文档库 最新最全的文档下载
当前位置:文档库 › 机械结构课程设计(塔吊起重臂结构设计)(DOC)

机械结构课程设计(塔吊起重臂结构设计)(DOC)

机械结构课程设计(塔吊起重臂结构设计)(DOC)
机械结构课程设计(塔吊起重臂结构设计)(DOC)

学院

课程设计说明书

班级: 姓名:

设计题目:机械结构课程设计(塔吊起重臂结构设计)设计时间: 到

指导老师:

评语:

评阅成绩: 评阅教师:

目录

一、课程设计目的及要求 3

二、设计题目 3

三、机械结构设计 4

1、起重臂结构方案确定4

1)起重臂长度L 4 2)起重臂截面形式根据受力的构造要求而定 4 3)起重臂截面宽度和高度 5 4)运输单元 5 5)吊点位置确定 5 2、计算简图及计算载荷确定 6

1)计算简图 6 2)载荷组合 6 3)载荷确定 6 3、力计算及内力组合7 1)臂架内力计算7 (1)臂架自重及小车移动机构重7 (2)吊重9 (3)小车轮压对起重臂下弦杆产生的局部弯矩12(4)风载荷作用下的内应力图13 (5)其他水平力T的作用14 2)内力组合16 4、截面选择和截面验算16

(1)单臂验算17 1)上弦17 2)下弦18 (2)腹杆验算18 (3)整体稳定性验算19 (4)局部稳定性的计算20 (5)起重臂重量的计算20

四、设计感想:20

五、参考文献20

一、课程设计目的及要求

机械结构课程设计是学生在学习机械设计课程设计后进行的一次比较全面和系统的训练。通过训练,巩固和加强对所学机械结构知识的理解,提高学生进行机械结构设计、计算、绘图的能力。

自升式塔式起重机(简称塔吊),是建筑工地上常用的施工机械之一。塔吊设计内容包括机构、结构、液压传动、安全装置等等。由于塔吊的结构用钢量越占整机重量的2/3左右,所以合理地设计塔用结构对于减轻整机重量、改善机械工作性能等具有重大意义。

塔吊的结构设计包括以下部分:起重臂、平衡臂、塔幅、塔身、套架、底座、附着装置、工作平台及扶梯等。

本课程设计仅对给定工作负载的自升式塔吊的“起重臂”(见图1)进行结构设计。

图1 起重机起重臂结构简图

二、设计题目

1)起重力矩(起重机为基本臂长时,最大幅度X相应额定起重量):900KN·m 2)起重量当幅度最大时(Rmax),起重量为1.8t;

当幅度R=(Rmin~Rmax/2),起重量为2~5t。

3)变幅

①形式:水平臂架绳索牵引小车变幅;

②速度:起重机升降变幅速度为0~30m/min 4)吊钩升降速度

①起升速度: A 、 起重量为>Rmax 起重量的时候为1.5—2m/min ; B 、 起重量为Rmax 时为3—50m/min 。

②空钩下降速度: A 、 起重量为>Rmax 时为0—50m/min ; B 、 起重量为Rmax 时为0—100m/min 。 5)回转

①半径:50m ;

②速度:0—0.5r/min ; ③起制动时间: 4s ; 6)运行(起重机整机行走)

①速度: 14/min ; ②起制动时间: 5s ;

7)起重机工作制: 中级(中等载荷,载荷系数Kp=0.250,使用年限15年); 8)结构参数:经查表得:

⑴臂长L:根据回转半径R 确定(L-R=1.5~2.0m );

⑵吊挂位置比例长度21L 、L :7.0~4.02

1

=L L ⑶起重机塔架机构:

①1l (卷扬滚筒中心距塔机回转中心距离)=550mm ; ②2l (起重臂支点距塔机回转中心距离)=1300mm ; ③3l (塔架截面宽度)=1500mm ;

④4l (起重臂支点距卷扬滚筒中心高度)6500mm ;

三、机械结构设计

1、起重臂结构方案确定 1)起重臂长度L :

根据最大回转半径,上塔身宽度和构造要求而定。

已知: R=50m ,m l 3.12=,2~5.1=DE l 取8.1=DE l 列方程:DE l R L l +=+2;

得: m l l R L DE DE 5.503.18.150=-+=-+=

2)起重臂截面形式根据受力的构造要求而定:

本塔吊起重臂截面建议采用格构式等三角形形式。上弦和腹杆采用无缝圆钢管(可考虑用16Mn ),下弦采用两个箱行截面,每个箱形截面对由两个角钢(或槽钢、钢板等)焊成,兼做小车轨道用(图2)。

3)起重臂截面宽度和高度

可根据强度、刚度、稳定性和构造的要求而定,初定B=2.0m 。

高度H 按121

301~=L H ,已知L=50.5m ,得:H=1.68~4.21,一般起重臂的

截面采用格构式正三角形,故:m B H 73.132*2

3

23====

(在H=1.68~4.21的范围内,符合)。

4)运输单元

考虑到运输条件和原材料长度限制,将重臂做成各个节段,即运输单元。各节段在工厂制成后,运到工地,在现场将各节段用销轴相连,拼装成整体的超重臂,然后再和塔身等其他部件装配成塔吊。初步选取两端长度为,中间部分每10m 一段,两边的m l l b a 5.10=+共6段,如下图。

5)吊点位置确定

正确选定吊点位置(B 点),对超重臂设计是否合理有很重要的意义。吊点将机架分为两个部分,即悬臂部分L1和跨中部分L2.起重机作业时悬臂部分将产生最大负弯矩,跨中部分将产生最大正弯矩。如果L1过长,则悬臂部分的负

图2 起重臂截面形式

弯矩大于跨中的正弯矩,截面可能由悬臂部分控制。如果L1过短,则悬臂部分的负弯矩将比跨中的正弯矩小,截面可能由跨中部分控制。由于起重臂截面往往设计成对X —X 轴不对称(图1),因此负弯矩和正弯矩对截面从的影响并不相同,则不能简单地按弯矩条件来选择吊点的合理位置。设计时选取

7.0~4.02

1

=L L 。可选

5.02

1

=L L ,根据m L L L 5.5021==+,则L 1=16.8m ,L 2=33.7m ,如图1。 2、计算简图及计算载荷确定 1)计算简图

根据总体布置确定臂架的计算简图。在回转平面(即水平平面)内,作为悬臂梁计算(图3);在起升平面(即竖直平面)内,作为伸臂梁计算(图4)。

2)载荷组合

起重臂结构计算采用下列三种载荷组合:

