文档库 最新最全的文档下载
当前位置:文档库 › A review of heat pipe systems for heat recovery and renewable energy applications

A review of heat pipe systems for heat recovery and renewable energy applications

A review of heat pipe systems for heat recovery and renewable energy applications
A review of heat pipe systems for heat recovery and renewable energy applications

Renewable and Sustainable Energy Reviews 16 (2012) 2249–2259

Contents lists available at SciVerse ScienceDirect

Renewable and Sustainable Energy

Reviews

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /r s e

r

A review of heat pipe systems for heat recovery and renewable energy applications

Hassam Nasarullah Chaudhry a ,Ben Richard Hughes a ,?,Saud Abdul Ghani b

a Dubai Energy Research Group,School of Engineering and Physical Sciences,Heriot-Watt University,Dubai,United Ara

b Emirates b

Department of Mechanical and Industrial Engineering,Qatar University,Doha,Qatar,United Arab Emirates

a r t i c l e

i n f o

Article history:

Received 27June 2011Accepted 9January 2012

Available online 18 February 2012

Keywords:

Computational ?uid dynamics Heat pipe

Heat recovery Merit No.

Operating temperature Thermal diode Sorption

a b s t r a c t

Advancements into the computational studies have increased the development of heat pipe arrange-ments,displaying multiphase ?ow regimes and highlighting the broad scope of the respective technology for utilization in passive and active applications.The purpose of this review is to evaluate current heat pipe systems for heat recovery and renewable applications utility.Basic features and limitations are outlined and theoretical comparisons are drawn with respect to the operating temperature pro?les for the reviewed industrial systems.Working ?uids are compared on the basis of the ?gure of merit for the range of temperatures.The review established that standard tubular heat pipe systems present the largest operating temperature range in comparison to other systems and therefore offer viable potential for optimization and integration into renewable energy systems.

? 2012 Elsevier Ltd. All rights reserved.

Contents 1.Introduction ..........................................................................................................................................22492.The role of heat pipes in heat recovery and energy conservation ...................................................................................22503.

Conventional heat pipe systems .....................................................................................................................22523.1.Tubular heat pipes ............................................................................................................................22523.2.Variable conductance heat pipes .............................................................................................................22523.3.Thermal diodes ...............................................................................................................................22533.4.Pulsating heat pipes ..........................................................................................................................22533.5.Loop heat pipes (LHPs)and capillary pumped loops (CPLs).................................................................................22543.6.Micro heat pipes ..............................................................................................................................22543.7.Sorption heat pipes https://www.wendangku.net/doc/fa12730400.html,putational simulation associated with heat pipes ..............................................................................................22555.Results summary .....................................................................................................................................22576.Discussion ............................................................................................................................................22577.

Conclusion............................................................................................................................................2258Acknowledgements ..................................................................................................................................2259References . (2259)

1.Introduction

A heat pipe is a simple device of very high thermal conduc-tivity with no moving parts that can transport large quantities of heat ef?ciently over large distances fundamentally at an invariable

?Corresponding author.

E-mail address:B.R.Hughes@https://www.wendangku.net/doc/fa12730400.html, (B.R.Hughes).

temperature without requiring any external electricity input.A heat pipe is essentially a conserved slender tube containing a wick structure lined on the inner surface and a small amount of ?uid such as water at the saturated state.It is composed of three sec-tions:the evaporator section at one end,where heat is absorbed and the ?uid is vaporized;a condenser section at the other end,where the vapor is condensed and heat is rejected;and the adia-batic section in between,where the vapor and the liquid phases of the ?uid ?ow in opposite directions through the core and the wick,

1364-0321/$–see front matter ? 2012 Elsevier Ltd. All rights reserved.doi:10.1016/j.rser.2012.01.038

2250H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews 16 (2012) 2249–

2259

Fig.1.Basic working principle associated with a heat pipe (a)isometric view and (b)sectional view.

respectively,to complete the cycle with no signi?cant heat transfer between the ?uid and the surrounding medium.

The operating pressure and the type of ?uid inside the heat pipe depend largely on the operating temperature of the heat pipe.For example,if a heat pipe with water as a working ?uid is designed to remove heat at 343K,the pressure inside the heat pipe must be maintained at 31.2kPa,which is the boiling pressure of water at this temperature.Though water is a suitable ?uid to utilize in the moderate temperature range encountered in electronic equipment,various other ?uids are used in the manufacturing of heat pipes to allow them to be used in cryogenic as well as high-temperature applications.Another characteristic while selecting the working ?uid is the property of surface tension,which must be high in order to increase the capillary effect and being compatible with the wick substance,as well as being chemically stable,readily available,non-toxic and inexpensive [1].Fig.1displays the basic working sections of a heat pipe.

Heat pipes are utilized in a wide variety of applications which encounter temperature variations in a heat transfer process.The effectual thermal conductivity of a heat pipe facilitates heat to be transported at high ef?ciency over large distances.Consequently,heat pipes have been expansively used in various energy storage systems due to their suitability in the role of heat delivery and passive operation.The unique method of operation of heat pipes including phase change materials (PCMs)provide a better ef?ciency pattern over conventional heat exchangers in major operations including temperature strati?cation in hot water storage tanks.Another general utility of heat pipes include solar collectors where it allows static or ?owing water to be heated by the method of transferring the solar thermal energy directly from the sun [2].

2.The role of heat pipes in heat recovery and energy conservation

The demand for utilizing heat pipes in renewable energy systems along with building heat recovery,highlighting novel concepts and requirements is increasing.Several terrestrial appli-cations ranging from solar concentrators to heat exchangers make use of heat pipes for higher and more ef?cient heat transfer rates.Heat pipes offer distinct advantages over other thermal transfer apparatus due to its passive and compact method of operation along with the various commercial sizes available ranging from micro to a more extensive array making the device suitable for most applications requiring a temperature differential.

El-Baky and Mohamed [3]investigated the overall effectiveness of utilizing heat pipe heat exchangers for heat recovery through external air-conditioning systems in buildings in order to reduce the cooling load.The thermal performance of the system was

analyzed for varying fresh air inlet mass ?ow rates and tem-peratures stream.A mathematical model was developed based on the experimental set-up which included the two air ducts of 0.3m ×0.22m sectional areas along with the heat pipe arrange-ment comprising of 25copper tubes with the evaporator and condenser section of 0.2m and the adiabatic section of 0.1m respectively.R-11was used as a working ?uid at a saturation temperature of 303K.The ?ndings of the study indicated that effectiveness and heat transfer rates are increased with the increase in fresh air inlet temperature.The study also revealed that the mass ?ow rate ratio has a signi?cant effect of temperature change of fresh air and heat recovery rate is increased by approx-imately 85%with the increase in fresh air inlet temperature.Fig.2describes the schematic of the heat exchanger.

Noie-Baghban and Majideian [4]carried out work on the design and build of a heat pipe arrangement to be installed in a heat pipe heat exchanger for the purpose of heat recovery in hospital and lab-oratory buildings where high air change is a primary requirement.The experimental apparatus include a test-rig comprising of two fans to deliver a ?ow rate of 0.103m 3/s through evaporator and condenser.Eight copper pipes with an outside diameter of 15mm,inside diameter of 9mm and length of 600mm were utilized along with three types of wicks including the 50mesh nickel,250mesh nickel and 100mesh stainless steel.The ?gure of merit of the type of working ?uid was established.K-type thermocouples were used for temperature measurements.A mathematical model was estab-lished to validate the experimental ?ndings.The work concluded a good correlation between the mathematical and experimental results with respect to the heat transfer rate in the evaporator sec-tion of 100W.Further,the study highlighted the importance of utilizing ?nned heat pipes and increasing the number of rows along with insulation capability in having a major impact in increasing the overall effectiveness of the system.

Various renewable applications are highlighted in this review in order to understand the role of heat pipes to a broader extent.A gas–gas heat pipe heat exchanger consists of a collection of similar heat pipes aligned in a tubular arrangement either vertically,hori-zontally or aligned at an angle.The evaporation and condensation working principal of the device in?uences the heat transfer from the countercurrent gas stream which recovers the heat and trans-ports it to the pre-heated air stream.Heat pipe heat exchangers are very useful in industrial heat recovery applications due to its static operation and limited auxiliary power requirements along with its entirely reversible process.

Yau and Ahmadzadehtalatapeh [5]reviewed the utility of horizontal pipe heat exchangers as an energy recovery unit in air conditioning systems in tropical climates.The review included literature from previously published work on the vertical and

H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews 16 (2012) 2249–2259

2251

Fig.2.Heat pipe heat exchanger design [3].

horizontal orientations of heat pipes respectively.The work con-cluded that the application of horizontal heat pipe heat exchangers for both orientations in terms of dehumidi?cation purposes and energy saving is recommended for tropical climates as a highly ef?cient heat recovery unit.The work further highlighted the transient simulation of installing double heat pipe heat exchanger units in heating,ventilation and air-conditioning systems for reducing energy consumption rates in tropical climatic behavior as displayed in Fig.3.

One of the most widespread commercial uses of heat pipes is associated with solar collectors in order to transfer the direct and diffuse solar radiation to the water stream.Hussein et al.[6]carried out test work on the comparison of three cross-sectional geometries of wickless heat pipes with varying ?ll ratios in order to understand the impact of its performance on ?at plate solar col-lectors in Cairo,Egypt.The manufacturing group comprised of heat pipe cross-sections which included circular,elliptical and semi-circular arrangement.Experiments were conducted on the group by incorporating the heat pipes into the solar collector array and the

comparison results indicated that the elliptical design gave a better performance at 10%water ?ll ratios with the circular cross-section design proving optimum at 20%water ?ll ratio respectively.

Rittidech and Wannapakne [7]carried out extensive work on determining the overall performance capability of a system com-prising of a Closed-End Oscillating Heat Pipe (CEOHP)incorporated into a ?at plate solar collector.The thermocouple based experi-mental test apparatus was inclined at 18degrees and comprised of a 2m zinc sheet coupled with 70m of CEOHP copper tubes.The working ?uid comprised of R134a at an initial ?ll ratio of 50%.Fig.4describes the schematic of the test-rig where A1–A6is the thermo-junction on the collecting plate and G1–G2is the thermo-junction position on the glass plate respectively.A numerical model was built to calculate the performance of the system with respect to the plate temperature and ambient temperature and an overall thermal ef?ciency of 62%was obtained.The study highlighted the advan-tages of using CEOHP system in comparison to conventional heat pipe systems on solar collectors in terms of minimal corrosion rate and elimination of freezing during

winter.

Fig.3.Schematic of double heat pipe systems in the heating,ventilation and air-conditioning [5].

2252H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews 16 (2012) 2249–

2259

Fig.4.Outline of the thermo-junction positions on collecting and glass plates in the test rig [7].

3.Conventional heat pipe systems

Various types of heat pipes are commercially available,in terms of the method of liquid transport from the condenser to the evaporator and functionality.This review provides a source of infor-mation based on the current published literature on the different types of existing heat pipes which are utilized for a variety of appli-cations requiring moderate to high temperature ?uctuations.

3.1.Tubular heat pipes

Conventional tubular heat pipes as displayed in Fig.5are the most uncomplicated and accepted type of passive heat transfer devices commercially for use in many terrestrial applications for heat transport over variable distances.The standard operational principle is based on capillary action and the performance is mea-sured in equivalent thermal conductivity.These types can also be used as heat spreaders to isothermalize apparatus where homoge-neous temperature patterns are preferred.

Liao et al.[8]analyzed the thermal performance of a smooth carbon steel-water heat pipe in comparison to its internally ?nned equivalent.Various in?uencing parameters including the inclina-tion angle,working temperatures and heat ?ux formed the basis of the investigation.The experimental set-up comprised of a

?ber

Fig.5.Schematic of a tubular heat pipe.

glass coated carbon steel pipe with a ?at band heater for provid-ing heat ?ux to the evaporator section.The apparatus was placed on an adjustable workbench for alteration of inclination angles and thermocouples were linked to the data logging system for output results.The work revealed that under experimental con-ditions,the heat transfer coef?cient of the internally ?nned heat pipe was increased by 50–100%in comparison to the smooth heat pipe respectively.

