,采用双机容错技术,硬件实现了红绿灯显示功能、时间倒计时显示功能、左、右转提示和紧急情况发生时手动控制等功能。 关键词:交通灯;单片机;双机容错 0 引言 近年来随着机动车辆发展迅速,给城市交通带来巨大压力,城镇道路建设由于历史等各种原因相对滞后,特别是街道各十字路口,更是成为交通网中通行能力的“隘口”和交通事故的“多发源”。为保证交通安全,防止交通阻塞,使城市交通井然有序,交通信号灯在大多数城市得到了广泛应用。而且随着计算机技术、自动控制技术和人工智能技术的不断发展,城市交通的智能控制也有了良好的技术基础,使各种交通方案实现的可能性大大提高。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,是现代城市交通监控指挥系统中最重要的组成部分。本文设计的交通灯管理系统在实现了现代交通灯系统的基本功能的基础上,增加了容错处理技术(双机容错)、左右转提示和紧急情况(重要车队通过、急救车通过等)发生时手动控制等功能,增强了系统的安全性和可控性。 1 系统硬件电路的设计 该智能交通灯控制系统采用模块化设计兼用双机容错技术,以单片机89C51为控制核心,采用双机容错机制,结合通行灯输出控制显示模块、时间显示模块、手动模块以及电源、复位等功能模块。现就主要的硬件模块电路进行说明。 主控制系统 在介绍主控制系统之前,先对交通规则进行分析。设计中暂不考虑人行道和主干道差别,对一个双向六车道的十字路口进行分析,共确定了9种交通灯状态,其中状态0为系统上电初始化后的所有交通灯初试状态,为全部亮红灯,进入正常工作阶段后有8个状态,大致分为南北直行,南北左右转,东西直行,与东西左右转四个主要状态,及黄灯过渡的辅助状态。主控制器采用89C51单片机。单片机的P0口和P2口分别用于控制南北和东西的通行灯。 本文的创新之处在于采用了双机容错技术,很大程度上增强了系统的可靠性。容错技术以冗余为实质,针对错误频次较高的功能模块进行备份或者决策机制处理。但当无法查知运行系统最易出错的功能,或者系统对整体运行的可靠性要求很高时,双机容错技术则是不二选择。 双机容错从本质上讲,可以认为备置了两台结构与功能相同的控制机,一台正常工作,一台备用待命。传统的双机容错的示意图如图1所示,中U1和U2单元的软硬件结构完全相同。如有必要,在设计各单元时,通过采用自诊断技术、软件陷阱或Watch dog等系统自行恢复措施可使单元可靠性达到最大限度的提高。其关键部位为检测转换(切换)电路。 图 1 传统双机容硬件错示意图

基于单片机的智能交通红绿灯控制系统设计

1选题背景 今天,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。 信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。在交通中管理引入单片机交通灯控制代替交管人员在交叉路口服务,有助于提高交通运输的安全性、提高交通管理的服务质量。并在一定程度上尽可能的降低由道路拥挤造成的经济损失,同时也减小了工作人员的劳动强度。 关键词:AT89C51;7448,LED 2方案论证 2.1设计任务 设计基于单片机的智能交通红绿灯控制系统,要求能通过按键或遥控器设置系统参数,系统运行时,“倒计时等信息”能通过数码管或点阵发光管显示,设计时应考虑交通红绿灯控制的易操作性及智能性。以单片机的最小系统为基础设计硬件,用汇编语言、或C语言设计软件。通过本设计可以培养学生分析问题和解决问题的能力,掌握Mcs51单片机的硬件与软件设计方法,从而将学到的理论知识应用于实践中,为将来走向社会奠定良好的基础。 东西(A)、南北(B)两干道交于一个十字路口,各干道有一组红、黄、绿三个指示灯,指挥车辆和行人安全通行。红灯亮禁止通行,绿灯亮允许通行,黄灯亮时车辆及行人小心通过。红灯的设计时间为45秒,绿灯为40秒,黄灯为5秒。 2.2 方案介绍 方案1设计思想: 采用分模块设计的思想,程序设计实现的基本思想是一个计数器,选择一个单片机,其内部为一个计数,是十六进制计数器,模块化后,通过设置或程序清除来实现状 态的转换,由于每一个模块的计数多不是相同,这里的各模块是以预置数和计数器计 数共同来实现的,所以要考虑增加一个置数模块,其主要功能细分为,对不同的状态输 入要产生相应状态的下一个状态的预置数,如图中A道和B道,分别为次干道的置数选 择和主干道的置数选择。 方案2 设计思想: 由两个传感器监视南北方向即A道与东西方向即B道的车辆来往情况,设开关K=1 为有车通过,K=0为没有车通过。则有以下四种情况: Ka=1时:Kb=0,表示A有车B没有车,则仅通行B道:

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

新型智能交通信号控制系统(终)

新型智能交通信号控制系统 报名号:BS2011-B241设计者:GARDING指导教师:匿名 摘要:本作品针对当前日益严重的交通拥堵问题,以EXP-89S51单片机为核心,设计出了一种新型智能交通信号控制系统,实现了对交通信号灯的实时智能控制。该新型控制系统在控制方案上采用了我们自主设计的新型两级模糊控制方案,该方案是一种同时具有自适应控制、分级模糊控制、相位繁忙优先和准确显时等优势的控制方案,更适用于实际的交通情况,且已获国家实用新型专利和相关论文已在科技核心期刊《现代电子技术》上发表。在软件设计上,采用了MATLAB和VB进行动态模拟,并与当前正在采用的几种控制方案进行了对比验证,验证了新方案的优越性。在硬件设计上,我们采用了EXP-89S51单片机、SP-MDCE25A 交通灯模组、E-TRY通用板和倒计时LED数码管模块等,并搭建了较好的逼真的外围平台来对其实现更具真实性的实时控制。该作品不论是在创新性、实用性、技术先进性,还是在可靠性、经济性上都具有很强的优势。 关键词:智能交通信号新型两级模糊控制 VB动态模拟 EXP-89S51单片机 1、系统总体方案介绍 1.1自主提出的新型智能交通信号控制的总控制系统原理 我们自主提出的新型智能交通信号控制的总控制系统原理如图1所示: 图1自主提出的新型智能交通信号控制的总控制系统原理图在该系统中,交叉口的交通参数经检测装置检测,将被测参数转换成统一的标准电信号,再经A/D转换器进行模数转换,转换后的数字量通过I/O接口电路送入新型两级模糊控制器再到控制台。 在新型两级模糊控制器和控制台内部,用软件对采集的数据进行处理和计算,然后经数字量输出通道输出。输出的数字量通过D/A转换器转换成模拟量,再经驱动模块对交通情况进行控制,从而实现对交叉口的实时智能交通控制。 1.2 基于EXP-89S51单片机的新型智能交通信号控制系统的总控制系统设计 本系统运用我们的新型两级模糊控制方案,采用了EXP-89S51来控制智能交通系统。系统的整体结构框图如图2所示:

交通信号灯控制系统

交通信号控制系统 1. 设计任务 设计一个十字路口交通控制系统,要求: (1)东西(用A表示)、南北(用B表示)方向均有绿灯、黄灯、红灯指示,其持续时间分别是30秒、3秒和30秒,交通灯运行的切换示意图如图1-1 所示。 (2)系统设有时钟,以倒计时方式显示每一路允许通行的时间。 (3)当东西或南北两路中任意一路出现特殊情况时,系统可由交警手动控制立即进入特殊运行状态,即红灯全亮,时钟停止记时,东西、南北两路所有车辆停止通行;当特殊运行状态结束后,系统恢复工作,继续正常运行。 2.总体框图 本系统主要由分频计、计数器和控制器等电路组成,总体框图如1-2所示。分频计将晶振送来的信号变为1Hz时钟信号;当紧急制动信号无效时,选择开关将1Hz脉冲信号送至计数器进行倒计时计数,并使控制器同步控制两路红、黄、绿指示灯时序切换;当紧急制动信号有效时,选择开关将紧急制动信号送至计数器使其停止计数,同时控制器控制两路红灯全亮,所有车辆停止运行。 2-1 交通灯总体结构框图 3 模块设计 (1)分频器 设晶振产生的信号为2MHz,要求输出1Hz时钟信号,则分频系数为2M,需要21位计数器。用VHDL设计的2M分频器文本文件如下:

LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fenpin2m IS PORT(clk:IN STD_LOGIC; reset:IN STD_LOGIC; --时钟输入 clk_out:out STD_LOGIC); END ENTITY fenpin2m; ARCHITECTURE one OF fenpin2m IS signal count:integer range 0 to 1999999; BEGIN PROCESS(clk) BEGIN if reset='1' then count<=0; clk_out<='0'; else if clk'EVENT and clk='1'THEN IF count<999999 THEN count<=count+1; clk_out<='0'; ELSif count<1999999 then count<=count+1; clk_out<='1'; else count<=0; END IF; END IF; END IF; END PROCESS ; END one; (2) 模30倒计时计数器 采用原理图输入法,用两片74168实现。74168为十进制可逆计数器,当U/DN=0时实现9~0减法计数,记到0时TCN=0;当U/DN=1时实现0~9加法计数,计到9时TCN=0;ENTN+ENPN=0时执行计数,否则计数器保持。该电路执行减法计数,当两片计数器计到0时同步置数,因此该计数器的计数范围是29~0,当系统检测到紧急制动信号有效时,CP=0计数器停止计数。

智能交通信号灯控制系统设计

智能交通信号灯控制系统设计

智能交通信号灯控制系统设计 摘要:本文对交通灯控制系统进行了研究,通过分析交通规则和交通灯的工作原理,给出了交通灯控制系统的设计方案。本系统是以89C51单片机为核心器件,采用双机容错技术,硬件实现了红绿灯显示功能、时间倒计时显示功能、左、右转提示和紧急情况发生时手动控制等功能。 关键词:交通灯;单片机;双机容错 0 引言 近年来随着机动车辆发展迅速,给城市交通带来巨大压力,城镇道路建设由于历史等各种原因相对滞后,特别是街道各十字路口,更是成为交通网中通行能力的“隘口”和交通事故的“多发源”。为保证交通安全,防止交通阻塞,使城市交通井然有序,交通信号灯在大多数城市得到了广泛应用。而且随着计算机技术、自动控制技术和人工智能技术的不断发展,城市交通的智能控制也有了良好的技术基础,使各种交通方案实现的可能性大大提高。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导

的计算机综合管理系统,是现代城市交通监控指挥系统中最重要的组成部分。本文设计的交通灯管理系统在实现了现代交通灯系统的基本功能的基础上,增加了容错处理技术(双机容错)、左右转提示和紧急情况(重要车队通过、急救车通过等)发生时手动控制等功能,增强了系统的安全性和可控性。 1 系统硬件电路的设计 该智能交通灯控制系统采用模块化设计兼用双机容错技术,以单片机89C51为控制核心,采用双机容错机制,结合通行灯输出控制显示模块、时间显示模块、手动模块以及电源、复位等功能模块。现就主要的硬件模块电路进行说明。 1.1 主控制系统 在介绍主控制系统之前,先对交通规则进行分析。设计中暂不考虑人行道和主干道差别,对一个双向六车道的十字路口进行分析,共确定了9种交通灯状态,其中状态0为系统上电初始化后的所有交通灯初试状态,为全部亮红灯,进入正常工作阶段后有8个状态,大致分为南北直行,

交通信号控制优化服务解决方案

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果,有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

对区域协调控制模式与方法的总结六大类涵盖点、线、面三个层次的信号控制与协调方法的相关技术理论的总结。 在对交通信号控制相关理论的总结基础上,根据各地市信号路口特点,重点对适用该地信号控制特点的信号控制模式及方法进行总结。 ?单点信号控制 主要包括单点定时信号控制、单点感应信号控制和单点自适应信号控制三种方式。针对信号控制路口常用的单点信号控制方法有Webster等方法。 ?交通信号子区划分 主要基于距离原则、车流特征原则、周期原则的子区划分原则及其相关的关联度判断方法、合理周期范围判断方法的划分方法总结。 ?主干道交通信号协调控制 主要包括单向绿波协调控制、对称双向绿波协调控制、非对称双向绿波协调控制的方法。针对不同地市信号控制路口不同的流量特征可选用相对应的主干道信号协调控制方法。 ?同类型交通信号路口协调控制 主要针对信号路口饱和度同类型及其基础上的潮汐特征同类型进行交通信号路口同类型的判定分析,归纳与其相对应的信号控制适用方法。 ?长距离交通信号协调 主要对相邻路口间距离较长的信号路口及交通信号路口数较多的整体距离较长的协调控制方法进行研究,针对长距离交通信号协调的分类归纳相对应的协调模式及方法。 ?区域协调控制 交通区域协调控制是二维上的控制,它通过将绿波协调控制的路口利用组合叠加的方式,对各信号控制路口的信号周期、绿信比以及路口间的相位差进行优化,以减小延误、提高路网通行效率的信号控制方法。当前交通信号区域协调控制的方法主要可以分为结合调控的协调方法、基于延误的协调方法和基于绿波带优化的协调方法。 通过全面深入的了解信号控制的基础理论及信号控制主流模式及技术方法,掌握前沿技术,归纳出适用性强的主流核心技术规范,为交通信号控制优化提供