①自重+等级吊重+工作状态风载荷(风向平行臂架)+平稳惯性力或其他水平力

②自重+最大额定吊重+工作状态风载荷(风向垂直臂架)+急剧惯性力或其他水平力

③自重+非工作状态风载荷(风向平行臂架)+起重小车及吊钩重。 由于第①、③种载荷组合对本起重臂不起控制作用,因此可仅按第②种载荷组合进行设计。 3)载荷确定

(1)臂架自重和小车移动机构重量

①选取臂架自重为4t 。

②选取小车移动机构重量为0.5t 。 (2)吊重

包括起重小车、吊钩及吊重。吊重是移动载荷,其中起重小车重量和吊钩重量是沿臂架移动但数值不变的载荷,初选起重小车重量为0.38t ,吊钩重量为0.25t ,所吊货物是沿臂架移动且数值变化的载荷,其数值的变化满足起重力矩630KN ·m 要求。 (3)风载荷 ①臂架受风载荷W F

A P C F w w w =

式中,W C 为风力系数,取1.3;W P 为计算风压,工作状态取250Pa ;A 为迎风

图3 回转平面计算简图

图4 起升平面计算简图

面积,21A A A η+=,其中A1——前片结构迎风面积(2m ),111L A A ω=,1ω为结构充实率,对于桁架取0.4;A2——后片结构迎风面积(2m ),222L A A ω=,2ω为结构充实率,对于桁架取0.4。A L1或A L2为前后片外形轮廓尺寸,即A L =H ·L (图5)

计算:2111.298.16*73.1*m L H A L ===;2223.587.33*73.1*m L H A L ===;

2

1116.111.29*4.0*m A A L ===ω ;2222

3.233.58*

4.0*m A A

l ===ω。

η——前片对后片的挡风折减系数,与前片桁架充实率1ω以及两片桁架间隔比B/H 有关,根据B/H=1.156以及ω=0.4查表得40.0=η;

2219.203.23*4.06.11m A A A =+=+=η;N

A P C F W W W 67869.20.250*3.1===。

假定风载荷沿臂架均匀分布m N L F q w /4.1345

.506786

===

风,作用于水平面内。 ③吊重受风载荷'

w F :按额定起重量重力的3%计算。

(4)其他水平力

作用在回转平面内,除风载荷外,还有回转惯性力以及起吊时由于钢丝绳倾斜引起的水平力等,可近似地取T=0.1Q (Q 为吊重),并且按所吊货物为 1.8t 和5t 分别计算。

3、内力计算及内力组合

1)臂架内力计算 首先求出各种载荷作用下的臂架和塔身连接处的支反力和吊索内里,绘出臂架的轴力N 、剪力Q 、和力矩M 图。 (1)臂架自重及小车移动机构重

作用在臂架竖直平面内是数值不变的固定载荷。臂架自重可假定沿长度方向均匀分布q=40N/50.5m=99.01N/m ,小车移动机构重量可假定为集中载荷(图6)。

列方程:405sin :0+=+=∑αB A

F F

F ;

0=∑A M :021sin 52

2

3=+-ql L F l B α; 0=∑B M : 02

1

)(21)(52222232=--++-qL L L q L F l L A

图5 桁架挡风折减系数

由于3l 未知,所以有很多解,随意提供一组解:.35sin ,10kN F kN F B A ==α

内力分析:

A

B

图6 臂架自重及小车移动机构重

(2)吊重

吊重计算公式为

Q=(起重小车重+吊钩重+所吊货物重)×动载系数 动载系数是考虑到起吊货物时,起升机构起动和制动所产生的振动和冲击的影响载系数,取1.3.

由于吊重是移动载荷,所以首先对以下三种工况可能对臂架产生的最不利影响,进行内力分析。

①最大幅度Rmax=50m ,所吊货物为1.8t (即吊重作用在D 处,图7)

Q=(0.38+0.25+1.8)x1.3=31.59kN.

列方程: 0=∑F 0s i n

=--D A B F F F α; 0=∑A M 06.36sin 2=?+-Q L F B α; 0=∑B M 021=+L F QL A 。

解得:kN F A 28.15=,kN F B 87.46sin =α 其应力图:如下图

图7 吊重作用在D 处

31.59

46.87

15.28

31.59

15.28

514.94

图7 吊重作用在D 处

②幅度R ≤25.3,所吊货物为5t (即吊重作用在C 处,图8) Q=(0.38+0.25+5)x1.3=73.19kN.

列方程:0=∑F 0s i n

=-+C B A F F F α; 0=∑A M 03.18sin 2=?+-Q L F B α;

0=∑B M 0)2

1

(22=+--L F L L Q A

解得:95.54sin ;24.18==αB A F kN F

KN

绘制内力图:

③最小幅度Rmin=3.3m ,所吊货物为5t (即吊重作用在G 处,图9)

416.47

图8 吊重作用在C 处

Q=(0.38+0.25+5)x1.3=73.19kN.

列方程: 0=∑F 0s i n

=-+G B A F F F α; 0=∑A M 05.2s i n

2=?+-Q L F B α 0=∑B M 0)5.2(22=+--L F L Q A

解得:kN F kN F B A 17.7sin ;02.66==α。绘制内力图:如下图:

图9 吊重作用在G 处

(3)小车轮压对起重臂下弦杆产生的局部弯矩

①吊重5t 在距塔身中心25.3m 时,下弦杆中AB 段的局部弯矩M 局。(如图8)

M 局=416.47KN ·m

②由于吊重在臂架上是移动的,因此还必须找出校车在AB 段产生最大的局部弯矩的位置,计算出max 局M

设每个轮子压力为P=73.2/2=36.6KN ,作用在AB 节间(可先视为简支梁)上(图10)

分析可知,当有两个或两个以上轮压作用,则当22c

s x -=(c 为合力作用点

至最近的轮压之距。设C=12m )时,K 截面的局部弯矩最大,即最大弯矩k M 。由于臂架的AB 段实际上不是简支梁而是连续梁,所以可近似地取

k

M M 3

2

max =

绘制内力图:

m KN M M k ·92.40738.7063

2

32max =?==

局 m P M L 15.116

.3692.407'max ===

局 因为最大弯矩点和C 点相差不大,所以可偏安全地可取吊重在C 点时的内

弯矩图

剪力图

36.6KN

36.6KN

706.38

力值。

(4)风载荷作用下的内应力图

风载荷垂直臂架作用时,臂架的计算简图近似为悬臂梁。 ①臂架风载荷

将风载荷视为沿臂架全长均匀分布的载荷,并作出内力图(如下图) 计算,q=134.4N/m ;

N qL F sA 6786== ; KN X qL M 1692567862

2

=== 做内力图:

②吊重的风载荷

分别作出吊重距塔身中心50.5m 处及25.3处风载荷作用下的内力图 1)吊重在D 处的风载荷,计算: W=1.8tx3%x10000=540N ,

N F A 540

=, m KN X WL M A ?===2750540 内力图如图13.

2)吊重在C 处的风载荷,计算: W=5tx3%x10000=1500N , N F A 1500=,

m KN X Wl M A ?===95.373.2515003.

A

图12 臂架风载荷

内力图如图14:

(5)其他水平力T 的作用

分别作出吊重在塔身中心50m 及25m 处其他水平作用下的内力图。

①作出吊重在塔身中心50m 其他水平作用下的内力图。此时货物重1.8t 。

图13 吊重在D 处的风载荷

图14 吊重在C 处的风载荷

计算:T=0.1*1.8*10000=1800N ;N F A 1800=;m KN M A ?==9050*8.1。

内力图如图

15.