Joudi and Witwit [9]carried out work to improve the ther-mal performance of gravity assisted conventional wickless heat pipes.Experimental study was carried out on the modi?ed cop-per heat pipe with the introduction of an adiabatic separator.The heat pipe under test was ?xed in a rig and coupled with several measuring devices including a digital ammeter and voltmeter in order to calculate the input power.The heat pipe was insulated with glass wool to minimize heat losses to the environment.The condenser ?ow rate was kept constant and the temperature was monitored at 23±2?C and the power input was increased steadily to obtain gradual thermocouple readings.The outcome from the study highlighted useful results with respect to the addition of an adiabatic separator in the heat pipe.The study revealed an approx-imate increase of 35%in heat transfer coef?cient in comparison to conventional heat pipes.The investigation concluded that the addi-tion of an adiabatic separator eradicated the effect of inclination angles above 45?and decreased the heat pipe working temperature respectively.

3.2.Variable conductance heat pipes

Variable Conductance Heat Pipes (VCHPs)are widely utilized in many applications including conventional electronics temperature control.A variable conductance heat pipe or gas-loaded heat pipe has the capability to maintain a device mounted at the evaporator at a near constant temperature,independent of the amount of power being generated by the device.The most familiar VCHP systems include passive or active feedback-controlled system,both having the capability to control the source of heat at the evaporator end.However,a greater temperature control is obtained using the active system than the comparable passive system.Fig.6displays

H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews 16 (2012) 2249–2259

2253

Fig.6.Schematic of a cold-reservoir variable conductance heat pipe.

the schematic of a cold-reservoir variable conductance heat pipe [2].

Sauciuc et al.[10]analyzed the operation of a VCHP for con-trolling the temperature of a closed system arrangement of solar collectors.The experimental apparatus included a copper/water heat pipe out?tted with a cold reservoir and used air as the Non-Condensable Gas (NCG).The respective thermodynamic prop-erties of water were analyzed and the study was performed at the vapor–NCG interface for various operating pressures.The results indicated that the starting point of the VCHP function is signi?-cantly based on the amount of NCG content in the heat pipe and on the superheat required for boiling.

3.3.Thermal diodes

A simple thermal diode can be a thermosyphon in which the gravitational force supplies the irregularity when positioned appro-priately.A variety of aerospace and ground based applications make use of thermal diodes which includes spacecrafts.The device is also used in modern renewable energy systems particularly where heat transfer in one direction is a requirement.However,due to the high initial capital expenditure and complexity in retro?tting such sys-tems,commercialization and interest has increased only steadily.Fig.7displays the schematic of a liquid trap diode in the reverse mode [2].

Fang and Xia [11]studied the thermal performance of a novel Bidirectional Partition Fluid Thermal Diode (BPFTD)for the func-tion of providing solar heating and passive cooling respectively.The experimental analysis was carried out by testing the BPFTD with two identical hot boxes with similar wall con?guration and comparisons were established with a water-wall of optimum thick-ness.Test results yielded that the BPFTD had a higher

heating

Fig.7.Schematic of a reverse mode liquid trap diode.

performance compared to its water-wall counterpart with addi-tional ?ndings con?rming an increase in heat supply of around 140%when a single glazing cover without night ventilation is uti-lized when compared to the water-wall respectively.Varga et al.[12]carried out tests to evaluate the performance of thermal diode panels incorporating heat pipes for passive cooling in buildings in Portugal.The manufactured experimental set-up included nine copper/water bent heat pipes with a diameter of 12.7mm welded to aluminum sheets along with the thermal diode panels respec-tively.The thermal and physical properties were tested using a ?nite element heat transfer model combined with an optimization procedure for both forward and backward heat transfer.The work concluded the agreement of the applied model with the experimen-tal procedure.Further,the results revealed a signi?cant increase in the forward heat transfer results in comparison to its backward counterpart.

Rhee et al.[13]experimentally investigated the temperature strati?cation in a solar hot water storage tank.The experiment pro-posed four different storage tank designs involving thermal diodes for its operation.The results of the test examined that the so-called express-elevator design displayed the highest amount of strati?-cation during both heating and cooling periods in comparison to the other proposed designs.Consequently,the work concluded the bright future scope of optimizing the geometric parameters of ther-mal diodes to obtain an improved rate of strati?cation.Omer et al.[14]analyzed a thermoelectric refrigeration system integrated with thermal diodes to study the performance of PCMs.The fabricated system built for test included a 150W thermoelectric refrigeration system.The performance of the proposed system was compared to another similar system without integrated thermal diodes.The results revealed the feasibility of utilizing thermal diodes between the thermoelectric cells and the PCM in order to prevent heat leak-age.The results also displayed an improved performance of the system incorporating thermal diodes in the storage ability of the thermoelectric refrigeration system in comparison to its counter-part.

3.4.Pulsating heat pipes

A pulsating (oscillating)heat pipe consists of circuitous channel,evacuated and ?lled with the working ?uid.Heat is transported through the latent heat of vapor and through the sensible heat transferred by the liquid slugs.When the tube on the evaporator section of the heat pipe is put under thermal load,the working ?uid evaporates thus increasing the vapor pressure and formation of bubbles and transferring the liquid towards the condenser sec-tion where cooling results in a reduction of vapor pressure and condensation of bubbles in the section respectively.The increase and decrease of bubbles in the two sections lead to an oscillating or pulsating motion within the capillary tube.Qu and Ma [15]investi-gated the principal factors involved in startup of oscillating motions in a pulsating heat pipe including superheat and heat ?ux level on the evaporator section and the cavity size on capillary inner sur-face.The experimental investigation comprised of a glass prototype with a total length of 300mm and the evaporator section of 90mm along the constant inlet temperature of 296K.The results of the theoretical analysis con?rmed that the performance at startup can be improved by controlling the vapor bubble type and utilizing a rougher surface.The results also showed that the globe-type vapor bubble needs smaller superheat compared to the taylor-type vapor bubble respectively.

Wang et al.[16]studied the thermal performance of heat trans-port of the four-turn pulsating heat pipe by comparing various working ?uids with pure water.The experimental analyses were based on two operating orientations (vertical and horizontal)of a copper tube with an external diameter of 2.5mm.FS-39E

2254H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews 16 (2012) 2249–

2259

Fig.8.Schematic of a pulsating heat pipe.

microcapsule and Al 2O 3nano-?uid were used for the test.The results of the investigation proved that the functional working ?uids increase the heat-transport ability of the heat pipe when compared with pure water with the FS-39E microcapsule being the best working ?uid in the horizontal orientation.Fig.8describes the basic operation of a pulsating heat pipe [2].

Yang et al.[17]carried out work on estimating the thermal performance of closed loop pulsating heat pipes by conducting experiments on copper tubes of varying inner diameters and ?lling ratios respectively.The system comprised of 40copper tubes with the inner diameters of 1mm and 2mm and the vertical bottom heated,vertical top heated and the horizontal orientations were compared.The investigation ?ndings revealed that the closed loop pulsating heat pipe with the vertical bottom heating gives the best performance with 2mm inner diameter and 50%?ll ratio respec-tively while the orientation effects were negligible for the 1mm inner diameter tube.

3.5.Loop heat pipes (LHPs)and capillary pumped loops (CPLs)

Loop heat pipes (LHP)employ the characteristics of a conven-tional heat pipe but have an advantage in terms of its ability to transfer thermal energy over a larger space without any constraint on the path of the liquid or vapor lines and also in terms of a greater heat ?ux potential and robust operation [2].For this reason,LHPs are fast becoming typical devices to meet the global demand of con-trol of thermal dif?culties of high-end electronics.A capillary force in the evaporator section drives the operation for the LHP requiring no auxiliary power input.Fig.9displays the operating principle of a loop heat pipe [2].

Wang et al.[18]conducted experiments based on a ?at LHP under low-heat power input to understand the control of com-pensation chamber and the evaporator on the start-up behavior.The respective testing system comprised of locating the standard K-type thermocouples,DC stabilized power supply along with an isothermal cooling water tank for experimentation.The results indicated that the LHP has the potential of start-up under low heat power of 6W.The results also con?rmed that the LHP has a

better

Fig.9.Schematic of a loop heat pipe arrangement.

start-up performance under low-power with an increasing thick-ness of the capillary interlayer.

Zhao et al.[19]carried out work on developing a novel LHP solar water heating system for a characteristic dwelling in Beijing in order to facilitate ef?cient transportation and conversion of solar heat into hot water.A numerical model was developed to monitor the overall thermal performance of the system and various param-eters such as the heat pipe loop and the fac

?ade integrated solar absorber were considered for in?uencing results.The ?ndings indi-cate that the system ef?ciency decreases with increasing the mean temperature of water ?ow and ef?ciency of the thermal system increases with increase in the ambient temperature.The results further con?rmed that the optimum operating temperature for the heat pipe is around 345K.

Kaya and Goldak [20]investigated the heat and mass transport in order to study the capillary porous structure of the LHP.A ?nite element method for the evaporator cross-section based numerical code was developed to solve the mass and energy equations and the solutions included an all-liquid and vapor–liquid wick cases.The results highlighted that at high heat loads,the boiling initi-ation under the evaporating meniscus is very unlikely since the liquid contact with the ?n decreases signi?cantly.The investiga-tion concluded that in order to increase the heat transfer limit for boiling,the elimination of non-condensable gases along with a very good contact at the ?n–wick interface is essential.

3.6.Micro heat pipes

Micro heat pipes (MHPs)are used in applications where small to medium heat transfer rates are desirable.The rate of cooling achieved from the MHP is signi?cantly lower compared to forced convection systems.However,the capability to control tempera-tures in environments of varying heat loads along with its compact size allows it to be utilized in various applications [2].Do et al.[21]predicted the thermal performance of a ?at micro heat pipe comprising of a rectangular grooved wick structure.A mathe-matical model was developed taking the in?uence of the contact angle,liquid–vapor interfacial shear stress and the amount of liquid charge.One-dimensional conduction equation for the wall and the augmented Young–Laplace equation were solved.The examined results revealed that the heat transport rate increases dif?dently

H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews 16 (2012) 2249–2259

2255

Fig.10.Schematic of a micro heat pipe.

as the liquid charge increases.The ?ndings displayed the optimiza-tion of the grooved wick structure highlighting the maximum heat transport rate of 128W under the optimum conditions of the height and groove width respectively.Fig.10displays the schematic of a micro heat pipe.

Hung and Seng [22]carried out work on studying the thermal performance in terms of the heat transport capability of star-groove micro-heat pipes particularity with the in?uence of the geometri-cal design.A one-dimensional steady state numerical model was developed to solve the continuity,momentum and energy equa-tions of the liquid and gas phases.The comparison results of the study yielded that the star-groove micro-heat pipe have a better performance characteristic compared to the conventional polygonal micro-heat pipe due to its ability to provide a higher capillary rate by the ?exibility in reducing the corner apex angle.Lefèvre and Lallemand [23]investigated the heat transport capa-bility of a ?at MHP with the location of heat sources and heat sinks.A hydrodynamic 2D model containing a porous wick as a medium to behave as a capillary structure was incorporated with a 3D thermal model to study the heat conduction of both the liquid and vapor phases.The thermal model evaluated the capa-bility to calculate the heat ?ux generated solely by the wall heat conductance.

3.7.Sorption heat pipes

The sorption heat pipe (SHP)is a device which utilizes the sorp-tion phenomenon on the heat pipe to improve the heat transport ability.Similar to the LHP,SHP can also be utilized in space applica-tions since it comprises of similar evaporator and condenser along with the working ?uid.Furthermore,the literature highlights that the integrity of the sorption cooler with a LHP provides higher heat ?uxes and evaporator thermal resistances respectively.Fig.11dis-plays the sorption heat pipe highlighting the basic components [2].

Vasiliev and Vasiliev Jr.[24]conducted an in-depth study on sorption heat pipes as a heat transfer device and highlighted the potential in order to be utilized in cryogenic ?uid storage due to its high heat transport ability.The investigation was based on an experimental set-up,comprising of a sorption cooler and a cap-illary pumped evaporator for both sorption and loop heat pipe arrangement.The results of the experiment revealed that the heat transfer by the sorption heat pipe was in excess of 12kW/(m 2K),an increase of three times in comparison to a loop heat pipe

respectively.

