文档库 最新最全的文档下载
当前位置:文档库 › 串联谐振的危害

串联谐振的危害

串联谐振的危害
串联谐振的危害

https://www.wendangku.net/doc/fb12752130.html, 串联谐振的危害,华天电力是串联谐振装置的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找串联谐振,就选华天电力。

串联谐振是电感电压与电容电压等值异号,即电感电容吸收等值异号的无功功率,使电路吸收的无功功率为零,电场能量和磁场能量此曾彼减,互相补偿,这部分能量在电场和磁场中间振荡,电磁场能量总和不变,激励供给电路能量转为电阻发热。

串联谐振的危害

1、谐振引起的过电压,还可以导致氧化锌避雷器的损坏。无间隙氧化锌避雷器的过电压耐受能力有限,如果选用氧化锌避雷器的直流电压偏低,在过电压的作用下连续动作,最终会发生热崩溃而损坏。

2、串联或并联谐振会产生高于电源数倍的电压,施加在回路中的电容器、互感器、断路器等设备上,引起高压电气设备绝缘损坏。在熔断器未及时熔断的情况下会引起电压互感器喷油、绕组烧毁甚至爆炸。

3、基波谐振时,出现虚幻接地现象,易引起值班人员的误判断,表现为两相电压升高,一相电压降低,线电压正常,其现象与单相接地相同。

4、在电压互感器熔断器不能及时熔断的情况下,引起电压互感器二次电压升高,对二次继电保护设备和计量仪表的绝缘造成损坏或引起继电保护设备的误动。

5、谐振时电压互感器铁芯的饱和会使变比误差增大,影响计量、测量精度。

串联谐振的危害案例

某110KV变电站,有110KV单母分段、35KV单母分段、10KV单母分段运行;10KV Ⅰ段接511变电所,两条负荷线、电容器;Ⅱ段接电容器。

某月某日23时12分:监控语音报警,“10KV母线Ⅰ段接地”,“10KV母线Ⅱ段接地”

https://www.wendangku.net/doc/fb12752130.html, 信号;监控屏显示Ⅱ段电压值:Ua=6.21KV、Ub=7.03 KV、Uc=7.80 KV、3Uo=64.11V;23时14分:511开关过负荷告警,线路、电容器告警,PT断线信号;23时15分:Ⅱ段电压值继续升高,Ua=8.94 KV、Ub=9.91 KV、Uc=12.00 KV、3Uo=119.97V;23时18分:遥控断开514开关,电压恢复正常。

原因及处理:Ⅱ支线某厂变压器引线熔断后搭在变压器外壳上,三相系统平衡性破坏,出现零序电流、中性点偏移和对地电位Uo,即开口三角有零序电压,零序电压叠加在二次侧三相电压上,三相电压不平衡。是因为发生高次谐波谐振(铁磁谐振),发出一系列信号,值班员正确判断出接地引起的故障,并快速切除。