②作出吊重在塔身中心25m 处其他水平作用下的内力图。此时货物重5t 。

计算: T=0.1*5*10000=5000N ;N F A 5000=;m KN M A ?==25050*5 内力图如图16.

图16 在C 处其他水平力

图15 在D 处其他水平力

2)内力组合

把上述计算结果填入下表: 备注:轴力N :拉力为“+”,压力为“-”;

起升平面内弯矩x M ,以下弦受拉为“+”; 起升平面内剪力x Q ,以发现的顺时针方向为“+”; 回转平面内的弯矩y M 、剪力y Q “+”“-” 都可能产生; M 单位:kN·m ;Q 单位:kN ;N 单位:kN

附表1

按以下三种情况作臂架内力组合: 吊重在D :1+2.1+3.1+3.2+4.1; 吊重在C :1+2.2+3.1+3.3+4.2; 吊重在G :1+2.3。 并填入下表:

附表2

4.截面选择和截面验算

序 号 载荷

内力

截面

A B C

M X M Y

Q X Q Y N M X

M Y

Q X

Q Y

N M X

M Y

Q X

Q Y

N 1 臂架自重小车移动机构重

0 +10.0 -181 -115.7 0 0 +100 -7.8

-181. 2.1 吊 重 Q 在D 0 -15.3 -243 -514.9 0 0 -321

-15.28 -243 2.2 Q 在C 0 +18.2 -284 0 0 0 +416 0 -284 2.3 Q 在G 0 +66.0 -37.2 0 0 0 +118

-7.17

-37.2

3.1 风 载 荷 臂架风载荷 -169 +6.79 -32 +1.69 -68 +3.28 3.2 吊重风载 Q 在D -127 +0.54

-8.8 +0.54 -13.5

+0.54 3.3 Q 在C -37.9 +1.5

0 0 0 0 4.1 其他水平力 Q 在D -90 +1.8

-30.2

+1.8 -45 +1.8 4.2 Q 在C -250

+5 0

序 号 载荷

内力

截面

A B C

M X

M Y Q X Q Y N M X M Y

Q X

Q Y

N M X

M Y

Q X

Q Y

N 内力组合 吊重在D 0 -286 -5.3 +9.13 -745.6 -630.6 -165 0 +4.02 0 -2.21 -126.5 -23.1 +5.6 -745.6 吊重在C 0 -457 +28.24 +13.29 -465.4 -115.7 -32 0 +1.69 0 +516.5 -68 -7.8 +3.28 -465.4

吊重在G 0 0 +76.02 0 -218.6 -115.7 0 0

0 +217.8

-14.97

-218.6

起重臂材料:建议选用Q235钢或Q345钢;

起重臂的材料:起重臂是采用型材经过焊接、螺栓连接而成的,所以材料选用Q235钢;

附表3

钢种 屈服极限 计算强度R(MPa)

拉伸、压缩和弯曲 剪切 端面挤压

碳钢 220 210 125 315 230 220 130 330 240 230 135 345 250 240 140 360

260 250 145 375 270 260 150 390 ... ... .. ...

销轴材料:建议选用40Cr 钢(【σ】=420MPa ;【τ】=244MPa )。

起重臂为格构式空间结构,主要内力有轴力N 、弯矩(Mx 、My )、剪力(Qx 、Qy )可偏安全的按格构式偏心受压构件计算。

(1)单臂验算

根据臂架的受力分析,臂架在吊点的外伸部分,上弦杆为轴心拉杆,下弦杆为轴心压杆。臂架在简支桁架区,上弦杆为轴心压杆,下弦杆为轴心拉杆。

1)上弦

用公式3

N X NS F H M

F +=计算出可能出此案的最大拉力和最大压力。对最大拉

力进行强度验算,对最大压力进行稳定性验算。

钢种的材料参数表

KN H M F X NS 86.12573

.18

.217===

; 臂架本身最大的轴向力KN F N 6.745=; 所以截面C 处最大的轴向压力:kN F H M F N

X NS 6.78786.1256.7453

=+=+=

)(230][325.1005.786.7872max 合适MPa MPa cm KN

A F N =<===

σσ; )(135][56.635.78*37.14932

合适MPa MPa cm KN A Q x =<===ττ。 2)下弦

用公式3

2N

y x Nx F B M H M F ±±±

=计算出可能出现的最大拉力和最大压力,并找出相应的局部弯矩jb M 。

kN F Nx 75.37436.74525.12673.1*28.217max =++=

)(230][1.95424.3975.374max 合适MPa MPa A F N =<===σσ;

)(135][66.12424.39*37.14932

合适MPa MPa cm KN A Q X =<===ττ。

整体强度验算:)(135][5.9348.1577.1492

合适MPa MPa cm

KN

A Q X =<===ττ。 (2)腹杆验算

臂架的腹杆按轴心压杆计算,根据钢结构设计规范要求,对格构式压弯机构的腹杆,按照实际剪力确定内力。

平面12和平面13上的腹杆载荷承受y Q 的作用。 将最大的y Q 分解成沿平面12和平面13上的内力:

θ

cos 213

12X

X X Q Q Q =

=, 式中,由于截面是正三角形,故,2

3cos =

θ 腹杆受力:H

l

Q H l Q F X X NXG

312==,其中l =2m, 根据合理组合表可知:kN Q X 7.149max =;

KN KN F NXG 01.10073

.132

*7.149==

)(230][8.16699.501.1002

合适MPa MPa cm KN

A F NXG =<===

σσ。

由于23平面腹杆承受的Q 力小,故其验算略。 (3)整体稳定性验算

弯矩作用下的平面的整体稳定性,臂架在起升和回转平面内的整体稳定性,按单向弯曲构建验算并满足以下稳定性条件。

】【σ?β?δ

≤-+)

1(N N W M A N 式中:N 臂架的轴向压力,N=745.6KN ;

M 臂架的组合弯矩,m kN M M M x x ?=+=+=87.2515

.1268.2172

222; 1=ββ等效弯矩系数,;

A 臂架的毛截面,A=157.3482cm ; W 毛截面的截面系数,W=893.173cm ;

0.5=??,轴心压杆的稳定性系数;

图17 起重机截面

KN 10*2.693110

157.348

*10*2.10*3.14EA 62

5222===λπδδN N 欧拉临界力,。 ??

?

??-?+=-+KN kN cm m

kN cm KN N N W M A N 6

3210*693.2745.1175*5.01*17.8938.217*1348.157*5.0745.1175)1(δ?β?