Fig.11.Schematic of a sorption heat pipe.

https://www.wendangku.net/doc/fa12730400.html,putational simulation associated with heat pipes

From extensive literature,computational studies developed on various heat pipe arrangements,displaying two-phase ?ow pat-terns highlight the broad scope of the respective technology for use in various passive and active applications as reviewed earlier.Viable numerical codes have developed into useful tool for deter-mining speci?c and precise results for the overall performance of various multiphase ?ow patterns and phase change behaviors respectively.

Alizadehdakhel et al.[25]studied the operation of a ther-mosyphon by simulating two-phase ?ows using FLUENT 6.2commercial CFD code and validating the results with an experimen-tal set-up using various operating parameters.A two-dimensional geometry was modeled using the Gambit software with the domain consisting of a total number of 47,124and 14,361grids for the ?uid and the solid region respectively.The Volume of Fraction (VOF)[26]method was established for the two-phase ?ow model-ing.Various heat ?ux values obtained from the experiments were applied as the energy inlet to the evaporator and a vapor pressure of 1.72kPa at 288K was applied to water in the gaseous phase.A good agreement was achieved between the CFD and experimental temperature pro?les across the length of the pipe.The experimen-tal results con?rmed that increasing of the inlet heat ?ow from 350to 500greatly enhances the thermosyphon’s overall perfor-mance.The conclusions of this study con?rmed that the complex heat and mass transfer phase changes can be effectively modeled and a greater perceptive of the phase change is observed using CFD.

However,a range of numerical codes have been applied in order to develop a precise understanding of the two-phase behavior inside a heat pipe.Lin et al.[27]investigated the potential of utiliz-ing heat pipe heat exchangers for use in dehumidi?cation processes to understand the performance of the system.The FLOTHERM numerical code in conjunction with Microsoft Excel commercial package was used for CFD simulation of a drying cycle in the dehu-midi?cation process using characteristic air properties with an inlet temperature variation between 308and 323K along with a rela-tive humidity of 100%and a volume ?ow rate variation between 6and 8L/s.The heating and condensing regions were de?ned in the domain for the calculation of ?uid parameters and properties for the simulation.Values for the cuboids representation of heat pipes with thermal conductivity,speci?c heat capacity and density were obtained.The predicted results con?rm the performance of the sys-tem at various operating conditions and show that a signi?cant improvement in dehumidi?cation process is possible using the heat pipe solution with higher condensate rates obtained at higher inlet ?ow rates and temperatures.However,the results further con?rm that the heat transport in the heat pipe decreases with increas-ing ?ow rate signifying the potential of a heat exchanger utilizing auxiliary power can work with better ef?ciency at higher ?ow rates.

2256H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews16 (2012) 2249–2259

Ranjan et al.[28]conducted numerical analysis on the study of?at heat pipes or vapor chamber by solving the vapor and liquid?ow using three-dimensional Navier–Stokes continuity, momentum energy equations to understand the effect of vary-ing wick microstructure on evaporation and condensation sections of the heat pipe.Temperature and?ow contours were computed by a device-level numerical macro-model unaided and coupled with wick-level micro-model to account for the evaporation heat transfer rate in the pores of general sintered-powder wick struc-tures using the commercial FLUENT solver.The coupled model incorporates corrections to the evaporative mass?ow rates at the liquid–vapor interface based on local contact angle of liq-uid in the wick.An effective conductivity value of40W/(m K) was assumed for the macro-model while the convective heat transfer boundary conditions for the micro-model consisted of a constant inlet temperature and pressure to investigate the liq-uid meniscus between copper wires.The results based on the two models(coupled and non-coupled)revealed that the ther-mal resistance by the liquid–vapor interface increases affecting the performance of the vapor chamber as the device is decreased in magnitude.

Shao and Riffat[29]investigated the performance of a heat recovery system based on a heat pipe arrangement at different positions inside passive stacks for natural ventilation systems.The FLUENT solver was used for CFD coding to simulate?ow losses in the ventilation stack by solving the mass and energy conser-vation equations respectively.The domain mapped by a uniform Cartesian grid of50×100comprised of the two-dimensional geom-etry of the exhaust stack and the building space to understand the buoyancy?ow in the room.The boundary conditions involved a constant external and internal stack wall temperature of288and 293K.The?ndings from the computational simulation displayed that the average vertical velocity in the stack is0.223m/s along with a pressure differential of in excess of29Pa obtained between the inlet and outlet respectively.Further,the investigation proved that the insertion?ow loss is higher when the heat pipes are located at the bottom of the vertical stack compared to the top and is inversely proportional to the insertion pressure loss.It was noted that the heat pipes did not cause a signi?cant reduction of stack?ow.

Saber and Ashtiani[30]developed a computational?uid dynamic model to optimize the distribution of?uid?ow param-eters in order to?nd its in?uence on the evaporator performance inside the heat pipe heat https://www.wendangku.net/doc/fa12730400.html,pressible?ow equations were solved for the numerical simulation using the FLUENT com-mercial code.The geometry comprised of6rows of12tubes each and the temperature was set to793K.Further boundary conditions included an inlet mass?ow rate of3.75kg/s.Four distinct cases were analyzed for distributed?ow with Case1being nominal con-ditions.Case2included the cross section area of the inlet area to be doubled.Case3uses an additional horizontal plate after entry while Case4uses an imperfect cone at the entry.The cases were used to highlight the output temperature differential pro?les in order to highlight the maximum ef?ciency potential.The results of the extensive study revealed that better?ow distributions are possible with an increase in cross section area of the inlet but also increases operation costs and pressure drop respectively.The results further highlight the use of baf?es coupled with the imperfect cone has positive impact on the?ow distribution and produces optimum ef?ciency.

Rahmat and Hubert[31]developed a triangular two-phase model of a micro-heat pipe to study the heat and mass transfer inside the three-dimensional micro channel.Ansys CFX-5.7.1com-mercial software was used for solving the unsteady?ow equations. The channel geometry was divided into three identical portions to incorporate the evaporator and condenser section behavior.The length of the evaporator and condenser section was0.67cm respec-tively.The meshed model comprised of560,000elements while the average working?uid volume of the elements was310?m2.The ?uctuation of convergence results with respect to various?ll ratios and boundary condition type was investigated for precise perfor-mance.The?ndings showed that the effective thermal conductivity of3333W/?C was obtained for the micro channel at a?ll ratio of 25%.Further,the results concluded that an increase in liquid?ll ratio causes an increase in the effective length of the heat pipe.The investigation con?rmed a good agreement between the computa-tional?ndings with relevant literature,highlighting the capability of commercial?nite element codes in order to successfully simulate two-phase?ows.

Thermal effectiveness of experimental procedures incorporat-ing heat pipes has increased over the years with the introduction of thermal imaging systems.Hemadri et al.[32]conducted an extensive study on the feasible utility of pulsating heat pipes in thermal radiator systems for terrestrial and space applications.An understanding of temperature pro?les were developed experimen-tally by using a high-resolution,forward looking infra-red camera for varying thermal and mechanical boundary conditions.The experiment was conducted on aluminum and mild steel radiator plates with and without embedded pulsating heat pipe arrange-ment aligned in three distinct orientations.Surface mounted?at mica heater of known dimensions was used for heat generation at varying thermal input between50and150W.The outcome drawn from the investigation included spatial thermography and the effects of orientation respectively.It was observed that the pul-sating heat pipe arrangement provided limited improvement to the rate of isothermalization due to the high base thermal con-ductivity of the aluminum plate.The results further displayed the increase in domination of gravitational forces at low heat input of for the vertical orientation with heater position upwards for both plates.It was concluded that the gravitational effects were reduced increasing the pulsations with increasing thermal input. The experimental results were validated using the FLUENT6.3.26 commercial code using the three dimensional tetrahedron com-putational domain.A good agreement was therefore observed between the experimental and simulated temperature pro?les at a heat input of55W for various locations across the plate on a unit-cell model.The work highlighted the potential of pulsating heat pipes in ef?cient thermal management for space and terrestrial sectors.

Savino et al.[33]investigated the effect of surface tension variation with temperature to highlight the performance of self-rewetting?uids in comparison to ordinary?uids in wickless heat pipe systems.Temperature pro?les using thermographic images were developed by conducting laboratory experiments on glass tubes containing alcohol and1-heptanol aqueous solution respec-tively.The apparatus included an infra-red thermal imaging camera and thermal power was kept between4and7W to limit the evaporation phenomenon.The bubble trajectory displayed that the linear movement is in the direction of the temperature gra-dient for an ordinary?uid and vice versa for the self-rewetting ?uid.Navier–Stokes equations were solved using the SIMPLE family of algorithms and Volume of Fraction(VOF)model in the FLU-ENT commercial code was used for computational investigation in order to validate the experimental results.Further similar labora-tory tests were performed to establish the surface tension gradient in relation to the temperature variation.It was observed that the ordinary?uid(ethanol)exhibited a decreasing linear dependency on the temperature while the self-rewetting?uid(heptanol)show-ing a non-linear dependence.The detailed study emphasized the potential of ef?cient heat transfer by introducing new working self-rewetting?uids on the binary mixtures based on Water/Ammonia and Water/Ethylene Glycol for various applications.

H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews16 (2012) 2249–22592257 Table1

Summary of the heat pipe technologies under review.

Type Features Limitations Applications Industrial equipment Operating temp.(K)Refs.

Tubular heat pipe Simple and effective

passive operation.Requires clean air

stream for optimum

operation.

Injection moulds and

air to air heat pipe heat

exchangers.

Thermacore

Copper–Water

218–453[2,34]

Variable conductance heat pipe(active control)Superior heat source

and temperature

control.

Supplementary power

requirement.

Accurate satellite

temperature

calibration and

removal of heat from

radioactive waste.

Thermacore VCHP with

heated reservoir

268–338[2,35]

Thermal diode Unidirectional heat

?https://www.wendangku.net/doc/fa12730400.html,plexity in

retro?tting the system.

Gamma-ray

spectroscopy and

collection of solar gain

for space heating.

National

semiconductor Dual

Thermal Diode Sensor

273–398[2,35]

Pulsating heat pipe Growth and collapse of

working?uid provides

the driving force.Increased cost and

weight due to in?exible

metallic pipe material.

Electronic and central

processing units

cooling systems.

Sun Microsystems PHP273–378[2,36]

Loop heat pipe Entrainment is

minimized by separate

wick and liquid?ow

paths.Supplementary power

requirement for

mechanically pumped

loops.

Solar water heating

and control systems for

military aircrafts.

Thermacore Ammonia

LHP

200–400[19,37]

Micro heat pipe Iso-thermalization and

?accid operation.Inferior heat transfer

ability compared to its

counterparts.

Cooling laser diodes

and thermal control of

ceramic chip carriers.

Furukawa

High-Performance?HP

313–343[2,38]

Sorption heat pipe Convective heat

transfer by integrity

with a sorption

machine in a single

unit.Intricate cycle

compared to a simple

heat pipe.

Cryogenic?uid storage.Luikov Heat and Mass

Transfer Institute SHP

60–400[24]

5.Results summary

From the reviewed heat pipe technologies for terrestrial and aerospace applications,it is considered that each system has its own advantages and limitations based largely on working conditions. Table1summarizes the reviewed heat pipe systems displaying the typical applications and range of operating temperatures.The?g-ure of merit is estimated based on the working?uid properties based on operating temperatures formulated in Eq.(1).

M= l l L

l(1)

where l is the density of liquid; l is the surface energy per unit

area of liquid;L is the latent heat of vaporization; l is the dynamic

viscosity of liquid.

6.Discussion

With reference to Table1,the principal properties and appli-

cations were obtained based on relevant commercial equipment.

As observed,the working range for tubular heat pipe systems is

at intermediate temperatures with average operating temperature

being335.5K.The industrial manufacturers for the respective high-

light the ability of the copper–water sintered-powdered wicked

heat pipe device to transfer thermal energy ef?ciently

regardless Fig.12.Operating temperature range comparison of the reviewed heat pipe systems.

2258H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews16 (2012) 2249–2259 Table2

Merit No.for various working?uid candidates at operating temperatures.