谐振的危害和防护

https://www.wendangku.net/doc/fb12752130.html, 谐振的危害和防护 谐波谐振的危害 串联、并联电路谐振频率与系统电阻无关,当系统谐波源频率天时就会发生串联或并联谐振。若、很小,可以激发二次或三次谐波的高次谐波谐振过电压若、很大,则能激发分频谐波的谐振过电压,这两种谐振过电压都表现为三相对地电压的同时升高,而线电压正常。试验研究表明,基波谐振和高次谐波谐振过电压一般不超过倍额定电压,对于分频谐波谐振,由于受到电压互感器铁芯严重饱和的限制,过电压一般不超过倍额定电压,但励磁电流急剧增加,瞬 时可高达额定励磁电流的几十倍以上,引起高压保险丝的频繁熔断。 ①串联或并联谐振会产生高于电源数倍的电压,施加在回路中的电容器、互感器、断路器等设备上,引起高压电气设备绝缘损坏。在熔断器未及时熔断的情况下会引起电压互感器喷油、绕组烧毁甚至爆炸。 ②谐振引起的过电压,还可以导致氧化锌避雷器的损坏。无间隙氧化锌避雷器的过电压耐受能力有限,如果选用氧化锌避雷器的直流电压偏低,在过电压的作用下连续动作,最终会发生热崩溃而损坏。 ③在电压互感器熔断器不能及时熔断的情况下,引起电压互感器二次电压升高,对二次继电保护设备和计量仪表的绝缘造成损坏或引起继电保护设备的误动。 ④基波谐振时,出现虚幻接地现象,易引起值班人员的误判断,表现为两相电压升高,一相电压降低,线电压正常,其现象与单相接地相同。 ⑤谐振时电压互感器铁芯的饱和会使变比误差增大,影响计量、测量精度。 ⑥谐波谐振引起电网的谐波损耗增大。 谐波谐振的预防和应对措施 ①少谐波源的产生 在选用铁芯设备时尽量选用励磁特性好、伏安特性高、铁芯不易饱和的电磁式电压互感器、变压器、电抗器。在选用电磁电压互感器时应注意同时提高三相电压互感器的励磁特性和伏安特性曲线的线性度,尽量选用同型号、同批次生产的单相电压互感器,也可以采用电容式电压互感器代替电磁式电压互感器。 断路器三相不同时合闸,由于合闸瞬间三相电压的不同,会引起的三相负载的不对称,使电源的中性点产生位移,中性点对地电压与电源电压叠加会使三相对地电压同时升高或两相、单相对地电压升高,使回路中的电磁式电压互感器或电抗器线圈很快饱和,激磁电流的波形发生畸变,产生高次谐波。 ②限制谐波源注入电网的谐波电流在谐波源处装设交流滤波器是防止谐波源向系统注入谐波电流的有效而通用的措施。 交流滤波器分为调谐滤波器分为单调滤波器和双调滤波器和高通滤波器,对产生较低次数如、、次谐波含量较大的大容量的谐波源,可对每次谐波各装一个单调滤波器,将谐波分别滤除对次数较高的各次谐波如次及以上各次,可通过安装一个高通滤波器将其谐波全部滤除。将有源电力滤波器装设在谐波源处,用于抑制谐波源产生的绝大部分的谐波电流注入系统。 ③采取有效措施使系统的参数处于谐振范围之外改变参数,避开谐振区域控制投入电压互感器的台数。改变投入补偿电容器的组数,在保证系统功率因数要求的前提下,通过改变系统的容性参数,以避开谐振区域。中性点不接地系统经消弧线圈接地。少油断路器断口均压电容与母线电压互感器发生串联谐振时,在断路器遮断容量允许的条件下,取消断路器断口均压电容器。投入空载线路,改变系统的感性或容性参数。

RLC串联电路谐振条件和谐振频率

平山县职业教育中心教案首页 编号:_10_号授课教师:___宋翠平_____授课时间:_5_月____

步骤教学容教学 方法 教学 手段 学生 活动 时间 分配 明确目标一、明确目标: 教师解读学习目标 二、引入 任务1: 在无线电技术中常应用串联谐振的选频特性来选择信 号。收音机通过接收天线,接收到各种频率的电磁波,每一 种频率的电磁波都要在天线回路中产生相应的微弱的感应电 流。为了达到选择信号的目的,通常在收音机里采用如图1 所示的谐振电路。 讲授 (口 述) 演示 启发 提问 讨论 展示 实物 展示 课件 板书 个别 回答 小组 讨论 代表 发言 7分 钟 操作示一、教师讲解RLC串联电路谐振条件和谐振频率 1、谐振条件——电阻、电感、电容串联电路发生谐振的条件 是电路的电抗为零,即: = - = C L X X X。则电路的阻抗 角为:。φ=0说明电压与电流同相。我 们把RLC串联电路中出现的阻抗角φ=0,电流和电压同相的 情况,称作串联谐振。 2、谐振频率——RLC串联电路发生谐振时,必须满足条件: 教师 示 课件 演示 教师 提问 课件 板书 演示 学生 抢答 小组 抢答 10 分钟