=151.88MPa<()合适MPa 230][=σ。

(4)局部稳定性的计算

起重臂截面选用型材,不用进行局部稳定性的验算。 (5)起重臂重量的计算

G=截面理论重量*L=105.09kg/m*50.5m=5307kg=5.3t ; 和最初估计的4t 有点差距,但也相差不大。

四、设计感想:

这次课程设计可谓困难重重,绞尽脑汁,不过总算在规定时间的内完成了任务。

在为期两个星期的时间里,我翻遍了《机械结构设计》、《机械设计课程设计》《材料力学》《机械手册》等书,反复计算,设计方案,绘制草图,对着AutoCAD N 天N 夜……当然,在这期间还是得到周围同学的细心提点与耐心指导。

一个人在两星期内完成这次设计不可谓不艰辛,然而,我却从这两星期内学到了许多大学阶段都没学到的关键内容,而且在实践中运用,更是令我印象深刻,深切体会到机械结构力学的重要性,塔式起重机在我们的身边到处都是,但是自己一个大学生不知道其中的道理、不会做一个基础的简单的设计是不是很失败。

虽然同学们都发牢骚,说结构学这门课程根本没有学,即使给了范例样板公式也不会用,但最后下来还是不错的做完了,而且自己还学到了不好的东西。更值得一提的是只有挑战才能发展自己,那些自己学过的东西,反复运用只能在有限的范围内是自己更能灵活,更熟悉,而不能更上一个层次。

确实,设计过程中给了很多的数据,看了好几遍设计题目仍是一头雾水,不知从何入手,最后还是按照老师给的样板一步一步的做下去......前面的还挺容易,毕竟自己也学过材料力学,可是做验算的时候给的公式好长,也不会用,经过同学之间的商量,最后终于搞定了。这次课程设计让我知道了学海无涯,只要敢于接受挑战,肯定能发展自己。

最后感谢老师!

五、参考文献

1、龙镇宇主编--《机械设计》--机械工业出版社--2002.7;

2、刘鴻文主编--《材料力学》--高等教育出版社--2007.1;

3、张凤山,董宏光编著--《塔式起重机的构造与维修》--2006.4;

4、范军翔主编--《塔式起重机》--中国建材工业出版社--2004.8;

基于某STM32的机械臂运动控制分析报告设计

机器人测控技术 大作业课程设计 课程设计名称:基于STM32的机械臂运动控制分析设计专业班级:自动1302 学生姓名:张鹏涛 学号:201323020219 指导教师:曹毅 课程设计时间:2016-4-28~2016-5-16 指导教师意见: 成绩: 签名:年月日 目录 摘要.............................................................................................................................. I V 第一章运动模型建立................................................................................................. V

1.1引言............................................................................................................. V 1.2机器人运动学模型的建立........................................................................... V 1.2.1运动学正解................................................................................... VII 第二章机械臂控制系统的总体方案设计............................................................. VIII 2.1机械臂的机械结构设计........................................................................... VIII 2.1.1臂部结构设计原则...................................................................... VIII 2.1.2机械臂自由度的确定..................................................................... I X 2.2机械臂关节控制的总体方案...................................................................... I X 2.2.1机械臂控制器类型的确定............................................................. I X 2.2.2机械臂控制系统结构...................................................................... X 2.2.3关节控制系统的控制策略.............................................................. X 第三章机械臂控制系统硬件设计............................................................................ X I 3.1机械臂控制系统概述.................................................................................. X I 3.2微处理器选型............................................................................................ XII 3.3主控制模块设计........................................................................................ XII 3.3.1电源电路....................................................................................... XII 3.3.2复位电路...................................................................................... XIII 3.3.3时钟电路...................................................................................... XIII 3.3.4 JTAG调试电路 ........................................................................... X IV 3.4驱动模块设计........................................................................................... X IV 3.5电源模块设计........................................................................................... X VI 第四章机械臂控制系统软件设计........................................................................XVII 4.1初始化模块设计......................................................................................XVII 4.1.1系统时钟控制.............................................................................XVII 4.1.2 SysTick定时器......................................................................... XVIII 4.1.3 TIM定时器 ................................................................................. X IX 4.1.4通用输入输出接口GPIO ............................................................ XX 4.1.5超声波传感器模块....................................................................... XX 总结........................................................................................................................... X XI 参考文献..................................................................................................................XXII 附录A .................................................................................................................... XXIII 附录B .................................................................................................................... XXIV

机械设计课程设计完整版

------------------------------------------装订线------------------------------------------ 综合课题说明书 题目传动系统测绘与分析 机电工程系机械设计专业04机43 班 完成人xx 学号xxxxxx 同组人xx、xxx…… 指导教师XX 完成日期200x 年x 月xx 日 XX机电工程学院

目录 课题任务书 (1) 一、减速器结构分析 (1) 1、分析传动系统的工作情况 (1) 2、分析减速器的结构 (2) 3、零件 (3) 二、传动系统运动分析计算 (7) 1、计算总传动比i;总效率 ;确定电机型号 (7) 2、计算各级传动比和效率 (9) 3、计算各轴的转速功率和转矩 (9) 三、工作能力分析计算 (10) 1、校核齿轮强度 (10) 2、轴的强度校核 (13) 3、滚动轴承校核 (17) 四、装备图设计 (18) 1、装备图的作用 (18) 2、减速器装备图的绘制 (19) 五、零件图设计 (22) 1、零件图的作用 (22) 2、零件图的内容及绘制 (22) 参考文献 (25)

04机电综合课题任务书 学号:xxx 姓名:xxx 指导教师:xx 同组姓名:xx、xxx、xxx、xx、xx 一、课题:机械传动系统与分析 二、目的 综合运用机械设计基础、机械制造基础的知识和绘图技能,完成传动装置的测绘与分析,通过这一过程全面了解一个机械产品所涉及的结构、强度、制造、装配以及表达等方面的知识,培养综合分析、实际解决工程问题的能力,培养团队协作精神。 三、已知条件 1.展开式二级齿轮减速器产品(有关参数见名牌) 2.工作机转矩:300N.m,不计工作机效率损失。 3.动力来源:电压为380V的三相交流电源;电动机输出功率 P=1.5kw。 4.工作情况:两班制,连续单向运行,载荷较平稳。 5.使用期:8年,每年按360天计。 6.检修间隔期:四年一次大修,二年一次中修,半年一次小修。 7.工作环境:室内常温,灰尘较大。 四、工作要求 1.每组拆卸一个减速器产品,测绘、分析后将零件装配复原,并使用传动系统能正常运转。 2.每组测绘全部非标准件草图(徒手绘制),并依据测量数据确定全部标准的型号。 3.每组一套三轴系装配图(每人一轴系)。 4.各人依据本组全部零件测绘结果用规尺绘制减速器装配图、低速级大齿轮和输出轴的零件工作图。 5.对传动系统进行结构分析、运动分析并确定电动机型号、工作能