Medium Melting

point(K)Boiling

point(K)

Useful

range(K)

Merit No.at

operating temp.

(293K)

Merit No.at

operating temp.

(313K)

Merit No.at

operating temp.

(333K)

Merit No.at

operating temp.

(353K)

Merit No.at

operating temp.

(373K)

Merit No.at

operating temp.

(393K)

Heptane183.15371.15273–423 1.16E+10 1.25E+10 1.24E+10 1.24E+10 1.19E+10 1.10E+10 Water273.15373.15303–473 1.78E+11 2.55E+11 3.27E+11 3.90E+11 4.55E+11 4.97E+11 Ammonia195.15240.15213–3737.02E+10 5.85E+10 4.50E+10 2.30E+10 1.45E+10 3.43E+09 Pentane140.15301.15253–393 1.49E+10 1.48E+10 1.35E+10 1.22E+10 1.03E+107.76E+09

Acetone178.15330.15273–393 3.20E+10 3.24E+10 3.17E+10 3.00E+10 2.57E+10

1.31E+10

Fig.13.Merit No.of candidate heat pipe working?uids for intermediate temperatures.

of orientation and gravitational effects with the density estimation of50W/cm2.Other imperative features of tubular heat pipe sys-tems include compactness,integrity into heat sinks and cold plates through mechanical interference and long-life reliability which is a highly desirable factor for a majority of terrestrial applications.

A graphical representation of the operating temperature range of reviewed heat pipe systems is displayed in Fig.12.It is seen that the range of working temperatures is maximum for SHP sys-tems highlighting its superiority to replace SHP systems in space applications.Moreover,from extensive literature,it is asserted that the integration of the sorption cooler with LHP systems has recorded average evaporator thermal resistances of0.07–0.08K/W with heat?uxes of100–200W/cm2[2].Further observations from Fig.12include the temperature range limitations for micro heat pipe systems which has a differential of only30K since nearly all of the high-performance utility includes enhancing heat transfer of electronic components,namely computer central processing units and microprocessors which operate at working temperatures of 313–343K.

Typical operating temperatures for heat pipe systems utilized in terrestrial applications range from293K to393K.Choice of work-ing?uid is a major contemplation in identifying appropriate heat pipe assemblies and candidate working?uids are summarized in Table2for intermediate temperatures.The Merit No.is a useful indicator in determining the maximum heat transport capability in terms of the?uid properties and is determined by Eq.(1).

Fig.13displays the Merit No.variation with increasing inter-mediate operating temperatures for a range of heat pipe working ?uids.With reference to the?gure,a signi?cant increase in Merit No.of64.2%for Water is observed while notable decreasing gradi-ent of95.1%and59.0%is observed for Ammonia and Acetone with increasing temperatures respectively.As expected,water demon-strates a much superior Merit No.in comparison to other candidate ?uids within the operating temperature range,thus con?rming the historical dominance as the principal working?uid in most heat pipe applications.

7.Conclusion

The technological development of research into the utilization of heat pipes for ef?cient and passive heat transport is rapidly increasing through the use of advanced computation and complex experimentation techniques.This study reviewed some of the gen-eral heat pipe systems used in building and ground applications including heat recovery and renewable energy methodologies in order to determine the typical heat pipe arrangements along with their working temperature range for use in the respective.The investigation revealed that heat pipes incorporated with sorption phenomenon display greater heat transfer capacity and tubular heat pipes have the highest working range on average with the maximum operating temperature from all reviewed systems being 453K for the tubular heat pipe arrangement respectively.

The study’s conclusions are based on the research of various industrial products utilizing the heat pipe systems for their operations.Imperative factors including the?gure of merit were calculated and compared for various suitable heat pipe working ?uids.The?ndings revealed that water displayed the highest

H.N.Chaudhry et al./Renewable and Sustainable Energy Reviews16 (2012) 2249–22592259

average Merit Number in comparison to ammonia and acetone for the operating temperature range of293–393K. Acknowledgements

This publication was made possible by a NPRP grant from the Qatar National research Fund(A member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.NPRP09-138-2-059.

References

[1]Cengel YA.Heat and mass transfer–a practical approach.third edition New

York,NY10020,USA:McGraw-Hill;2006.p.592–597.

[2]Reay D,Kew P.Heat pipes–theory,design and applications.?fth edition Oxford

OX28DP,USA:Butterworth-Heinemann;2006.

[3]El-Baky MAA,Mohamed MM.Heat pipe heat exchanger for heat recovery in air

conditioning.Applied Thermal Engineering2007;27:795–801.

[4]Noie-Baghban SH,Majideian GR.Waste heat recovery using heat pipe heat

exchanger(HPHE)for surgery rooms in hospitals.Applied Thermal Engineering 2000;20:1271–82.

[5]Yau YH,Ahmadzadehtalatapeh M.A review on the application of horizontal

heat pipe heat exchangers in air conditioning systems in the tropics.Applied Thermal Engineering2010;30:77–84.

[6]Hussein HMS,El-Ghetany HH,Nada SA.Performance of wickless heat pipe?at

plate solar collectors having different pipes cross sections geometries and?lling ratios.Energy Conversion and Management2006;47:1539–49.

[7]Rittidech S,Wannapakne S.Experimental study of the performance of a solar

collector by closed-end oscillating heat pipe(CEOHP).Applied Thermal Engi-neering2007;27:1978–85.

[8]Liao Q,Jen T-C,Chen Q,Li L,Cui W.Heat transfer performance in3D

internally?nned heat pipe.International Journal of Heat and Mass Transfer 2007;50:1231–7.

[9]Joudi KA,Witwit AM.Improvements of gravity assisted wickless heat pipes.

Energy Conversion&Management2000;41:2041–61.

[10]Sauciuc I,Akbarzadeh A,Johnson P.Temperature control using variable con-

ductance closed two-phase heat pipe.International Communications in Heat and Mass Transfer1996;23(3):427–33.

[11]Fang X,Xia L.Heating performance investigation of a bidirectional partition

?uid thermal diode.Renewable Energy2010;35:679–84.

[12]Varga S,Oliveira AC,Afonso CF.Characterisation of thermal diode panels for

use in the cooling season in buildings.Energy and Buildings2002;34:227–35.

[13]Rhee J,Campbell A,Mariadass A,Morhous B.Temperature strati?cation from

thermal diodes in solar hot water storage tank.Solar Energy2010;84:507–11.

[14]Omer SA,Riffat SB,Ma X.Experimental investigation of a thermoelectric refrig-

eration system employing a phase change material integrated with thermal diode.Applied Thermal Engineering2001;1:1265–71.

[15]Qu W,Ma HB.Theoretical analysis of startup of a pulsating heat pipe.Interna-

tional Journal of Heat and Mass Transfer2007;50:2309–16.

[16]Wang S,Lin Z,Zhang W,Chen J.Experimental study on pulsating heat pipe

with functional thermal?uids.International Journal of Heat and Mass Transfer 2009;52:5276–9.

[17]Yang H,Khandekar S,Groll M.Operational limit of closed loop pulsating heat

pipes.Applied Thermal Engineering2008;28:49–59.[18]Wang S,Zhang W,Zhang X,Chen J.Study on start-up characteristics of loop

heat pipe under low-power.International Journal of Heat and Mass Transfer 2011;54:1002–7.

[19]Zhao X,Wang Z,Tang Q.Theoretical investigation of the performance of a novel

loop heat pipe solar water heating system for use in Beijing,China.Applied Thermal Engineering2010;30:2526–36.

[20]Kaya T,Goldak J.Numerical analysis of heat and mass transfer in the capillary

structure of a loop heat pipe.International Journal of Heat and Mass Transfer 2006;49:3211–20.

[21]Do KH,Kim SJ,Garimella SV.A mathematical model for analyzing the ther-

mal characteristics of a?at micro heat pipe with a grooved wick.International Journal of Heat and Mass Transfer2008;51:4637–50.

[22]Hung YM,Seng Q.Effects of geometric design on thermal performance of

star-groove micro-heat pipes.International Journal of Heat and Mass Transfer 2011;54:1198–209.

[23]Lefèvre F,Lallemand M.Coupled thermal and hydrodynamic models of?at

micro heat pipes for the cooling of multiple electronic components.Interna-tional Journal of Heat and Mass Transfer2006;49:1375–83.

[24]Vasiliev LL,Vasiliev Jr LL.The sorption heat pipe—a new device for thermal

control and active cooling.Superlattices and Microstructures2004;35:485–95.

[25]Alizadehdakhel A,Rahimi M,Alsaira?AA.CFD modeling of?ow and heat

transfer in a thermosyphon.International Communications in Heat and Mass Transfer2010;37:312–8.

[26]Hirt CW,Nichols BD.Volume of Fluid(VOF)method for the dynamics of free

boundaries.Journal of Computational Physics1981;39(1):201–25.

[27]Lin S,Broadbent J,McGlen R.Numerical study of heat pipe application in heat

recovery systems.Applied Thermal Engineering2005;25:127–33.

[28]Ranjan R,Murthy JY,Garimella SV,Vadakkan U.A numerical model for transport

in?at heat pipes considering wick microstructure effects.International Journal of Heat and Mass Transfer2011;54:153–216.

[29]Shao L,Riffat SB.Flow loss caused by heat pipes in natural ventilation stacks.

Applied Thermal Engineering1997;17(4):393–9.

[30]Saber MH,Ashtiani HM,Simulation and CFD Analysis of heat pipe heat

exchanger using Fluent to increase of the thermal ef?ciency,Continuum Mechanics,Fluids,Heat.5th IASME/WSEAS International Conference on Con-tinuum Mechanics,University of Cambridge,Feb23–25;2010.

[31]Rahmat M,Hubert P.Two-phase simulations of micro heat https://www.wendangku.net/doc/fa12730400.html,puters&

Fluids2010;39:451–60.

[32]Hemadri VA,Gupta A,Khandekar S.Thermal radiators with embedded pul-

sating heat pipes:infra-red thermography and simulations.Applied Thermal Engineering2011;31:13321346.

[33]Savino R,Cecere A,Di Paola R.Surface tension-driven?ow in wickless heat

pipes with self-rewetting?uids.International Journal of Heat and Fluid Flow 2009;30:380–8.

[34]Thermacore variable conductance heat pipes,[Online]2011,[Cited April,2011]

Available from https://www.wendangku.net/doc/fa12730400.html,/products/variable-conductance-heat-pipe.aspx.

[35]National semiconductor,Dual thermal diode temperature sensor[Online]

2011,[Cited April12,2011]Available from https://www.wendangku.net/doc/fa12730400.html,/ opf/LM/LM32.html#Overview.

[36]Vogel M,Xu G.Low pro?le heat sink cooling technologies for next generation

CPU thermal designs.Electronics Cooling2005;11(1).

[37]Thermacore loop heat pipes,[Online]2011,[Cited April12,2011]

Available from https://www.wendangku.net/doc/fa12730400.html,/products/loop-heat-pipes-and-loop-devices.aspx.

[38]Yamamoto K,Nakamizo K,Kameoka H,Namba K.High-performance micro heat

pipe.Furukawa Review2002;(22).