任务3 学生分析讨论串联谐振电路的通频带 实际应用中,既要考虑到回路选择性的 优劣,又要考虑到一定围回路允许信号 通过的能力,规定在谐振曲线上, 所包含的频率围叫做电路的通频带,用字 BW表示,如图2所示。 理论和实践证明,通频带BW与f0、Q的关系为: 式中f0——电路的谐振频率,单位是赫[兹],符号为Hz; Q——品质因数; BW——通频带,单位是赫[兹],符号为Hz; 上式表明,回路的Q值越高,谐振曲线越尖锐,电路的通频带就越窄,选择性越好;反之,回路的Q值越小,谐振曲线越平坦,电路的通频带就越宽,选择性越差。即选择性与频带宽度是相互矛盾的两个物理量。

TV铁磁谐振故障的原因及预防措施探讨

编订:__________________ 审核:__________________ 单位:__________________ TV铁磁谐振故障的原因及预防措施探讨Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5046-45 TV铁磁谐振故障的原因及预防措施 探讨 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1故障原因 在电网中应用的TV,有许多无消谐装置,仅采用熔丝保护。由于其固有特性,在系统参数突变,如线路接地、配电变压器单相接地、补偿电容的投切、拉合刀闸及跌落式熔断器、投切空载线路及变压器、增减负荷等因素诱发下,易激发引起铁磁谐振过电压。 2故障危害 TV发生铁磁谐振时,常有三相电压同时升高,产生非工频过电压,其值可达额定值的2~3倍,严重破坏电压质量,危及或破坏系统的稳定,造成TV熔丝熔

断,绝缘击穿烧毁;严重时还会造成电网瓦解大面积停电。 3预防措施 (1)采用防谐设备。选用励磁特性好、不易磁饱和TV,如JSJW、JDZX、JDJJ2及JDX系列TV。 选用抗铁磁谐振TV,JSZG—10型三相五柱环氧树脂浇注绝缘TV,它将大大提高抗谐振、耐过电压和防止烧毁的能力。 选用四台JDZJ型TV组合,即将第四台各侧绕组分别串接在高压、低压侧中线上及开口三角回路中。正常运行时中线绕组几乎没有电压,在分频谐振时,由于中线绕组的串入L增加一倍,基本上维持原感抗,限制励磁涌流,防止磁饱和,从而防止产生分频谐振。

串联谐振系统讲解

在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。 串联谐振的三大应用 高压大电容量设备进行交流耐压试验时,试验变压器容量要求非常大,试验设备笨重,而 应用串联谐振原理可以利用电压及容量小得多的设备产生所需的试验电压,满足试验要求。下面三新电力给大家介绍一下串联谐振试验装置在各个领域的应用。 1.在电缆试验中的应用 城乡电网中电缆的大量使用,其故障时有发生。为保证交联电缆的安全运行,国家电网公司对电缆交接和预防性试验做出了新的规定,用交流耐压试验替代原来的直流耐压试验,以 避免直流试验的累积效应对电缆造成损伤。