基于单片机的机械臂控制系统设计与制作

基于单片机的机械臂控制系统设计与制作 电子信息科学与技术专业 学号: 姓名: 班级:电科081 日期:2011.10.26

目录课程设计题目及要求 第一章绪论 1.1 设计题目及要求 1.2 设计内容 第二章硬件设计 2.1 硬件结构图 2.2 各模块工作原理及设计 2.2.1 控制模块 2.2.2 显示模块 2.2.3 按键模块 2.2.4 舵机模块 2.3 软件程序设计 第三章硬件制作以及程序的下载调试 3.1 电路板的制作 3.2 元器件的焊接 3.3 程序的下载与调试 第四章总结 4.1 课程设计体会 4.2 奇瑞参观感受

课程设计题目及要求 题目:基于单片机的机械臂控制系统设计与制作 实习内容: 1,完成基于单片机的机械臂控制系统原理图和PCB的绘制,在基本要求的基础上自己可以作一定的扩展; 2,利用热转印纸、三氯化铁腐蚀液等完成PCB板的制作; 3,完成相应电路的焊接和调试; 4,完成相应软件程序的编写; 5,完成软、硬件的联调; 6,交付实习报告。 实习要求: 1,两人一组,自由搭配,但要遵循能力强弱搭配、男女搭配、考研和不考研的搭配; 2,充分发挥主观能动性,遇到问题尽量自己解决,在基本要求基础上可自由发挥; 3,第一次制作电路,电路不可追求复杂; 4,注意安全!熨斗、烙铁。

第一章绪论 单片机自20世纪70年代问世以来,以其极高的性价比,受到人们的重视和关注,应用广泛,发展迅速。单片机集体积小、重量轻、抗干扰能力强、环境要求低、价格低廉、可靠性高、灵活性好、开发较为容易等众多优点,以广泛用于工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,无论在民间、商业、及军事领域单片机都发挥着十分重要的作用二十一世纪,随着机械化、自动化水平的不断提高,不仅减轻了劳动强度、提高生产率,而且把人类活动从危险、恶劣环境中替换出来。而其中机器人技术,显示出极大的优越性;在宇宙探索、海洋开发以及军事应用上具有重要的实用价值。大力发展机器人技术,一方面能让社会从劳动苦力型转换到福利休闲型,另一方面能极大的提高民众的幸福感。在新时期的世界各国,随着应用日益广泛,机器人技术将不断发展并走向成熟。 本次课程设以单片机作为控制器实现对机械手臂的简单控制。在单片机最小系统的基础上扩展按键接口和舵机接口以及LED显示器,构成最简单的机械臂控制系统。

机械工程师知识架构

机械工程师知识架构 —2018.12.15 第一大类是所有工程师的基础; 第二大类是设计工程师、工艺工程师、热处理工程师需要掌握的; 第三大类是设计工程师需要掌握的; 第四大类是工艺工程师需要掌握的,设计工程师需要了解的; 第五大类是设计工程师领导人需要掌握的,设计工程师需要了解的; 第六大类是质量工程师需要掌握的,设计工程师需要了解计量与检测; 第七大类是数控工程师需要掌握的,计算机绘图所有工程师需要掌握的; 第八大类是物流工程师、设备工程师、工厂布局工程师需要掌握的 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏、明细表 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零部件图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法) (2)机械、液压、气动系统图的示意画法(机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号) 3.原理图 (1)机械系统原理图的画法 (2)液压系统原理图的画法 (3)气动系统原理图的画法

4.示意图 5.尺寸、公差、配合与形位公差标注 (1)尺寸标注 (2)公差与配合标注(基本概念公差与配合的标注方法) (3)形位公差标注 6.表面质量描述和标注 (1)表面粗糙度的评定参数 (2)表面质量的标注符号及代号 (3)表面质量标注的说明 7.尺寸链 二、工程材料 1.金属材料 (1)材料特性(力学性能物理性能化学性能工艺性能) (2)晶体结构(晶体的特性金属的晶体结构金属的结晶金属在固态下的转变合金的结构) (3)铁碳合金相图(典型的铁碳合金的结晶过程分析碳对铁碳合金平衡组织和性能的影响铁碳合金相图的应用) (4)试验方法(拉力试验冲击试验硬度试验化学分析金相分析无损探伤) (5)材料选择(使用性能工艺性能经济性) 2.其他工程材料 (1)工程塑料(常用热塑性工程塑料常用热固性工程塑料常用塑料成型方法工程塑料的应用) (2)特种陶瓷(氧化铝陶瓷氮化硅陶瓷碳化硅陶瓷氮化硼陶瓷金属陶瓷) (3)光纤(种类应用) (4)纳米材料(种类应用) 3.热处理 (1)热处理工艺(钢的热处理铸铁热处理有色金属热处理) (2)热处理设备(燃料炉电阻炉真空炉感应加热电源)

机械臂结构设计

工业机械臂结构设计 1)连杆 设计步骤如下: 1.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。

2.点选拉伸特征图标, 在属性管理器中输入:终止条件:两侧对称,拉伸高度值15mm,确定,完成实体造型1。 3.选择“右视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。

4.点选切除-拉伸特征图标,在属性管理器中输入拉伸高度值61mm,确定,完成实体造型2。 5.选择图示边线,点选圆角特征按钮,添加半径为5mm的圆角。完成连杆实体造型如图所示。 2)连接件1 1.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。

2.点选拉伸特征图标, 在属性管理器中输入:终止条件:两侧对称,拉伸高度值4mm,确定,完成实体造型。 3)连接件2 1.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。 2.点选拉伸特征图标,在属性管理器中输入终止条件:两侧对称,拉伸高度值15mm,确定,完成实体造型。 3.选择“上视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。

4.点选切除-拉伸特征图标, 在属性管理器中输入终止条件:给定深度,拉伸高度值12mm,确定,完成实体造型2。 5.选择图示表面作为草图绘制平面,绘制草图1,如图3-69所示。 6.点选切除-拉伸特征图标,在属性管理器中输入拉伸高度值40mm,确定,完成实体造型3。7.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。 8.点选拉伸特征图标,在属性管理器中输入终止条件:两侧对称,拉伸高度值12mm,确定,完成实体造型。 9.选择图示表面作为草图绘制平面,绘制草图1,如图3-69所示。