巴尔扎克简介

巴尔扎克简介(1799~1850) 法国小说家.1799年5月20日生于巴黎以南的图尔城, 1850年8月18日卒于巴黎.巴尔扎克的一生,处于19世纪前半期的50年,经历了拿破仑帝国的战火纷飞的岁月,动荡不安的封建复辟王朝,以及以阴谋复辟帝制的路易□波拿巴为总统的第二共和国.他用总标题为《人间喜剧》的一系列小说,反映了剧烈的社会变革时期的法国生活. 巴尔扎克出生后不久就被送到附近的乡村去寄养. 上小学后一直到中学毕业,他始终寄住在宿舍里,没有能回 家过一段比较长的日子,享受家庭生活的温暖.离开家庭的童年生活的痛苦使他毕生难忘. 巴尔扎克的父亲原姓巴尔沙,是个精明强干的人. 他来自农村,幼年时跟当地教士学了一点文化,中年致富,在外省当过副市长,供应军粮的承包商,在巴黎经营过呢绒商业,当过巴黎驻军的军需负责人,是一个白手起家的资产者. 1816年,17岁的巴尔扎克结束中学的学业后进大学法科,并在文科旁听.18岁时,先后在诉讼代理人和公证人的办事处当见习生或书记. 从20岁开始,巴尔扎克决定从事文学创作.他在巴黎贫民区租了一间房顶上的阁楼,由父母供给极有限的一点生活费,埋头写作.他的第一部作品是五幕诗体悲剧《克伦威尔》,这是一部完全失败的作品,没有引起任何人的兴趣.接连又写了十多部小说,有的是自己所写,有的是和别人合写.这一阶段他所写的小说全用笔名发表.这些作品并没有给他带来生活所需要的物质条件,他只好暂时放弃文学.1826年借钱出版了一部普及版的《莫里哀全集》,接着又出版一部拉封丹寓言诗集, 销路不佳,亏损负债9,000法郎.后又借债经营印刷厂和铸字厂,均以赔本告终.他前后负债共达6万多法郎. 从1828年夏季开始,巴尔扎克决定重新回到文学事业上来.他写了一部以布列塔尼封建势力武装叛乱反对共和国为题材的小说《最后一个舒昂党人》(后来编入《人间喜剧》,改名《舒昂党的人们》).这是巴尔扎克所写的第一部严肃的文学作品,第一次用巴尔扎克真姓名发表.此书问世,初步奠定了作者在文学界的地位. 接着发表小说《婚姻生理学》,在读者之间引起广泛注意.1831年他的新著《驴皮记》出版,巴尔扎克立即成为法国最负盛名的作家之一. 1819到1829年,是巴尔扎克在文学事业上的探索阶段.从1829年开始,一直到1848年,是他创作《人间喜剧》的时期,也是他文学事业的全盛时期.他用超人的才智与精力,在不到20年的时间内,共创作小说91部.平均每年产生作品四,五部之多.他每日伏案一般都在10小时以上,常常连续工作18小时.有时文思如泉涌,或者为了赶写稿子,他一连几天废寝忘餐,夜以继日地劳动.根据阿尔贝·贝干教授提供的材料,巴尔扎克的杰作《高老头》(原名《高立欧老爹》)是他用三天三夜一气呵成的. 什么是《人间喜剧》的作者的创作动力人们说是因为他负债过多,需要用稿费还债.巴尔扎克年轻时经营印刷出版业确曾负债巨万.但从他成为名重一时的小说家之后,他的收入丰厚,出版商争着和他签订合同,不惜重金预约他尚未完成或尚未动笔的小说稿,早年的债务早已还清.名作家巴尔扎克生活阔绰,醉心于豪华的排场.他在巴黎同时安置了几处住宅和别墅,出门坐最富丽的马车,驾着骏马;仆役都穿制服;他也服饰华贵, 出入于名门大户的沙龙.由此可见,他的勤奋创作,绝对不是由于贫困. 巴尔扎克从年轻时开始就自信有很高的文学才能, 对文学有极大的抱负.他不舍昼夜地勤奋写作,主要因为有一股激情在内心沸腾,促使他充分发挥自己的才能, 要求在文艺界做一番伟大的事业.在他的书室里,有一座作为摆饰的小型拿破仑塑像.在塑像座盘边上,巴尔扎克亲笔写着:"他用宝剑未能完成的大业,我将用笔杆来完成." 巴尔扎克要完成的伟大事业就是《人间喜剧》这座巍峨的文学里程碑.第一次在这位小说家笔下出现《人间喜剧》这个名词是在1813年.毫无疑问,《人间喜剧》的命名是受但丁长诗《神圣喜剧》(中译《神曲》)标题的启发.1841年,巴尔扎克确定了这个庞大的创作计划.当时有四家出版商和巴尔扎克签订合同,合资承包《人间喜剧》的出版工作.1842年,巴尔扎克写了《人间喜剧·导言》,阐述他写作这部史无前例的文学巨著的宗旨.1845年巴尔扎克亲笔写的《人间喜剧总目》,一直保存到现在.根据这个《总目》,《人间喜剧》分为三大部分:《风俗研究》,《哲理研究》和《分析研究》. 《风俗研究》内容最为丰富,包括小说最多.因此这一部分又分为六个门类:1.《私人生活场景》,2.《外省生活场景》,3.《巴黎生活场景》,4.《政治生活场景》, 5.《军队生活场景》,6.《乡村生活场景》.《私人生活场景》包括32部小说,其中4部当时已有提纲,尚未起稿.已经完成的28部之中包括著名的《高老头》(1834), 《猫滚球布店》(1830),《夏倍上校》(1832)和《三十岁的女人》(1831~1834)等.《外省生活场景》包括17 部小说,其中6部尚未完成;已经发表的11部中包括《欧也妮·葛朗台》(1833),《幽谷百合》(1835)和《幻灭》(1837~1843)等.《巴黎生活场景》共有20部小说, 其中6部尚未产生;在已经发表的小说中有《金目少女》 (1834),《纽沁根银行》(1838),《塞沙·皮罗多兴衰记》(1837),

高中语文 名著导读《高老头》巴尔扎克简介素材 新人教版必修3

巴尔扎克简介 巴尔扎克(Honore de Balzac,1799~1850),他是19世纪法国伟大的批判现实主义作家,欧洲批判现实主义文学的奠基人和杰出代表。一生创作96部长、中、短篇小说和随笔,总名为《人间喜剧》。其中代表作为《欧也妮·葛朗台》、《高老头》。100多年来,他的作品传遍了全世界,对世界文学的发展和人类进步产生了巨大的影响。马克思、恩格斯称赞他“是超群的小说家”、“现实主义大师”。 巴尔扎克出生于一个法国大革命后致富的资产阶级家庭,法科学校毕业后,拒绝家庭为他选择的受人尊敬的法律职业,而立志当文学家。为了获得独立生活和从事创作的物质保障,他曾试笔并插足商业,从事出版印刷业,但都以破产告终。这一切都为他认识社会、描写社会提供了极为珍贵的第一手材料。他不断追求和探索,对哲学、经济学、历史、自然科学、神学等领域进行了深入研究,积累了极为广博的知识。 1829年,巴尔扎克完成长篇小说《朱安党人》,这部取材于现实生活的作品为他带来巨大声誉,也为法国批判现实主义文学放下第一块基石,巴尔扎克将《朱安党人》和计划要写的一百四五十部小说总命名为《人间喜剧》,并为之写了《前言》,阐述了他的现实主义创作方法和基本原则,从理论上为法国批判现实主义文学奠定了基础。 巴尔扎克在艺术上取得巨大成就,他在小说结构方面匠心独运,小说结构多种多样,不拘一格、并善于将集中概括与精确描摹相结合,以外形反映内心本质等手法来塑造人物,他还善于以精细人微、生动逼真的环境描写再现时代风貌。恩格斯称赞巴尔扎克的《人间喜剧》写出了贵族阶级的没落衰败和资产阶级的上升发展,提供了社会各个领域无比丰富的生动细节和形象化的历史材料,“甚至在经济的细节方面(如革命以后动产和不动产的重新分配),我学到的东西也要比从当时所有职业历史学家、经济学院和统计学家那里学到的全部东西还要多”。(恩格斯:《恩格斯致玛·哈克奈斯》) 巴尔扎克以自己的创作在世界文学史上树立起不朽的丰碑。

巴尔扎克

巴尔扎克 1、巴尔扎克的文学史地位 巴尔扎克是法国伟大的小说家,是19世纪批判现实主义文学的主要代表。在20年间呕心沥血写作实践中,巴尔扎克在世界文学史上构筑了一座举世无双的巍峨大厦——《人间喜剧》,而他自己则成了“文学中的拿破仑”。 马克思非常推崇巴尔扎克,认为他“对现实关系具有深刻理解”。恩格斯赞誉他的作品有着“了不起的革命辩证法”,并在《致玛·哈克奈斯》一信中对他作了精辟的论述。 2、生平与创作概况 A.全称: xx·xx·巴尔扎克 B.本姓: xx C.生卒____年__月__日: 1799.5.20— 1850.8.18 D.出生地: xx E.家庭: 中产阶级之家 F.教育:1816年结束中学学业 G.主要经历:

1819-1829年,开始写作小说; 1825年起出版图书,开办印刷厂,铸造铅字,以欠债6万法郎告终; 1828-1850年,全力创作《人间喜剧》。 H.主要成就: 包括90余部长篇小说、中篇小说、短篇小说的文学巨著《人间喜剧》。 3、巴尔扎克的创作道路 1819-1829年,探索阶段;1819年,立志当作家。1820年,写作悲剧《克伦威尔》失败,开始创作神怪小说,也未获成功。此后至1828年前,屡屡经商失败,债台高筑。1828年夏起重走文学道路。1929年以真名发表历史小说《朱安党人》,初获成功,在文坛站稳脚跟。 1829-1845年,黄金时代;巴尔扎克怀着做“文学上的拿破仑”的雄心壮志,孜孜不倦地创作,建构着《人间喜剧》这座艺术大厦,接连发表了许多杰作,如《高布赛克》 (1830)、《驴皮记》 (1831)、《xx·xx》 (1833)、《xx》 (1834)、《无神论者做弥撒》 (1836)、《xx银行》 (1837)、《幻灭》(1837-1843)和《农民》 (1845)等。 1846-1850年,晚期。1848年前,巴尔扎克陆续完成了《贝姨》

巴尔扎克作品经典语录大全100句

巴尔扎克作品经典语录大全100句 1、男子的才对于德而言,就和美貌之于女子差不多:能给人以希望。——巴尔扎克《莫黛斯特·米尼翁婚约》 2、苦难好比一道神奇的符箓,能加强我们的天性,使猜忌与凶恶的人愈加猜忌愈加凶恶,慈悲的人愈加慈悲。——巴尔扎克《夏倍上校》 3、真正的考验是在痛苦和幸福上。当两个人通过了这两种人生的考验,在这过程中每人的优缺点都暴露无遗,也观察了彼此的性格时,他们就可以手携手一直走到坟墓了。——巴尔扎克《莫黛斯特·米尼翁婚约》 4、在爱情方面,别有用心的虚假总比真面目可爱,就因为此,才有许多男人肯在一般手段高明的女骗子身上挥金如土。——巴尔扎克 5、人类所有的力量,只是耐心加上时间的混合。所谓强者是既有意志,又能等待时机。守财奴的生活,便是不断的运用这种力量为自我效劳。他只依赖两种情感:自尊心与利益。但利益既是自尊心的实际表现并且是真正优越的凭据,所以自尊心与利益是一物的两面,都从自私自利来的。这种人物涉及所有的情感,可以说集情感之大成,而我们个个人都跟他们一脉相通。哪有什么全无欲望的人?而没有金钱,哪个欲望够满足?——巴尔扎克《欧叶妮·葛朗台》 6、精神生活与肉体生活一样,有呼也有吸:灵魂吸收另一颗灵魂的感情来充实自己,然后以更丰富的感情送回给人家。人与人之间要没有这点美妙的关系,心就没有了生机:它缺少空气,它会受难,枯萎。——巴尔扎克《欧叶妮·葛朗台》 7、逆境不就是命运的试金石吗? ——巴尔扎克《高

老头》8、"L'amour n'est pas seulement un sentiment, il est aussi un art. 爱不光是一种感情,也是一门艺术。- Honoréde Balzac 巴尔扎克-——巴尔扎克《网络名言集》"9、感情等于才分。感受是了解的对手,正如行动是思维的抗衡。一个有天才的朋友可以通过友情、领会,和他并驾齐驱。一个常人有感情作基础,就可以比倒最伟大的艺术家。这说明女人为什么爱着一些“蠢才”。——巴尔扎克10、到处是真苦难,假欢喜。——巴尔扎克《高老头》11、哪里有穷困,哪里就有苦难。苦难,穷困,蓄势极猛,苦了,穷了,斯滥矣,大权在握,就会滥用,其理自同。——巴尔扎克《乡村医生》12、做点好事,待人要仁慈、宽厚;总之,用你的谦虚来避免厄运吧。——巴尔扎克13、苦难对于人生是一块垫脚石……对于能干的人是一笔财富,对于弱者是个万丈深渊。——巴尔扎克14、目的高尚,会使所做的事情都同样高尚。——巴尔扎克15、实笃一清如水的生活,诚实不欺的性格,不论身处哪个阶级,就算心术最坏的人,也会对之肃然起敬。——巴尔扎克16、长命也许不够好,美好的生命却够长。——巴尔扎克17、人们有多少需求,就能创造多少财富。——巴尔扎克18、艺术就是用最小的面积,惊人地集中最大量思想。——巴尔扎克19、他不断地处于与人奋斗、与天地奋斗之中,没有功夫去尽情卖弄。只有花花公子才会大肆卖弄,迫不及待地将转瞬即逝的一季庄稼收割下来,那种自尊与不管是什么东西,凡从它手下经过就要抽税的海关相差无几。——巴尔扎克20、年轻时费过力气学到的东西,即使是无聊对我们也有用。——巴尔扎克21、拐弯抹角的路成不了