交通信号控制系统方案

交通信号控制系统 1.1项目概述 对当地的简单介绍及交通状况的分析。 1.1.1系统概述 城市交通的管理与控制是智能交通系统的重要组成部分,城市交叉口的通行能力是决定道路通行的关键。交通信号控制系统对城市交叉口进行系统化协调控制,能缓解拥堵区域的交通压力,使交通流量在整个城市范围内的分配趋于合理,能够降低或消除对道路的瓶颈影响,提高道路的通行能力和服务水平。 交通信号控制系统的发展经历了点控、线控和面控3个阶段: (1)每个交叉口的交通控制信号只按照该交叉口的交通情况独立运行,不与其邻近交叉口的控制信号有任何联系的,称为单个交叉口交通控制,也称为单点信号控制,俗称“点控制”。 (2)把干道上若干连续交叉口的交通信号通过一定的方式联结起来,同时对各交叉口设计一种相互协调的配时方案,各交叉口的信号灯按此协调方案联合运行,使车辆通过这些交叉口时,不致经常遇上红灯,称为干道信号联动控制,也叫“绿波”信号控制,俗称“线控制”。 (3)以某个区域中所有信号控制交叉口作为协调控制的对象,称为区域交通信号控制系统,俗称“面控制”。 1.1.2设计目标 交通信号控制系统目标如下: (1)降低交通延误,降低停车次数,提高车速,降低机动车油耗,减少交通污染,改善城市环境; (2)科学控制交通流,最大限度利用现有道路,提高道路的通行能力; (3)使交通有序运动,从而改善交通秩序,有利于交通安全; (4)节省警力,降低交警的劳动强度。 1.1.3设计原则 根据我公司多年来在城市智能交通领域的建设经验,对公安、交通行业业务需求的深入理解,结合我国交通发展的现状,根据信号控制系统设计理论,在设

计过程中秉承以下原则: 1.1.3.1标准化原则 交通信号控制系统严格按照公安部颁布的标准GA47-2002《道路交通信号控制机》和GB/T20999-2007《交通信号控制机与上位机间的数据通信协议》规定的技术要求进行设计,所有数据格式与接口均符合国家标准,并在此基础上加以完善,以适应各地的交通状况。 1.1.3.2先进性原则 采用科学的、主流的、符合发展方向的技术、设备和理念,系统集成化、高清化、网络化、模块化,使系统具有“国内领先,国际先进”的总体水平,能够适应交通控制未来发展的要求。 1.1.3.3实用性原则 系统提供清晰、简洁、友好的中文操作界面,操控简便灵活,易学易用,便于管理和维护,系统具有自动恢复功能,整个系统的操作简单、快捷、环节少,以保证不同的操作者都能熟练操作系统,具有高度友好的界面和使用性。 系统设计、选材、选型符合国家及行业的有关标准,与用户及其上级管理部门的有关规定要求相适应,与用户在经济能力方面实际情况相吻合。 1.1.3.4可靠性原则 交通信号控制系统选用集成度和稳定性高的设备,具有系统自诊断和维护管理功能、远程设备监控、数据备份等功能。室外设备具有耐高温、耐高湿、耐低温,防雷、防尘等特性,保证系统的正常可靠运行。 1.1.3.5安全性原则 交通信号控制系统具有防误操作特性,通过合理的硬件结构设计、有效的外场保护措施以及完善的内部管理机制有效避免系统遭到恶意攻击和数据被非法提取的现象出现,保障系统的信息安全。同时通过数据加密、备份、补录、恢复等措施,提高系统在传输链路故障时的数据完整性及安全性。 1.1.3.6经济性原则 交通信号控制系统的可靠性得到提升,因此系统的维护成本显著下降。采用技术先进的设备,通过最优化的系统集成,设备使用寿命长,系统经济性显著提高。