机械结构设计的方法和基本要求

机械结构设计的方法和基本要求 摘要:随着现代机械制造业的快速发展,对机械产品质量也提出更高的要求。 从现行大多机械设备设计情况看,更注重以自动化、轻量化、精密型以及高效型 等为设计方向。但也有部分设备运行中在噪声、振动问题上较为严重,不仅影响 设备综合性能的发挥,也容易对操作人员带来一定的伤害。通过实践研究发现, 将动态设计方法引入其中,对提升机械结构设计水平可起到明显作用。 关键词:机械结构设计;方法;要求 引言 机械结构设计是在总体设计的基础上,根据所确定的原理方案,确定并绘出 具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或 零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表 面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之 间关系等问题。 1机械零件结构工艺性分析的重要性 日常生产中,在对机器零件进行设计时,要求其结构不仅具体满足使用条件,而且要求结构的工艺性能良好,即具有很强的可行性和经济性。只有满足机械结 构设计的工艺性,才能保障生产地顺利进行,还具有零件装载完整、成本消耗少 等优点,能在市场竞争中处于优势地位。因此机器零件的结构工艺性设计是进行 机械设计的关键,其涉及面广、综合性强,值得深入研究。 此外,重视对机械零件的结构工艺性进行分析,可以促进机械加工工艺过程 合理化,减少工作量,提高工作效率。具体来讲,应该做好以下几方面工作:1)认真分析机械零件的结构对机械零件(尤其是复杂零件)的结构进行分析时,首 先要通过对图纸的详细分析,弄清各零件在产品中的装配关系和作用,再对该零 件指数(包括形状、尺寸等)和性质(如粗糙度等)进行详细分析;2)认真分 析零件加工工艺性在对机械零件的结构进行了详细、认真分析的基础上,搞清楚 各形状和尺寸的设计基准,分析个表面工艺性,检查各加工面设计基准与定位基 准是否重合,避免基准链换算而增加计算工作量。 2.机械结构设计常见问题分析 2.1机械结构在温度变化较大时,会产生较大的尺寸变化 较长零部件或者机械结构在温度变化较大时,会产生较大的尺寸变化,在设 计时应考虑温度变化产生的自由伸缩空间,如可以采用能够自由移动的支座、自 由胀缩的管道结构等。 2.2滑动轴承采用接触式密封结构 由于滑动轴承比滚动轴承的间隙大,而且滑动轴承发生一些磨损后,轴心产 生相应的移动,因此滑动轴承宜采用接触式密封结构。 2.3同一轴上布置两个键时,根据不同的键类型,选择不同的结构方式 半圆键是靠侧面传力的,由于键槽较深,若在同一个横剖面内采用对称布置 两个半圆键,将严重削弱轴的强度,最好将两个半圆键设计在同一轴向母线上, 平键两侧是工作面,上表面与轮毂键槽底面间有间隙,工作时靠轴槽、键及毂槽 的侧面受挤压来传递转矩,不能实现轴上零件的轴向固定,靠上下面压紧产生承 受载荷,连接处的偏压也承受载荷。 2.4对于带传动、链传动错误的结构设计 带传动结构设计时,由于紧边下垂较小,而松边下垂较大,应使紧边在下,

机械原理课程设计,详细.

目录 一、设计题目 (2) 1、牛头刨床的机构运动简图 (2) 2、工作原理 (2) 二、原始数据 (3) 三、机构的设计与分析 (4) 1、齿轮机构的设计 (4) 2、凸轮机构的设计 (10) 3、导杆机构的设计 (16) 四、设计过程中用到的方法和原理 (26) 1、设计过程中用到的方法 (26) 2、设计过程中用到的原理 (26) 五、参考文献 (27) 六、小结 (28)

一、设计题目 ——牛头刨床传动机构 1、牛头刨床的机构运动简图 2、工作原理 牛头刨床是对工件进行平面切削加工的一种通用机床,其传动部分由电动机经 带传动和齿轮传动z 0—z 1 、z 1 、—z 2 ,带动曲柄2作等角速回转。刨床工作时,由导 杆机构2、3、4、5、6带动刨刀作往复运动,刨头右行时,刨刀进行切削,称为工 作行程;刨头左行时,刨刀不进行切削,称为空回行程,刨刀每切削完一次,利用 空回行程的时间,固结在曲柄O 2 轴上的凸轮7通过四杆机构8、9、10与棘轮11和棘爪12带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。

二、原始数据 设计数据分别见表1、表2、表3. 表1 齿轮机构设计数据 设计内容齿轮机构设计 符号n01d01 d02 z0 z1 z1’m01 m1’2n2 单位r/min mm mm mm mm r/min 方案Ⅰ1440 100 300 20 40 10 3.5 8 60 方案Ⅱ1440 100 300 16 40 13 4 10 64 方案Ⅲ1440 100 300 19 50 15 3.5 8 72 表2 凸轮机构设计数据 设计内容凸轮机构设计 符号L O2O4 L O4D φ[α]δ02 δ0 δ01δ0/ r0 r r 摆杆运动规 律单位mm mm °°°°°°mm mm 方案Ⅰ150 130 18 45 205 75 10 70 85 15 等加速等减 速 方案Ⅱ165 150 15 45 210 70 10 70 95 20 余弦加速度方案Ⅲ160 140 18 45 215 75 0 70 90 18 正弦加速度方案Ⅳ155 135 20 45 205 70 10 75 90 20 五次多项式 表3 导杆机构设计数据 设计内容导杆机构尺度综合和运动分析 符号K n2L O2A H L BC 单位r/min mm 方案Ⅰ 1.46 60 110 320 0.25L O3B 方案Ⅱ 1.39 64 90 290 0.3L O3B 方案Ⅲ 1.42 72 115 410 0.36L O3B 表4 机构位置分配表 位置号位置 组 号 学生号 A B C D 1 1 3 6 8/ 10 2 5 8 10 7/ 1/ 4 7 8 10 1 5 7/ 9 12 2 1/ 4 7 8 11 1 3 6 8/ 11 2 5 7/ 9 11 1/ 3 6 8/ 11 3 2 5 7/ 9 12 1/ 4 7 9 12 1 3 6 8/ 12 2 4 7 8 10

机械结构设计准则汇总

机械结构设计准则汇总 第一部分、塑料件 1、概述: 注塑件设计的一般原则: z 充分考虑塑料件的成型工艺性,如流动性; z 塑料件的形状在保证使用要求的前提下,应有利于充模,排气,补缩, 同时能适应高效冷却硬化; z 塑料设计应考虑成型模具的总体结构,特别是抽芯与脱出制品的复杂程 度,同时应充分考虑到模具零件的形状及制造工艺,以便使制品具有较 好的经济性: z 塑料件设计主要内容是零件的形状、尺寸、壁厚、孔、圆角、加强筋、 螺纹、嵌件、表面粗糙度的设计。 1.1、常用塑料介绍 常用的塑料主要有 ABS、AS、PC、PMMA、PS、HIPS、PP、POM 等,其 中常用的透明塑料有 PC、PMMA、PS、AS。高档电子产品的外壳通常采用 ABS+PC;显示屏采用 PC,如采用 PMMA 则需进行表面硬化处理。日常生活中 使用的中底挡电子产品大多使用 HIPS 和 ABS 做外壳,HIPS 因其有较好的抗老 化性能,逐步有取代 ABS 的趋势。 1.2、常见表面处理介绍 表面处理有电镀、喷涂、丝印、移印。ABS、HIPS、PC 料都有较好的表面处 理效果。而 PP 料的表面处理性能较差,通常要做预处理工艺。近几年发展起来 的模内转印技术(IMD)、注塑成型表面装饰技术(IML)、魔术镜(HALF MIRROR)制造技术。 IMD 与 IML 的区别及优势: 1、 IMD 膜片的基材多数为剥离性强的 PET,而 IML 的膜片多数为 PC。 2、 IMD 注塑时只是膜片上的油墨跟树脂接合,而 IML 是整个膜片履在树 脂上。 9 3、 IMD 是通过送膜机器自动输送定位,IML 是通过人工操作手工挂。 1.3、外形设计 对于塑料件,如外形设计错误,很可能造成模具报废,所以要特别小心。外 形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。 现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上 上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响, 造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽 量使产品:面壳>底壳。 一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, 一般选 0.5%。 底壳成型缩水较小,所以缩水率选择较小,一般选 0.4%。