巴尔扎克——素材

巴尔扎克出生于一个法国大革命后致富的资产阶级家庭,法科学校毕业后,拒绝家庭为他 选择的受人尊敬的法律职业,而立志当文学家。为了获得独立生活和从事创作的物质保障,他曾试笔并插足商业,从事出版印刷业,但都以破产告终。这一切都为他认识社会、描写 社会提供了极为珍贵的第一手材料。他不断追求和探索,对哲学、经济学、历史、自然科学、神学等领域进行了深入研究,积累了极为广博的知识。 1822年正当巴尔扎克倍受冷遇,痛苦绝望的时刻,结识了贝尔尼夫人。贝尔尼夫人的母亲 曾是王后的侍女,对宫廷的生活,交际的秘密和妇女的命运十分熟悉。贝尔尼夫人比巴尔 扎克大22岁,具有完美的娇柔感,高雅的谈吐,沁人肺腑的同情心,以及慈祥的母爱。这一切深深吸引着巴尔扎克,使巴尔扎克感受到从小没有领略过的母爱般的温情。她对他的 一生产生了重大的影响。巴尔扎克把她称为他的母亲、朋友、家属、伴侣和顾问。[1] 1829年,巴尔扎克完成长篇小说《朱安党人》。历史小说《朱安党人》(1829)是巴尔扎 克用真名发表的 奥诺雷·德·巴尔扎克 第一部作品,描述1800年法国布列塔尼在保皇党煽动下发生的反对共和国政府的暴动。作者赋予英勇的共和国军人以应有的光彩,但也大大美化了朱安党首领孟多兰侯爵,表现出 他当时对贵族的同情。为了写这部小说,他曾细心研究有关暴动的历史文献,亲自去布列 塔尼调查山川形势和农民生活,访问暴动的目击者和参加者,还从友人柏尔里公爵夫人那 里收集许多关于朱安党人的掌故。从写神怪小说过渡到写历史小说,是巴尔扎克走向批判 现实主义的第一个重要步骤。他在《朱安党人》中描写的不是古代历史,而是属于当代社 会生活范畴的重要事件。着重反映当代社会生活,正是巴尔扎克日后所写的《人间喜剧》 的一个特点。 从1829年写《朱安党人》起,巴尔扎克的创作开始进入成熟时期,即《人间喜剧》时期(1829-1848)。在三、四十年代,他除致力于文艺创作以外,还出入巴黎上流社会的沙龙,为几种报刊撰稿,他接触的生活面非常广泛。[2] 巴尔扎克从这时期起,就在现实主义理论方面进行深入探索。他认为小说家必须面向现实 生活,使自己成为当代社会的风俗史家;又认为小说家的任务不仅在于摹写社会现象,还 须阐明产生这些现象的原因,指出人物、 影视剧中奥诺雷·德·巴尔扎克 欲念和事件背后的意义。在塑造人物的问题上,他强调特性,也强调共性;他说诗人的使 命在创造典型,使典型个性化,个性典型化;又说典型人物应该把那些多少和他类似的人 的性格特点集于一身。他还强调艺术必须为社会服务;认为艺术家不仅描写罪恶和德行, 而且要指出其中的教育意义;艺术家必须同时是道德家和政治家。 1830年4月,巴尔扎克《人间喜剧》中《私人生活场景》两卷出版了。然而,他深深地为 法国文学创作者的处境担忧。虽然法国于1791年颁布的《表演法令》和1793年颁布的

外国文学史 巴尔扎克汇编

第五节巴尔扎克与《高老头》分析 一、巴尔扎克简介(1799-1850) 1、《人间喜剧》的创作:《风俗研究》《哲理研究》《分析研究》,是一部关于19世纪法国的“包罗万象的社会史”。 (1)主题上要写出“一个完整的社会”,艺术上要呈现一个“统一、独创、新鲜的整体”。 (2)主题思想:反映出资产阶级取代贵族阶级的时代潮流。 A、资产阶级的发迹史。《赛查·皮罗托盛衰记》《欧也妮·葛朗台》《纽沁根银行》 B、贵族阶级的衰亡史。《古物陈列室》 C、金钱成为社会的轴心,操纵着社会关系,这不仅反映在广义的政界、社交界等社会层面,而且反映在最亲密的家庭关系中。 (3)艺术特征: A、艺术形式的多样化和富于变化,或客观描述,或转述故事,或深入人们的情感中探讨。 B、在典型环境中塑造具有典型意义的人物形象,人物性格与物质化的社会环境水乳交融。 C、作品文本的相互交织。《人间喜剧》的一部作品中的人物形象会在多部作品中出现,人物的命运具有时间上的连续性,因而众多作品相互勾连,构成一部完整的社会生活的记录。如《高老头》中鲍赛昂夫人的凄凉结局、拉斯蒂涅的飞黄腾达。 D、写实与幻想交相辉映,突出金钱统治下的法国社会的疯狂喧嚣。《萨拉辛》

二、《高老头》分析([法]巴尔扎克著,张冠尧译,北京:人民文学出版社,2003年) 一、作品背景与主要内容介绍 当时的法国现实是,资产阶级已经获得彻底的胜利,而贵族阶级逐渐地退出历史舞台。这样资本主义的生产关系的重要基础即金钱在社会生活中占据着绝对地位,支配着各种社会关系,并且渗透在人们的亲情、友情和爱情中。 《高老头》是法国批判现实主义大师巴尔扎克最具代表性的作品之一,充分展现了金钱的罪恶与对人类美好感情与人性的腐蚀作用。 二、作品简介 作品中有着两条线索,一条是高老头的命运正由盛转向衰败,另一条是拉斯蒂涅正步步高升,但展现的是相同主题。拉斯蒂涅为高老头奔走于两地之间,作品通过他的奔走将这两条线索结合起来,凸现法国巴黎各个社会阶层的生活。从代表着法国社会底层的缩影的伏盖公寓,到法国的上流社会人人趋之若骛的地方鲍赛昂夫人的门庭和舞会;从社会的底层人物伏盖公寓中住客之间的关系,到贵族与银行家的家庭关系,《高老头》描写得详尽细致,淋漓尽致。与法国社会各阶层的接触使拉斯蒂涅逐步认识到法国社会的本质,即金钱至上,人人为己,但这也使他彻底泯灭的人性的良知。 三、作品主题 1、金钱主宰着社会的一切关系 2、高老头的沦落意味着,在资本阶级上升时期金钱对社会的统治和金钱至上的原则的冲击下,传统的宗法制家庭伦理关系彻底解体。 四、拉斯蒂涅的人物形象分析 作者塑造高老头人物形象的意义,不仅是想通过高老头的命运对作品中另一主要人物拉斯蒂涅发生重要的作用,让拉斯蒂涅再一次受到了资产阶级自私自利

巴尔扎克作品中的现实主义风格

龙源期刊网 https://www.wendangku.net/doc/fa12730400.html, 巴尔扎克作品中的现实主义风格 作者:梁萧 来源:《现代交际》2016年第01期 摘要:法国文学巨匠巴尔扎克的作品充满了批判现实主义色彩,以写实为基调,成为19 世纪法国社会的一面镜子。他善于在特定环境下塑造典型的、具有代表性的、富有个性化的人物;再通过人物再现的写作手法,折射社会,堪称现实主义写作风格的代表作家之一。他所描绘的现实世界,并非是生活的复制品,而是基于小说家敏锐的观察力,用小说写作手法呈现“真实”的世界。可以说,他是一位创造现实的现实主义作家。 关键词:巴尔扎克;现实主义;写实 中图分类号:G6343文献标识码:A文章编号:1009-5349(2016)01-0140-05 作为现实主义小说的奠基人,巴尔扎克不仅开辟了小说的新天地,更将小说的表现力提升到空前的高度。他强调塑造人物要典型化,从典型化中突出人物个性,再通过典型人物这一个“点”去折射社会现实的一个“面”。他所刻画的人物如“伏脱冷”、高老头的女儿,将个性与共性完美结合,又展现得淋漓尽致,使之成为典型的小说人物。他的作品反映社会现实,以写实为基调,长于描写丰富多彩的生活,刻画的法国社会风俗细致入微,读者通过人物命运的变化,看到了19世纪法国社会所经历的巨变。他通过创造现实来描写“真实”世界的创作模式,被誉为“创造现实的现实主义者”。 一、还原巴尔扎克 巴尔扎克作为现实主义文学巨匠,是塑造典型小说人物的大师。在其二十载的创作生涯中,创作了《高老头》、欧也妮·葛朗台》《幽谷百合》等脍炙人口的不朽之作,而《人间戏剧》更是被誉为“法国社会的百科全书”,真实地呈现了19世纪法国社会中金钱的统治地位,深刻剖析了人性的丑与美,在世界小说史上树立了一块迄今为止仍无法超越的丰碑。[1]与他 同时代的法国文学巨匠维克多·雨果在其葬礼上发表了这样的赞誉:“在最伟大的人物中间,巴尔扎克是第一等的人;在最优秀的人物中间,巴尔扎克是最高的一个。”[2] 尽管巴尔扎克在生前并未得到应有的赞誉,但在其死后,人们逐渐认识到他作品的伟大之处,并将其誉为“现实主义”小说的奠基人。在今天,我们重读巴尔扎克作品时,不禁被其光怪陆离的小说场景、极富个性的人物形象、对现实世界中追逐金钱名利心理的深刻剖析所折服。他的作品兼具了现实主义小说的三大特性,即真实的细节描写、典型的人物形象、客观的叙述方式。要解读巴尔扎克作品,剖析他是如何创作出如此“真实”的小说,首先要还原巴尔扎克,还原他的创作历程。 (一)折射社会的镜子

巴尔扎克的简介

巴尔扎克的简介 巴尔扎克的简介奥诺雷·德·巴尔扎克,法国小说家,被称为现代法国小说之父。生于法国中部图尔城一个中产者家庭。1816年入法律学校学习,毕业后不顾父母反对,毅然走上文学创作道路,但是第一部作品五幕诗体悲剧《克伦威尔》却完全失败。尔后他与人合作从事滑稽小说和神怪小说的创作,曾一度弃文从商和经营企业,出版名著丛书等,均告失败。商业和企业上的失败使他债台高筑,拖累终身,但也为他日后创作打下了厚实的生活基础。1829年发表长篇小说《朱安党人》,迈出了现实主义创作的第一步。1831年出版的《驴皮记》使他声名大震。他要使自己成为文学事业上的拿破仑,在30至40年代以惊人的毅力创作了大量作品。一生创作甚丰,写出了91部小说,合称《人间喜剧》。但由于早期的债务和写作的艰辛,终因劳累过度于1850年8月18日与世长辞。 巴尔扎克的生平人物档案 早年 出生 1799.5.20 寄养 1803-1807 效区列盖公寓 小学 1807-1813 旺多姆教会学校 中学 1814-181 5 黎毕德拉学校 大学 1815-1819 巴黎法律专科学校