国际大电网会议(CIGRE)21.09工作组的建议导则提出高压挤包绝缘电缆的现场试验采用DAXZ串联谐振试验系统,频率范围为30~300Hz。并在1997年发表的题为“高压橡塑电缆系统敷设后的试验”的总结报告中明确指出以下3条。 ①由于直流电场强度按电阻率分布,而电阻率受温度等影响较大,同时耐压试验过程中,终端头的外部闪络引起的行波可能造成绝缘损坏。 ②直流耐压试验在很高电压下,难以检出相间的绝缘缺陷。 ③直流电压本身容易在电缆内部集起空间电荷,引起电缆附件沿绝缘闪络,因波过程还会产生过电压,这些现象迭加在一起,使局部电场增强,容易形成绝缘弱点,在试验过程中可能导致绝缘击穿,并可能在运行中引起事故。 很多电缆在交接试验中按GB50150-2006标准进行直流耐压试验顺利进行,但投运不久就发生绝缘击穿事故,正常运行的电缆被直流耐压试验损坏的情况也时有发生。交流耐压试验因其电场分布符合运行实际情况,故对电缆的试验最为有效。 通常交流电力电缆的电容量较大,试验电流也很大,调感式设备的体积将非常巨大并且电感调节也很困难,而调频式装置则灵活性更强,更易于实现。因此,电缆现场交流耐压试验多利用变频谐振试验设备。三新可根据客户需求制造10KV、35KV、110KV、220KV、500KV 电压等级的串联谐振试验装置。 2.在GIS设备中的应用 气体绝缘开关设备在工厂整体组装完成以后或分单元进行调整试验,试验合格后以分单元运输的方式运往现场安装。运输过程中的振动、撞击等可能导致GIS元件或组装件内坚固件松动或移位;安装过程中,在联结、密封等工艺处理方面可能失误,导致电极表面刮伤或安装错位引起电极表面缺陷;安装现场可能从空气中进入悬浮尘埃。导电微粒杂质等,这些在安装现场通过常规试验将难以检查出来,对GIS的安全运行将是极大的威胁。 由于试验设备和条件所限,早期的GIS产品多数未进行严格的现场耐压试验。事故统计表明没有进行现场耐压试验的GIS大都发生了事故。因此,GIS必须进行现场耐压试验。 GIS的现场耐压主要包括交流电压、振荡操作冲击电压和振荡雷电冲击电压等3种试验方法。其中交流耐压试验是GIS现场耐压试验最常见的方法,它能够有效地检查异常的电场结构(如电极损坏)。 目前,由于试验设备和条件所限,现场一般只做交流耐压试验。IEC517和GB7674认定对SF6气体绝缘试验电压频率在10~300Hz范围内与工频电压试验基本等效。国内外大多采用调频式串联谐振耐压试验装置进行GIS现场交流耐压试验。

RLC联谐振频率及其计算公式

RLC串联谐振频率及其计算公式串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。

图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即 Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。

7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之 间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当 f = f r时, Z = R 为最小值,电路为电阻性。

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析 摘要:在电网运行中,不可避免地会产生谐波和谐振。当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定 运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重 事故。本文就其定义、产生原因、危害及预防措施作以介绍,供参考。 1.定义 谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2.产生的原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中

的某一设备或某几台设备可能构成某次谐波的谐振电路。 3.造成的危害 3.1谐波的危害 谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。 (1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热 甚至发生火灾。 (2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重 过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以 至损坏。 (3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。 (4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。 (5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;

串联谐振方案270kVA-108kV

变频串联谐振耐压试验装置 HTXZ-270kVA/108kV 技术方案

目录 一、满足试品范围 (3) 二、装置主要组成 (3) 三、主要功能及特征 (3) 四、主要技术参数 (4) 五、装置容量验证 (5) 六、试验时设备组合方式 (5) 七、系统配置参数 (5) 八、供货清单 (7) 九、参考实验标准 (7)

变频串联谐振耐压试验装置 HTXZ-270kVA/108kV 一、满足试品范围 1、10kV/300mm2电缆5km的交流耐压试验,电容量≤1.8775uF,试验频率30-300Hz,试验 电压22kV,试验时间5min。 2、35kV/300mm2电缆2km的交流耐压试验,电容量≤0.389uF,试验频率30-300Hz,试验电 压52kV,试验时间60min。 3、35kV开关等电气设备的交流耐压试验,试验频率30-300Hz,试验电压不超过95kV,试 验时间1min。 二、装置主要组成 序号设备名称规格型号单位数量 1 变频电源HTXZ-15kW 台 1 2 激励变压器HTJL-15kVA/1.5/3/6kV/0.4kV 台 1 3 高压电抗器HTDK-67.5kVA/27kV 台 4 4 电容分压器HTFY-1500pF/110kV 套 1 三、主要功能及特征 HTXZ系列变频串联谐振耐压试验装置,采用调节电源频率的方式,使得电抗器与被试电容器实现谐振,从而在被试品上获得高电压大电流,因其所需电源功率小、设备重量轻体积小,在国内外得到了广泛好评和应用,是当前高电压试验的新方法和潮流。 我公司调频谐振装置主要功能及其技术特点: 1、装置具有过压、过流、零位启动、系统失谐(闪络)等保护功能,过压过流保护值可以 根据用户需要整定,试品闪络时闪络保护动作并能记下闪络电压值,以供试验分析。 2、整个装置单件重量很轻,便于现场使用。 3、装置具有三种工作模式:全自动模式、手动模式、自动调谐手动升压模式;方便用户根 据现场情况灵活选择,提高试验速度。 4、能存储和异地打印数据,存入的数据编号是数字,方便用户识别和查找。 5、装置自动扫频时频率起点可以在规定范围内任意设定,扫频方向可以向上、向下选择, 同时液晶大屏幕显示扫描曲线,方便使用者直观了解是否找到谐振点。 6、采用DSP平台技术,可根据用户需要增减功能和升级,人机交换界面更为人性化。