【精品毕设】简易机械手机械结构设计

机电工程学院 《专业综合课程设计》 说明书 课题名称:简易机械手机械机构设计 学生姓名:沈柳根学号:20110611119 专业:机械电子工程班级:11机电 成绩:指导教师签字: 2015年1月5日

摘要 简易机械手是工业机械手的简化,功能相似,而工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械手是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。工业机械手设计是机械制造、机械设计和机械电子工程等专业的一个重要教学环节,是学完技术基础课及有关专业课以后的一次专业课程内容得综合设计。通过设计提高学生的机械分析与综合能力、机械结构设计的能力、机电液一体化系统设计的能力,掌握实现生产过程自动化的设计方法。 通过对于气动机械手的设计,展现了各个相关学科知识在这里的整合,有利于理解专业知识。 关键词:简易机械手;结构设计;气动

目录 摘要....................................................... 错误!未定义书签。 1 设计任务介绍及意义 (1) 1.1设计任务意义: (1) 1.2设计任务要求介绍: (1) 2 总体方案设计 (3) 2.1 结构分析 (3) 2.3 设计简介 (3) 3 机械传动结构设计 (5) 3.1传动结构总体设计 (5) 3.2手指气缸的设计 (6) 3.3纵向气缸的设计 (12) 3.4横向气缸的设计 (13) 4最终图纸 (15) 4.1装配图 (15) 5 总结 (16) 参考文献 (17)

工业机器人球坐标型机械臂结构设计毕业设计

工业机器人球坐标型机械臂结构设计毕业论文1 绪论 1.1 课题背景 工业机器人在现代生产中应用日益广泛,作用越来越重要,工业机械臂尤为如此,因此设计实用、高效的机械臂对于机械设计者来说是义不容辞的责任,对于毕业的大学生也是一个实时、富有意义和挑战的课题。 工业机器人自20世纪60年代问世以来,其研究和开发在工业发达国家中一直备受青睐。尽管各国对机器人的定义不尽相同,但都有可编程、拟人化、通用性等特点,是一种融机械工程、电子工程、计算机技术、自动控制技术等多学科为一体的高新技术产品。随着相关支撑学科的长足发展,工业机器人的研究和开发正在突飞猛进,其应用领域进一步扩大。我国机器人技术的研究工作起步较晚,虽已取得较大发展,但较之发达国家的水平仍有较大距离,应积极探索适合我国国情的工业机器人应用思路,开发低成本、高性价比的实用型工业机器人。 机器人自诞生之日起,便显示出其强大的生命力,机器人首先在工业生产中得到了广泛应用,并给传统工业带来了质的飞跃。它不仅提高了传统产业的自动化程度,提高了劳动生产率而且还推动了以资源消耗低环境污染少为特征的新型工业的诞生随着人类在机械工程、电气工程、微电子技术、计算机技术、控制论、传感技术、信息学、声学、仿生学、及人工智能等学科领域的飞速发展,机器人技术的应用也正在向农业、林业、畜牧、养殖、海洋开发、宇宙探索、国防建设、安全救济、生物医学、服务娱乐等新领域拓展开来,并已取得显著进展,机器人技术已成为高科技应用领域中的重要组成部分。 机器人主要有两大类:用于制造环境下的工业机器人和用于非制造环境下的服务机器人。工业机器人是一种对生产环境和生产条件具有较强的适应性和灵活性的柔性自动化装备,它主要用于现代制造业中代替人们从事繁重、重复单调、环境恶劣危险、人做不了或做不好的工作,从而减轻了人们的劳动强度,改善了劳动环境,并有效地

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

机械设计课程设计范本)

机械设计基础课程设计 说明书 题目: 院(系):电子信息工程系 专业: 学生姓名: 组员: 学号:2009219754106 指导教师:邓小林 2013年12月28日

目录 作品内容简介 (2) 1 研制背景及意义 (3) 2 结构特点 (3) 2.1 绞碎机的结构 (5) 2.2 压榨机的结构 (5) 3 工作原理 (6) 4 性能参数 (7) 5 创新点 (8) 6 作品的应用前景和推广价值 (8) 7 参考文献 (9) 附图: (10)

作品内容简介 作为日常生活中重要的家用辅助机器的绞碎机和压榨机,在我们日常生活中发挥着越来越重要的作用。目前市面上的绞碎机和压榨器往往只具有绞碎或者压榨的功能,针对上述不足,我们小组经过深入研究分析,运用所学专业知识,在老师的指导下,设计制作了一款同时具备绞碎和压榨功能的绞碎压榨机。 该机主要由螺杆、四叶刀和绞碎筒体组成绞碎系统实现绞碎功能。由双旋向螺杆、压榨活塞和压榨筒体组成的差动螺旋机构实现压榨功能。该机可同时实现绞碎和压榨功能,在具备上述功能的基础上,可根据需要,随时拆开,单独作为绞碎机和压榨机使用。 该机具有结构巧妙、拆装方便、使用方便简单、工作稳定可靠、效率高等特点。

1 研制背景及意义 随着我国社会经济又好又快的发展,人民生活水平的日益提高,人们开始更多地关心注重生活的质量,追求高品质的生活。可在我们的日常生活中,许多不法生产商为了谋取暴利,制造假冒伪劣产品,特别是假冒伪劣食品对人民的生命安全构成巨大的威胁更无法谈及高品质生活。例如:阴霾笼罩的食品市场中的劣质肉馅、含化学色素的合成果汁和化学物质合成的速冲豆浆等。这无疑是阻挡人们追求高品质生活和建设社会主义和谐社会的巨大绊脚石。针对当前的实际情况,联系大赛“绿色、环保、创新”的主题,通过走进社会,深入到群众中,我们研究小组经过科学的调查研究,运用所学的专业知识,在老师的指导下,决定设计一台家用绞碎压榨机器。 目前,市场上手动的绞碎和压榨机都是分离的。其中,大部分的绞碎机是针对中小企业或者作坊设计的,结构多为变螺距锥形螺杆与相应的锥筒配合,使用电动机带动实现绞碎功能,但是结构复杂不利于维修,体积大、功耗大不适合家庭使用。压榨机则多为在密闭的空间里通入压缩空气能实现高效率、大规模压榨,但是需要辅助的空气压缩机增大机器设备的体积、功耗大,噪声大不适宜小规模的家用压榨。我们的作品是针对家庭绞碎和压榨,实现全手动驱动而设计的两用家庭绞碎压榨机,具有体积小、噪声小、绿色环保等特点。 该机器不但能够为人们提供新鲜的肉馅,而且能够提供各种新鲜的果汁等。该机器不仅能够对水果、豆类、瓜类和肉类等进行单独压榨或者绞碎,而且能够对其进行先绞碎后压榨。它是把绞碎和压榨功能集为一体的机械产品,具有体积小、效率高、制造成本低、安全可靠和绿色环保等的特点。它适用于广大的普通家庭,操作简单,使用方便。因此该产品具有较大的市场竞争力和广阔的市场空间。 2 结构特点 如图2-1所示是按1:1所绘制的绞碎压榨机三维模型,设计尺寸规格为304mm*476mm*245mm。图2-2为绞碎压榨机的分解图。绞碎压榨机由绞碎机构、压榨机构和机架三部分部分组成。绞碎机构与压榨机构间通过绞碎筒体右端盖14和连接螺母套筒15实现连接,机架11、17与机身8、20通过内六角螺钉连接。