青年 初试文学 1819-1825 流行小说写作 从事实业 1825-1828 从事实业,负债累累 文坛新秀 1828-1835 日渐成熟,形成自己风格 晚年 文坛宿将 1835-1850 创作高潮 文学家协会委员时期 1839-1850[1] 生平概述 100多年来,他的作品传遍了全世界,对世界文学的发展和人类进步产生了巨大的影响。马克思、恩格斯称赞他“是超群的小说家”、“现实主义大师”。 巴尔扎克法科学校毕业后,拒绝家庭为他选择的受人尊敬的法律职业,而立志当文学家。为了获得独立生活和从事创作的物质保障,他曾试笔并插足商业,从事出版印刷业,但都以破产告终。这一切都为他认识社会、描写社会提供了极为珍贵的第一手材料。他不断追求和探索,对哲学、经济学、历史、自然科学、神学等领域进行了深入研究,积累了极为广博的知识。 1829年,巴尔扎克完成长篇小说《朱安党人》,巴尔扎克将《朱安党人》和计划要写的136部小说总命名为《人间喜剧》,并为之写了《前言》,阐述了他的现实主义创作方法和基本原则,从理论上为法国批判现实主义文学奠定了坚固的基础。巴尔扎克在艺术上取得巨大成就,他在小说结构方面匠心独运,小说结构多种多样,不拘一格、并善于将集中概括与精确描摹相结合,以外形反映内心本质等手法来塑造人物,他还善于以精细人微、生动逼真

巴尔扎克资料

巴尔扎克兄弟姐妹共四人(父亲在外又有几个非婚生孩子),母亲宠爱的弟弟是母亲瞒着父亲与他人的私生子。他从小怕母亲,回忆童年时曾说一听到母亲的声音便会吓一大跳,成年后更感到生母的贪婪和冷酷。他有一次破产欠了6万法郎,其中4万的债主便是母亲,长期不还时也始终拒绝勾销。无妻小的巴尔扎克常外出游荡,只好把留在巴黎的房产财物交给唯一可信的老娘管理,结果被做了些小手脚,使得母子反目。有暴发户特点的布尔乔亚式的贪欲、自私、放荡,充分显现在这个家中,无怪他笔下能入木三分地发掘恶习、解剖情欲。 巴尔扎克一生放荡不羁,经常挥霍无度和负债破产,爱情婚姻又十分复杂。他早期想娶阔家小姐却被人看不上,出名后又成为不少有闲贵妇追逐和消遣的对象。他在理发店剪下的发屑,有时竟然成为一些少妇和太太的争夺品。他曾痴情于逢场作戏的侯爵夫人而遭耍弄,23岁至33岁时与比自己母亲年纪还大的一位夫人成了长期情人。后来他十几年追求自己作品的崇拜者、一位拥有4万佃农的俄国贵族庄园太太,两人还生过一个孩子(可惜夭折)。这个伯爵夫人丧夫后却因门第之见,拖了八年不肯结婚。直至作家去世三个月前,寒斯卡夫人出于怜悯及其他目的才勉强举行了婚礼,不久又有了新情人。巴尔扎克长期卧床带着周身恶臭病逝时,仅有妹妹、妹夫看望,床边守护的只是感情不睦却毕竟血肉相连的母亲。 “伟人的一生势必不幸”。巴尔扎克这句自诩的话,也是其生平的写照。他个人经历颇受非议,然而这个生活凡人却是思想巨人,留下的作品成为警世的不朽艺术篇章。 。《巴尔扎克传》从巴尔扎克的童年生活入笔,既记述了他在成功前的种种努力,奇异的幻想和追求,令世人咋舌的传奇,又记述了他成名后与同时代名人、朋友、家庭的交往及他的写作生活,使多侧面的巴尔扎克——他的痛苦与欢乐,他的天才和刻苦,他伟大的人性力量,都一一展现出来。传记还充分揭示了巴尔扎克个性中鲜为人知的冒险因素,从而为他的笔锋直入法国社会提供了有力的佐证。传记中巴尔扎克身后的背景如同他的伟大作品中所展现的,是一部丰富多彩的法国历史 巴尔扎克童年所渴望得到的,就是这种母性的爱抚,然而他自己的母亲却拒绝给予他。他一直在苦苦追寻,而竟在此时却得到了他早想获得 的东西。他就是要这样一个能负保护之责的天使般的女人,让他自觉到他身体里的蕴含着的力量如何排泄出来:一个既爱他而又是他知已的人来解除他内心的紧张;把他纤维中粗糙的部分提取出来但又不伤及他的身体;既能鼓励他,同时又以一种合作者的态度指出其缺点,但决不是恶意地批评;尽力了解他的思想,但对他丰富多彩的梦想并不加以嘲弄。他迫不及待地要把他的内心思想感情坦露出来让别人知道。这个年纪与他母亲相仿的人,在听他倾诉时,给他留下的是值得信赖的感觉;当他谈到他那些众多的、充满了幻想的计划时,她的明朗而且聪慧的双眼温和地闪耀着。就是这个女人,她用她的温柔与和善,把他那由于粗俗和缺乏自控力而造成的神经质矫正过来。经过她温柔小心地调教,经过她的熏陶和教育,便使他已失掉的自信力重新恢复了。在他的《费米安尼夫人》一书中,描写到他们两人的接触而给他带来的幸福: 尔扎克所闯进的是一种特殊而又新颖的氛围。跟这个家庭的交往,竟 给这位年青的巴尔扎克一个机会去体验当代历史上的真正精神,他原本对民众及其时代的关系有着深厚的感情 司汤达

巴尔扎克的小说赏析

论巴尔扎克的小说 奥诺雷·德·巴尔扎克,法国小说家,现代法国小说之父,生于法国中部图尔城一个中产者家庭,1816年入法律学校学习,毕业后毅然走上文学创作道路,但是第一部作品五幕诗体悲剧《克伦威尔》却完全失败。曾一度弃文从商和经营企业,出版名著丛书等,均告失败。商业和企业上的失败使他债台高筑,拖累终身,但也为他日后创作打下了厚实的生活基础。1829年,他发表长篇小说《朱安党人》,迈出了现实主义创作的第一步,1831年出版的《驴皮记》使他声名大震。他要使自己成为文学事业上的拿破仑,在30至40年代以惊人的毅力创作了大量作品,一生创作甚丰,写出了91部小说,合称《人间喜剧》。《人间喜剧》被誉为“资本主义社会的百科全书”。但他由于早期的债务和写作的艰辛,终因劳累过度于1850年8月18日与世长辞。他的小说善于描写细节,精细入微,生动逼真;成功塑造典型环境中的典型人物;人物形象生动、充满个性。其作品具有巨大的艺术力量,是法国现实批判主义的最高峰。 一百多年来,他的作品传遍了全世界,对世界文学的发展和人类进步产生了巨大的影响。巴尔扎克在世界文学史上的地位早已确定无疑了,这主要是由他的长篇小说取得的伟大成就所奠定的。但是,综观他的创作,不能不看到他的中篇和短篇小说也起着举足轻重的作用,它们组成了他的鸿篇巨制《人间喜剧》不可或缺的一部分,其中不少是翘楚之作,堪称世界中短篇小说中的精品。巴尔扎克在法国中短篇小说发展史上所起的作用是巨大的。19世纪初,法国中短篇小说正处于发展的转折期。在此之前,中短篇小说应该说还处于萌芽状态,尽管已有不少著名的作品问世。从16世纪开始,玛格丽特·纳瓦尔的《七日谈》、德·拉法耶特夫人的《克莱夫王妃》、伏尔泰(1694—1778)的哲理小说《老实人》、《天真汉》、《查第格》、《如此世界》,狄德罗的《两个朋友》和《众口铄金》,萨德侯爵(1760一1814)的《爱情的策略》等,在中短篇小说的发展史上都是不可不提的作品。可是,无论从人物形象的塑造还是结构方面来说,法国中短篇小说在19世纪之前还没有臻于成熟,就短篇而言,只能说这些作家写的是故事,而并非是真正的短篇小说。也许,法国的中短篇小说要从夏多布里昂的《阿达拉》和《勒内》开始。尤其是《勒内》,塑造了所谓“世纪病”的典型——勒内。这

巴尔扎克简介_小学作文

巴尔扎克简介 本文是关于小学作文的巴尔扎克简介,感谢您的阅读! 巴尔扎克简介法国小说家。1799年5月20日生于巴黎以南的图尔城,1850年8月18日卒于巴黎。巴尔扎克的一生,处于19世纪前半期的50年,经历了拿破仑帝国的战火纷飞的岁月,动荡不安的封建复辟王朝,以及以阴谋复辟帝制的路易□波拿巴为总统的第二共和国。他用总标题为《人间喜剧》的一系列小说,反映了剧烈的社会变革时期的法国生活。巴尔扎克出生后不久就被送到附近的乡村去寄养。 上小学后一直到中学毕业,他始终寄住在宿舍里,没有能回家过一段比较长的日子,享受家庭生活的温暖。离开家庭的童年生活的痛苦使他毕生难忘。巴尔扎克的父亲原姓巴尔沙,是个精明强干的人。 他来自农村,幼年时跟当地教士学了一点文化,中年致富,在外省当过副市长,供应军粮的承包商,在巴黎经营过呢绒商业,当过巴黎驻军的军需负责人,是一个白手起家的资产者。1816年,17岁的巴尔扎克结束中学的学业后进大学法科,并在文科旁听。18岁时,先后在诉讼代理人和公证人的办事处当见习生或书记。从20岁开始,巴尔扎克决定从事文学创作。他在巴黎贫民区租了一间房顶上的阁楼,由父母供给极有限的一点生活费,埋头写作。他的第一部作品是五幕诗体悲剧《克伦威尔》,这是一部完全失败的作品,没有引起任何人的兴趣。接连又写了十多部小说,有的是自己所写,有的是和别人合写。这一阶段他所写的小说全用笔名发表。这些作品并没有给他带来生活所需要的物质条件,他只好暂时放弃文学。1826年借钱出版了一部普及版的《莫里哀全集》,接着又出版一

部拉封丹寓言诗集,销路不佳,亏损负债9,000法郎。后又借债经营印刷厂和铸字厂,均以赔本告终。他前后负债共达6万多法郎。 从1828年夏季开始,巴尔扎克决定重新回到文学事业上来。他写了一部以布列塔尼封建势力武装叛乱反对共和国为题材的小说《最后一个舒昂党人》。这是巴尔扎克所写的第一部严肃的文学作品,第一次用巴尔扎克真姓名发表。此书问世,初步奠定了作者在文学界的地位。接着发表小说《婚姻生理学》,在读者之间引起广泛注意。1831年他的新著《驴皮记》出版,巴尔扎克立即成为法国最负盛名的作家之一。1819到1829年,是巴尔扎克在文学事业上的探索阶段。 从1829年开始,一直到1848年,是他创作《人间喜剧》的时期,也是他文学事业的全盛时期。他用超人的才智与精力,在不到20年的时间内,共创作小说91部。平均每年产生作品四,五部之多。他每日伏案一般都在10小时以上,常常连续工作18小时。有时文思如泉涌,或者为了赶写稿子,他一连几天废寝忘餐,夜以继日地劳动。根据阿尔贝·贝干教授提供的材料,巴尔扎克的杰作《高老头》是他用三天三夜一气呵成的。什么是《人间喜剧》的作者的创作动力人们说是因为他负债过多,需要用稿费还债。 巴尔扎克年轻时经营印刷出版业确曾负债巨万。但从他成为名重一时的小说家之后,他的收入丰厚,出版商争着和他签订合同,不惜重金预约他尚未完成或尚未动笔的小说稿,早年的债务早已还清。名作家巴尔扎克生活阔绰,醉心于豪华的排场。他在巴黎同时安置了几处住宅和别墅,出门坐最富丽的马车,驾着骏马;仆役都穿制服;他也服饰华贵,出入于名门大户的沙龙。 由此可见,他的勤奋创作,绝对不是由于贫困。巴尔扎克从年轻时开始就自信有很高的文学才能,对文学有极大的抱负。他不舍昼夜地勤奋写作,主要因为

巴尔扎克

幻灯片1 巴尔扎克(1799-1850) ● ●拿破仑用剑未竟的事业我要用笔来完成。 ●一切障碍,遇我皆亡。 奥诺雷·德·巴尔扎克 Honor de Balzac 幻灯片2 文学史地位 ●巴尔扎克,是法国19世纪伟大的批判现实主义作家,他的《人间喜剧》是人类文学宝 库的瑰宝。 ●提供了一部法国社会, ●特别是巴黎上流社会 ●的卓越的现实主义历史。 ●——恩格斯 ●最伟大的作家中第一流的一个, ●最优秀的作家中最崇高的一个 ●——雨果