智能交通信号灯控制系统设计

智能交通信号灯控制系统设计 摘要:本文对交通灯控制系统进行了研究,通过分析交通规则和交通灯的工作原理,给出了交通灯控制系统的设计方案。本系统是以89C51单片机为核心器件,采用双机容错技术,硬件实现了红绿灯显示功能、时间倒计时显示功能、左、右转提示和紧急情况发生时手动控制等功能。 关键词:交通灯;单片机;双机容错 0 引言 近年来随着机动车辆发展迅速,给城市交通带来巨大压力,城镇道路建设由于历史等各种原因相对滞后,特别是街道各十字路口,更是成为交通网中通行能力的“隘口”和交通事故的“多发源”。为保证交通安全,防止交通阻塞,使城市交通井然有序,交通信号灯在大多数城市得到了广泛应用。而且随着计算机技术、自动控制技术和人工智能技术的不断发展,城市交通的智能控制也有了良好的技术基础,使各种交通方案实现的可能性大大提高。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,是现代城市交通监控指挥系统中最重要的组成部分。本文设计的交通灯管理系统在实现了现代交通灯系统的基本功能的基础上,增加了容错处理技术(双机容错)、左右转提示和紧急情况(重要车队通过、急救车通过等)发生时手动控制等功能,增强了系统的安全性和可控性。 1 系统硬件电路的设计 该智能交通灯控制系统采用模块化设计兼用双机容错技术,以单片机89C51为控制核心,采用双机容错机制,结合通行灯输出控制显示模块、时间显示模块、手动模块以及电源、复位等功能模块。现就主要的硬件模块电路进行说明。 1.1 主控制系统 在介绍主控制系统之前,先对交通规则进行分析。设计中暂不考虑人行道和主干道差别,对一个双向六车道的十字路口进行分析,共确定了9种交通灯状态,其中状态0为系统上电初始化后的所有交通灯初试状态,为全部亮红灯,进入正常工作阶段后有8个状态,大致分为南北直行,南北左右转,东西直行,与东西左右转四个主要状态,及黄灯过渡的辅助状态。主控制器采用89C51单片机。单片机的P0口和P2口分别用于控制南北和东西的通行灯。 本文的创新之处在于采用了双机容错技术,很大程度上增强了系统的可靠性。容错技术以冗余为实质,针对错误频次较高的功能模块进行备份或者决策机制处理。但当无法查知运行系统最易出错的功能,或者系统对整体运行的可靠性要求很高时,双机容错技术则是不二选择。 双机容错从本质上讲,可以认为备置了两台结构与功能相同的控制机,一台正常工作,一台备用待命。传统的双机容错的示意图如图1所示,中U1和U2单元的软硬件结构完全相同。如有必要,在设计各单元时,通过采用自诊断技术、软件陷阱或Watch dog等系统自行恢复措施可使单元可靠性达到最大限度的提高。其关键部位为检测转换(切换)电路。

智能交通信号控制系统

HiCon智能交通信号控制系统 青岛海信网络科技股份有限公司 2008年1月

目录 1海信交通信号控制系统介绍 (1) 1.1系统概述 (1) 1.2系统特点 (2) 1.3H I C ON交通信号控制系统软件功能 (2) 1.4HSC-100交通信号机 (4) 1.4.1概述 (4) 1.4.2 3.4.2信号机的生产和检测 (5) 1.4.3信号机功能 (7) 1.4.4信号机性能指标 (7)

1海信交通信号控制系统介绍 1.1系统概述 “HiCon交通信号控制系统”是我公司开发的交通控制领域高端产品,该产品与国内著名高校强强联合,应用国际领先技术,结合国内复杂交通特征及国外城市交通特点研发,为同内外城市提供完备的交通管理与控制方案、自适应控制系统软件及系统兼容的信号机,我公司对该产品具备自主知识产权。 “HiCon交通信号控制系统”是包括HiCon交通信号控制系统中心软件、HSC系列交通信号机和CMT交通信号机配置与维护工具软件。 图1 海信交通信号控制系统结构图 系统的结构图如上图所示,分为管理控制平台、中心控制级、通信级和路口控制级。路口级交通信号机通过串行通信或以太网连接到控制中心,通信协议采用的是NTCIP。 路口信号机实时从路口采集交通流量、时间占有率、速度等信息,并实时上