机械臂控制系统的设计

机械臂控制系统的设计 1 引言 近年来,随着制造业在我国的高速发展,工业机器人技术也得到了迅速的发展。根据负载的大小可以将机械臂分为大型、中型、小型三类。大型机械臂主要用于搬运、码垛、装配等负载较重的场合;中小型机械臂主要用于焊接、喷漆、检测等负载较小的场合。随着国外工业机器人技术的不断发展,尤其是一些中小型机器人,它们具有体积小、质量轻、精度高、控制可靠的特点,甚至研发出更为轻巧的控制箱,可以在工作区域随时移动,这样大大方便了工作人员的操作。在工业机器人的应用中最常见的是六自由度的机械臂。它是由6个独立的旋转关节串联形成的一种工业机器人,每个关节都有各自独立的控制系统。 2机械臂硬件系统设计 2.1 机械臂构型的选择 要使机器臂的抓持器能够以准确的位置和姿态移动到给定点,这就要求机器人具有一定数量的自由度。机器臂的自由度是设计的关键参数,其数目应该与所要完成的任务相匹配。为了使安装在双轮自平衡机器人上的机械臂能够具有完善的功能,能够完成复杂的任务,将其自由度数目定为6个,这样抓持器就可以达到空间中的任意位姿,并且不会出现冗余问题。在确定自由度后,就可以合理的布置各关节来分配这些自由度了。 由于计算数值解远比封闭解费时,数值解很难用于实时控制,这样,后3个关节就确定了末端执行器的姿态,而前3个关节确定腕关节原点的位置。采用这种方法设计的机械臂可以认为是由定位结构及其后面串联的定向结构或手腕组成的。这样设计出来的机器人都具有封闭解。另外,定位结构都采用简单结构连杆转角为0或90°的形式,连杆长度可以不同,但是连杆偏距都为0,这样的结构会使推倒逆解时计算简单。 定位机构是涉及形式主要有以下几种:SCARA型机械臂,直角坐标型机械臂,圆柱坐标型机械臂,极坐标型机械臂,关节坐标型机械臂等。 SCARA机械臂是平面关节型,不能满足本文对机械臂周边3维空间任意抓取的要求;直角坐标型机械臂投影面积较大,工作空间小;极坐标方式需要线性移

机械结构设计基本原则

机械结构设计基本原则 目录 一、改善力学性能的结构设计原则... (一)载荷分担原则... (二)均匀受载原则(载荷均布)... (三)附加力自平衡原则(载荷平衡)... (四)减小应力集中... (五)提高接触强度原则... (六)提高刚度原则... (七)变形协调原则... (八)等强度原则... (九)其它... 二、改善制造工艺性的结构设计原则... (一)焊接件结构设计原则... (二)铸件结构设计原则... (三)切削件结构设计原则... (四)锻件结构设计原则... (五)薄板件结构设计原则... (六)其它... 三、提高装配质量的结构设计原则... (一)便于运送原则... (二)便于方位识别原则... (三)方便抓取原则... (四)方便定位原则... (五)简化装配操作原则...

(六)可装配原则... (七)各装配面依次装配原则... (八)简单联接件原则... (九)便于拆卸原则... 四、提高精度的结构设计原则... (一)阿贝(Abbe)原则... (二)误差校正与补偿... (三)误差均化... (四)误差配置... (五)位置精确微调... 五、宜人化结构设计原则... (一)减小操作者疲劳的结构... (二)易于发力的结构... (三)减少操作者观察错误的结构... (四)减少操作者操作错误的结构... (五)考虑人体的振动特性的结构及减少操作环境噪声的结构0. (六)减弱工作环境光线照度的结构... (七)保证合适工作环境温度的结构... 六、其它机械结构设计要求简介... (一)减轻腐蚀的结构... (二)符合材料热胀冷缩性质的结构... 讨论题...

工业机器人球坐标型机械臂结构设计-论文正文

工业机器人球坐标机械臂结构设计 摘要 在装配机器人中,球坐标型装配机器人(极坐标型)是应用非常广泛的一种装配机器人。本文设计的工业机器人既可以用于实际生产,又可以用于教学实验和科学研究。用于实际生产,它能够满足装配作业内容改变频繁的要求,用于教学实验,它能够使人更直观地了解机器人机构组成、动作原理等,所以开发球坐标型机器人具有广泛的实际和应用前景,本课题的研究工作正是在这样的背景下提出来的。 本文设计的工业机器人球坐标型机械臂具有下列特点:通用性好、重复定位精度高、体积小、重量轻、外形美观、适于观察、成本低,对其本体的可行方案进行了充分的论证后,设计成具有三自由度的结构,由机身、大臂及小臂组成,行星齿轮减速器、同步齿型带、丝杠螺母等组成了工业机器人球坐标型机械臂简单可靠的传动方案,该机器人的三个关节均选用直流伺服电机驱动。 关键词工业机器人;极坐标型机械臂;球坐标型机械臂/结构设计

Industrial Robot Spherical Coordinates Robotic Arm Structure Design ABSTRCT In assembly robots, ball coordinates type assembly robot (namely polar type) is a kind of very extensive assembly robot. The paper presents the desion of industrial robot can be used either for practical production,and can be used in experiment teaching and scientific research.Applied to practical production.It can satisfy the assembly work content change frequent requirements,used in teaching experiments.It can make a person more intuitively understand robot mechanism composition,action principle,etc.Therefore, the development goals coordinates type of robot has extensive practical and application prospects of this topic research work,and it is in this context brought out. The paper presents the design of industrial robot ball coordinates type has the following characteristics: the mechanical arm high universality,repositioning high precision,small volume,light weight,good appearance,suitable for observation,low cost and feasible scheme for its ontology adequate argument,designed to have three degrees of freedom,the fuselage,big structure composed,planets and forearm arm,and synchronizing gear reducer cog-type belt,screw nuts etc the industrial robot mechanical arm ball coordinates type a simple and reliable transmission scheme,the robot are chosen for the three joint dc servo motor driver. KEY WORDS Industrial robot/polar type mechanical arm/ball coordinates type mechanical arm/structure design

相关文档