幻灯片3 故乡:图尔市

幻灯片4 巴尔扎克故居 幻灯片5 少年巴尔扎克幻灯片6 青年巴尔扎克幻灯片7 壮年巴尔扎克幻灯片8 巴尔扎克墓幻灯片9

一、生平与创作 ●出生:1799-5-20于法国图尔市 ●身份:中产阶级出身,却向往贵族身份 ●家庭:父母的性格与信仰 ●1814:随父迁居巴黎 ●1816-1819:学习法律 ●1819-1829:练习写作,屡受挫折,投笔从商 ●1829:发表《舒昂党人》 ●1829-1850:辛劳20年,创作《人间喜剧》 ●去世:1850-8-18于巴黎 ● 幻灯片10 罗丹的《巴尔扎克》雕塑 ● 幻灯片11 二、巴尔扎克世界观的矛盾性 ●巴尔扎克的世界观是矛盾的。他是一个中小资产阶级作家、但又有浓厚的贵族意识和 封建道德观念。因此在作品中对贵族的衰落表现出无尽的同情。 ●然而,本着现实主义创作的精神,他看到了他心爱的贵族们灭亡的必然性,从而把他们 描写成不配有更好命运的人。并且,他在如实地表现资产阶级的日甚一日的进攻的同时上升,又深刻地揭示出金钱关系的渗透和社会道德的堕落。 幻灯片12 三、《人间喜剧》 ●名词解释:《人间喜剧》 ●《人间喜剧》是巴尔扎克的作品总集,收录的长、中、短篇小说有90多部。 ●《人间喜剧》分为三大类:“风俗研究”、“哲学研究”和“分析研究”。其中“风俗 研究”又分为“私人生活场景”、“外省生活场景”、“巴黎生活场景”、“政治生活场 景”、“军旅生活场景”和“乡村生活场景”六个部分。作家试图用小说的形式进行 社会研究。 ●采用“分类编目法”与“人物再现法”将不同作品串连成有机整体,反映19世纪 上半期法国的历史。 幻灯片13

巴尔扎克生平著作年表

巴尔扎克生平著作年表 1799年 5月20日,奥诺雷·德·巴尔扎克生于法国西部杜尔市一个中产阶级家庭。祖父是农民。父亲是大革命时期的官吏,后来他在姓氏上自行加上贵族头衔标志。 11月9日,拿破仑发动政变,开始大资产阶级军事独裁统治。 1807在旺多姆市的教会学校读书。 1811从四年级起,开始醉心于读书,并且写作,在同学中赢得了“诗人”的外号。 1814路易十八登位,波旁王朝复辟。巴尔扎克随同全家迁居巴黎,在保皇党开办的寄宿学校上学。 1815年6月,拿破仑“百日政变”失败,波旁王朝第二次复辟。 1816年11月,在巴黎法科学校学习。以后他一边读书,一边先后在两家律师事务所实习。 1819年法科学校毕业,立志从事文学创作。由于他违背父亲希望他当律师的意愿,家庭对他的生活开支作了限制。8月,构思和撰写长篇小说《斯戴拉》、悲剧《苏拉》、喜剧《柯尔萨尔》、《两个哲学家》的草稿。 1820年5月,摹仿古典大师创作手法写出诗体悲剧《克伦威尔》并在家中宣读,但未能获得成功。 9月,为争取经济独立与当时知名市侩作家莱格列维尔合作,写作长篇小说《两个赫克托》,用笔名维列尔格莱发表。 1821上半年,继续与莱格列维尔合作长篇小说《私生的堂兄》、《毕拉格的女继承人》和《拾来的女儿》。一个宫廷乐师的女儿白尔尼夫人发现巴尔扎克有天才,鼓励他创作。从此,巴尔扎克与白尔尼夫人相交甚密。 1822元月,《毕拉格的女继承人》问世。3月,《拾来的女儿》发表。夏,《阿尔丹的副本堂神甫》和《百岁老人》发表。 1824年3月,匿名出版随笔集《正人君子法典》。 1825年春,巴尔扎克开始当出版商,出版古典作品,后又开办印刷厂,甚至还想冒险贩卖铁道枕木,开采废银矿等。结果一败涂地,债台高筑。加上他以后又进入上流社会,生活豪华挥霍,入不敷出,负下大量债务。 1829年3月,第一次以真实姓名出版长篇历史小说《朱安党人》(后收为《人间喜剧》的开施展作品)。7、8月间写作短篇小说《夫唱妇随》。12月,随笔集《婚姻生理学》出版。本年还发表了《猫打球商店》、《苏城舞会》等短篇。 1830年1月,完成《高布赛克》(中译《高利贷者》)。发表短篇小说《刽子手》。2月25日,雨果剧本《欧那尼》首次上演,巴尔扎克观看后曾写评论。4月,发表随笔《杂货商人》。《私人生活场景》两卷集出版。12月,与司汤达相识。 1831年5月,中篇小说《流亡者》发表。7、8月间与乔治·桑相识。连续发表长篇小《驴皮记》;短篇《不可知的杰作》、《红色旅馆》;随笔《一年两遇》。获得极大成功。9月,《长篇和中篇哲理小说》出版。10月,发表《三十岁的女人》第一章。秋,参加保皇党。 1832年2月,短篇《委托》;中篇《夏倍上校》、《费尔米安尼夫人》发表。9、10月,短篇小说《弃妇》、《掷弹兵》相继发表。波兰没落贵族小姐、俄国地主韩斯卡夫人,从遥远的俄国写信给他,不久即相爱。 1833年6月,写作并完成长篇小说《乡村医生》。7至9月,发表重要代

巴尔扎克

第四节巴尔扎克 (债台高筑的文学大师) 文艺观 主张文学应该反映生活。 他公开承认自己和司汤达属于同一文学流派,要求作家“照世界原样表现世界”(《贝尔先生研究》)。他在《〈驴皮记〉序言》中说:“作家应该熟悉一切现象,一切感情。他心中应有一面难以明言的把事物集中的镜子,变幻无常的宇宙就在这面镜子上面反映出来” 主张用典型表现人物和事件。 对于表现人物的方法,他说:“不仅是人物,就是生活上的主要事件,也用典型表达出来。”(《人间喜剧》前言)“典型这个概念应该具有这样的意义,典型指的是人物,在这个人物身上包括着所有那些在某种程度跟他相似的人们的最鲜明的性格特征。典型是人类的样本。因此,在这种或者那种典型和他的许许多多同时代人之间随时随地都可以找到一些共同点。但是,如果把它们弄得一模一样,则又会成为对作家毁灭性的判决,因为他作品中的人物就不会是艺术虚构的产物了。”(《〈一桩无头公案〉初版序言》) 幻灯片24 二、《人间喜剧》介绍 巴尔扎克从1828年到1848年20年间,共写作长短篇小说97部,滑稽故事36篇,戏剧6部,以及一些零星的文章。1842年,巴尔扎克把从1829年起写的91部小说收集起来,编成一个总集,定名为《人间喜剧》。 幻灯片25 1.《人间喜剧》构思来源 ①受司各特历史小说的影响 巴尔扎克研读司各特,看到他的历史小说隐藏着一套完整的哲学,同时,他也发现司各特作品缺少系统的有机联系。尽管他写的都是历史小说,但是“他没有想到把他的人物联系起来,协调成为一个完整的历史,其中每章都是一部小说,每部小说都描写一个时代。”他立意要写出一部艺术的历史。 《艾凡赫》 幻灯片26 ②受动物学家圣伊莱尔的“统一类型”说的影响 动物学家圣伊莱尔提出“统一类型”说,把动物分类。巴尔扎克就此提出“社会和自然”“相似”的意见,认为人类和兽类一样,也可以划分不同类型。他想把自己的小说统一成一部大书,人物有不同的分类。 幻灯片27 ③受但丁《神曲》书名的影响 但丁《神曲》的原名是“神的喜剧”,巴尔扎克受到暗示,选定了《人间喜剧》这个名称作为总书名。1840年底,巴尔扎克在给一位出版商的信中首次提出说:“《人间喜剧》将是我的作品的总名称。过去已发表的只是其中的片段而已”。直到1842年4月,他在报纸上登出了广告,正式启用《人间喜剧》的名称,同时,在第一卷中刊出了纲领性的《人间喜剧》前言。 幻灯片28 2.《人间喜剧》分类

青少年必读书系(小学生必知的历史人物(下))_巴尔扎克:最勤奋的作家

生平简介 巴尔扎克1799年5月20日出生在卢瓦尔河畔的小城图尔市的一个富裕外省资产者家庭。殷实富足的家庭并没给小巴尔扎克带来温暖和幸福。他出生不久,便被送到图尔近郊,由一个宪兵的妻子抚养,几乎被家人遗忘。 1807年,巴尔扎克进入旺多姆市的教会学校里寄读,在这里,他度过了6年监狱般的痛苦生活。这些外省的教会学校,保留着中世纪的教育方式。学校制度古板而严格,教师冷漠而残酷,学习单调乏味。这对于一个7、8岁的儿童,无疑是残酷的。生性敏感活泼好动的巴尔扎克,感觉简直是度日如年。入学时那红扑扑的脸蛋儿,到离校时已变成了小猴脸儿,身心受到了严重的摧残。小巴尔扎克备尝了人生的苦酒,在作家幼小的心灵上留下了深重的创伤。 幼小的巴尔扎克并没有在恶劣的环境中枯萎。他强忍着教师的斥骂和鞭笞,敷衍着课堂上令人生厌的学业,在书籍的海洋里找到了无穷的乐趣。一位好心的馆员,使他有幸把各类书刊带去尽情翻阅。于是,文学、哲学、历史、科学、神学……凡是可以借到的书,他都不放过。实在借不到书时,他甚至能捧着字典,津津有味地读下去。巴尔扎克从这些“杂书”中汲取自己所需的养分,书中描写的英雄和阐述的哲理在他心中掀起阵阵波澜。同学们见他离群索居,少言寡语,终日读呀、写呀,于是谐趣地给他封了个“诗人”的雅号。 1812年,这位饱受家庭和学校压抑的年仅12岁的孩子,终于遏止不住内心的抑郁和对宗教教育的愤懑,提笔写了一篇富有哲理的文章《灵与肉》,吐出了他渴望自由的心声,惊动了整个校园。 1816年,巴尔扎克结束了中学的学习,人大学法律系学习并旁听文学课,1819年夏天,巴尔扎克开始了他的作家生涯。 历史业绩 1827年,巴尔扎克来到富热尔,为了写一部舒昂党人叛乱的小说,他来到当年的战场,访问当事人,作了大量的笔记。经过两年多的紧张劳动,终于在1829年完成了历史小说《舒昂党人》。这部小说第一次用巴尔扎克这个真名发表,巴尔扎克也因此获得文学上的声誉,标志着他开始走上了现实主义的创作道路。 在以后的三四十年里,巴尔扎克以惊人的热情、惊人的毅力、惊人的速度和惊人的文思从事着文学创作劳动。他的许多作品往往是在几天或一夜之间完成的。如《卢日里的秘密》是在 《幻灭》开头的100页只用了3天的时间……一夜之间写成的;《老姑娘》花了3个晚上的功夫; 经过这样异乎寻常的艰苦劳动,一部部杰作接二连三地诞生了。其作品构成了五光十色、气象万千的博大世界。在19世纪30年代的最初几年内,巴尔扎克就为世界文化宝库增添了诸如《高布赛克》、《高利贷者》、《驴皮记》、《红色旅馆》、《不可知的杰作》、《欧也妮·葛朗台》、《高老头》等几十部著作。 1841年,巴尔扎克在中世纪意大利大诗人但丁的《神曲》(直译为《神的喜剧》)的启示下,正式把自己作品的总称定为《人间蒯》。《人间喜剧》是作品总集的题名,原计划由137部小说组成。为实现这一宏愿,巴尔扎克拼命地工作,有时一天达18个小时之久。由于他有深刻的生活感受,对资本主义的罪恶现实有清醒的认识,创作实践又大大提高了他的艺术境

相关文档
相关文档 最新文档