传到中心机级,存入实时和历史数据库,为路口的统计分析提供数据,提供辅助决策支持和交通信号设备维护与管理。 控制中心根据实时的检测信息对当前的交通状态进行合理决策,对所控制的路口信号配时参数进行实时优化,并将优化结果下达给信号机执行,目的在于减少车辆及行人等待时间,缓解城市交通拥堵,降低环境污染,实现对城市交通的最佳控制。 1.2系统特点 (1)系统的应用范围广,可以用于城市的一般交叉口控制、也可以用于快速路、高速路的匝道、车道灯的控制,同时还能用于公交优先的控制。 (2)系统采用的是NTCIP通信协议,NTCIP作为美国乃至整个北美地区的智能交通系统的标准通信协议,体系完整,通用性与兼容性好。 (3)系统具有高效可靠开放的通信子系统,保证了内部实时通讯的可靠性、效率、可扩展性,同时实现了系统的开放性. (4)系统的接口透明,提供二次开发能力,便于多系统的集成。 (5)系统具备良好的故障诊断功能,实时显示路口设备故障状况,并能通过网络实现信号机的远程维护功能。 (6)系统采用方案选择与方案生成相结合的实时优化算法。 (7)系统采用的是先进的交通数据预测及故障降级技术,使得系统对检测器的依赖性大大降低。 (8)交通信号机的CPU采用的32位的芯片,控制功能强大。 1.3HiCon交通信号控制系统软件功能 HiCon交通信号控制系统软件能够从信号机获得实时交通信息及设备状态信息,并采用先进的预测技术对交通流量、时间占有率进行预测,利用优化模型对交通信号配时参数进行实时优化,实现各种协调控制。 系统软件还能够提供用户进行各种远程控制功能,包括警卫路线控制、动态绿波控制、干预线控等。系统软件能够为用户提供GIS平台上的各种方便快捷的操作,如在地图上漫游、缩小、放大等,用户可查看路口的信号配时、设备状

交通信号控制系统的控制算法及应用解析

HiCon 交通信号控制系统的控制算法及应用 一、引言 交通信号控制是交通工具现代化的产物。在平面交叉口,为了把可能发生冲突的车流从时空上分离,必须通过交通信号对交通流进行有效的引导和调度。1868 年,英国伦敦安装了世界上第一组交通信号灯。1914 年以及稍晚一些时间,美国的一些城市也出现了交通信号灯。1963 年,加拿大多伦多市建立了一套由IBM650 型计算机控制的交通信号协调控制系统,这标志着交通信号控制技术进入了一个新的发展时期。该系统第一次把计算机技术用于交通控制,大大提高了控制系统的性能和水平。在此之后,美国、英国、澳大利亚、法国、日本等国家相继建成以计算机为核心的区域交通控制系统。 上个世纪七八十年代,中国开始了研究和开发交通信号控制系统,并且得到了应用,但这些系统没有充分考虑中国的复杂的交通特征,所以应用效果不好。为了解决上述问题,我公司开发了实时自适应交通信号控制系统HiCon,该系统充分考虑国内城市的复杂特征,同时借鉴了国外交通信号控制系统的成功经验,从目前在福州的应用效果来看,系统的控制效果比较理想。 二、HiCon 交通信号控制系统简介 2.1 系统结构 HiCon 交通信号控制系统是我公司自主研发的适合复杂交通特征的控制系统,系统采用的是多层次分布式控制结构,结构如下图所示,控制结构共分为四层: (1)控制平台层:提供与其它系统以及平台的 接口; (2)控制中心层:具有管理、 控制、监视等功能,同时还能处理、 保存、查询交通信息等功能; (3)通信层:能够采用多种接口实现通信功能 ;

(4)路口层:具有控制、采集、存储等功能。系统提供的产品主要有包括中心软件和配置软件等软件产品,还有系列信号 机和检测器等硬件产品。 2.2 系统算法概述 HiCon 系统具有完整的算法体系,包括区域协调控制算法、感应式协调控制 算法、行人二次过街算法、城市快速出入口与城市路口的协调控制算法以及突发 事件的检测算法,这里只简要说明其中的区域协调控制算法、城市快速出入口与 城市路口的协调控制算法和突发事件的检测算法。 2.2.1 区域协调控制算法 交通信号控制的三要素是周期时长(Cycle)、绿信比(Split)和相位差(Offset)。交通信号控制系统的区域协调控制算法通过实时优化上述三个参数,实现对控制子区的合理控制。 HiCon 系统区域协调控制目标是: A. 实现高峰时段最大的路网通行能力; B. 实现平峰时段最小的车辆停车延误; C. 实现低峰时段最少的停车次数。 D. 系统对三个控制要素的优化过程说明如下。 (1)信号周期信号周期的优化依据是交通强度,交通强度是本系统的一个独特概念,它表 示交叉口的交通负荷,是本系统优化周期的依据,信号周期的优化过程如下图所示。 (2)绿信比 图1 信号周期优化过程 交叉口的绿信比是根据交通信息和信号周期进行优化的,其过程如下图所示。

多岔路口交通信号灯控制系_...

Computer Knowledge and Technology 电脑知识与技术本栏目责任编辑:唐一东多媒体技术及其应用第6卷第1期(2010年1月)多岔路口交通信号灯控制系统的设计与实现 刘攀,徐志攀,张晓铭 (河南师范大学计算机与信息技术学院,河南新乡453007) 摘要:多岔路口交通信号灯控制系统的设置问题可转化为对图的顶点染色的问题,此种方法简单可行,问题的探究对以后相关问题的探讨有一定的借鉴意义。 关键词:图论;四色原理;着色 中图分类号:TB533文献标识码:A 文章编号:1009-3044(2010)01-208-02 Design and Implementation of the Traffic Signal Control System in the Multi-Fork Road LIU Pan,XU Zhi-pan,ZHANG Xiao-ming (Collage of Computer and Information Technology,Henan Normal University,Xinxiang 453007,China) Abstract:Based on the topological transformation to graph coloring,the design and implementation of the traffic signal control system in the multi-fork road is changed into the quadratic equation,the Four-color Theorem is applied to the equation.This methord is simple and feasible.The research about the problem can also be used for for the further reacher. Key words:graph theory;four-color theorem;vertex coloring 图是一种常见的数据结构[1]。图论问题中的四色原理猜想最早是在1852年由毕业于伦敦大学的Francis Guthrie 发现提出的[2],运用四色原理着色是常见的将问题化繁为简的方法。 通常,十字路口只需设置红黄绿三种颜色的交通信号灯便可保持正常的交通秩序,而在车流量较大的多岔路口则需设多种颜色的交通灯才能既使车辆相互之间不碰撞,又能达到车辆的最大流通。 汪学典将十字路口交通信号灯控制系统看作典型的米莱型时序逻辑电路,用时序PLA 实现了该系统[4];雷新军与王耀青采用了以8051为内核的单片机芯片作为核心控制器,以嵌入式操作系统RTX51为软件开发平台,通过控制城市路口十字路口的交通信号灯来指挥交通的方法[5];耿文波和黄伟基于EWB 实现交通信号灯控制系统的设计与仿真[6];但是他们并没有提出具体的交通信号灯设置问题的解决方案。本文将讨论把四色原理运用到三岔路口交通信号灯的设置问题上,运用Welch Powell 法对图进行着色,即可算出信号灯的所有颜色。提出自己的算法,并将此算法推广至四岔路口五岔路口至多岔路口交通信号灯的设置问题上,最后讨论了此种算法的优点与不足。 1图论的基础理论 定义1.1图G 的正常着色(简称着色)是指对它的每一个结点指定一种颜色,使得没有两个邻接的结点有同一种颜色。如果图G 在着色时用了n 种颜色,称为G 为n-色的。 定义1.2对于图G 着色时需要的最少颜色数称为G 的着色数,记作x(G)。 韦尔奇·鲍威尔法(Welch Powell)着色法: 1)将图中的顶点按照度数的递减次序进行排列。(这些排列可能不是唯一的,因为有些点又相同的度数。这时进行实地考察,按车流量排序。) 2)用第一种颜色对第一个点着色,并且按排列次序,对与前面着色点不邻接的每一个点着相同的颜色。 3)用第二种颜色对尚未着色的点重复b),用第三种颜色继续这种做法,直到所有的点全部着上颜色为止。 定义1.3对于n 个结点的完全图K n ,有x(K n )=n 。 定义1.4四色原理:任一平面G 最多是4-色的[2]。G=(V,E), 定义1.5图G 的着色2当且仅当G 是一个非空二分图。 2由上导出的交通信号灯的设置 2.1三岔路口 1)图1是一个三岔路口,在路的中间有L1,L2,...,L6六个交通信号灯,图中箭头方向表示每条路上的车流方向,交叉和箭头并行表明两条道路不能同时通车,否则会发生交通事故。当且仅当某个方向上的交通灯变为绿色时,此方向上的车辆才能通行。问怎样变换交通灯的颜色才能使此路口的车都能安全通过又能达到路口的最大流通。 2)解决方法:在“图”中,用一个顶点表示一条通路,两条通路之间相互矛盾的关系用两个顶点之间的连线表示,即若两条通路收稿日期:2009-10-23 作者简介:刘攀(1987-),河南郑州人,河南师范大学计算机与信息技术学院网络工程专业2007级本科生,研究方向为计算机网络 管理;徐志攀(1988-),河南新乡人,河南师范大学计算机与信息技术学院网络工程2007级本科生,研究方向为计算机网 络管理;张晓铭(1989-),河南荥阳人,河南师范大学计算机与信息技术学院网络工程2007级本科生,研究方向为计算机 网络规划与构建。 ISSN 1009-3044 Computer Knowledge and Technology 电脑知识与技术Vol.6,No.1,January 2010,pp.208-209E-mail:eduf@https://www.wendangku.net/doc/fa12342579.html, https://www.wendangku.net/doc/fa12342579.html, Tel:+86-551-56909635690964208

交通信号控制系统

1交通信号控制系统概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协 1.1调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。 必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 NATS交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。 从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS系统和路口交通信号控制机的研制开发。 该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。 NATS交通信号控制系统特点: 适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统…);系统配置灵活、裁剪方便;支持远程控制和维护;支持多种通信方式(光缆、电话线、GPRS/CDMA无线通信、城域网…);系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。 1.2系统结构 1.2.1系统控制应用层结构NATS交通信号控制系统采用三级分布式递阶基本控制结构: 中心控制级,区域控制级,路口控制级(参见下图)。

中心控制级区域控制级1区域控制级2路口控制级路口控制级路口控制级区域控制级N 1.2.2系统基本结构区域监控台动态地图板室内信息板违章捕捉仪区域控制计算机数据通信控制机(光端机)光纤(光端机)(光端机)路口信号机…(光端机)(光端机)路口信号机室外情报板…室外情报板交通信号灯车辆检测器其中: 区域控制计算机监视、控制、协调整个系统的运行,可同时控制128个外部设备,如果外部设备超过128路,可采用多台区域控制计算机。 区域监控台用作交通工程师工作台,实时显示被控区域内的交通状态和信息,下达人机会话命令;数据通信控制机为区域控制计算机与户外设备提供通信通道;路口信号机负责采集、处理、传送交通信息,控制路口信号灯色;环形线圈检测器和微波检测器安装位置可分布在路口或者路段;动态地图板实时显示被控区域内的交通状态。 1.3系统功能 1.3.1系统三级控制功能1)中心控制级监控整个系统的运行;协调区域控制级的运行;具备区域控制级的所有功能。 2)区域控制级监控受控区域的运行;对路口交通信号进行协调控制; 对路口交通信号机的工作状态和故障情况进行监视;通过人机会话对路口交通信号机进行人工干预;监视和控制区域级外部设备的运行;进行交通流量统计处理。 3)路口控制级控制路口交通信号灯;接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送;接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息;具有单点优化能力。 4)终端控制为了方便灵活地控制系统,系统可挂接终端控制计算机(工作站),终端控制计算机提供与区域控制计算机完全同样的显示操作功能,终端控制计算机既可以是本地的(如放在管控中心),也可以是远程的(如在任何地方通过公安网进行控制)。 1.

相关文档
相关文档 最新文档