浪涌冲击和谐振及防范措施

浪涌冲击和谐振及防范措施 概述 电容器可用于改善交流系统的功率因数,但同时也会产生负作用。在一些情况下,使用电容器是产生负作用的主要原因;在另一些情况下,电容器又会受负作用的危害。不管在那一类情况,电气工程师都应了解系统的状况,采取必要的措施,防止浪涌冲击和谐振造成的危害。目前,随着斩波直流设备,尤其是SCR 驱动设备越来越广泛的应用,这两方面的危害日趋严重。 浪涌冲击的产生 浪涌冲击(瞬态脉冲尖峰)问题的出现,可以追溯到本世纪三十年代,当时它是由医疗用X射线机而引发。到了四十年代,由大型电弧焊机和冶炼炉引发的电压闪变引起了工程师的广泛注意。 浪涌冲击在近年来变得更为严重,随着斩波型开关电源设备(如计算机及UPS等)和大型整流电源设备的广泛使用,浪涌冲击和谐波畸变变得更为普遍。即使没有电容器,线路中的干扰事件也会经常发生,由此引发的设备误动作、电压畸变、过电流及不平衡电流等现象经常发生。 另外,电力系统中开关的分合、熔断器的动作、设备绝缘击穿、大容量设备的投切启动及其它故障等,都会引发浪涌冲击脉冲干扰。 浪涌冲击的危害在谐振发生时将会更严重。在脉冲的一系列频谱中,当线路电感量和电容量接近时,便有可能引发谐振,导致谐波在系统的局部地区放大。谐振不仅会随着瞬间干扰产生高电压和过电流,使事态恶化,也会在基频系统中叠加谐振电流,引起设备和绝缘过热,甚至烧毁损坏。 整流设备对电网运行的影响 近年来,整流系统的应用日趋广泛,已成为浪涌冲击和谐振的主要原因,如商业大厦中的电梯变频调速驱动系统,不间断电源供电系统(UPS)等。同时,整流触发电路(Rectifier Firing Circuit)也会引发浪涌冲击和谐振问题。 整流设备不仅导致波形畸变,也常令功率因数下降,因此需要安装补偿电容器以改善功率因数,但是电容器又容易引发谐振问题,在轻载时必须切除。 在整流器电路分析中有三个因素应受到注意: 第一.电路中开关分合引发的瞬间浪涌干扰。整流器和逆变器是一系列复杂的固态开关电路,它们首先从交流电源电路的一相中吸取电流,然后又转到下一相,不断循环,依次给同一输出导线供电(直流输出)。当电流由一相导线转换到另一相时,两相导线基本处于短路状态,虽然短路状态仅持续零点几毫秒,却造成尖峰和缺口脉冲浪涌干扰,如图-1,

串联谐振感应加热系统

串联谐振感应加热系统 华意电力是一家专业研发生产串联谐振的厂家,本公司生产的串联谐振设备在行业内都广受好评,以打造最具权威的“串联谐振“高压设备供应商而努力。感应加热的频率 用于感应加热电源的频率可以从50Hz 到几MHz。选择频率首先要考虑的是加热效率和温度分布。其次是熔炼、透热和淬火等不同加热工艺对电源频率的特殊要求。如透热、熔炼等加热工艺要求加热时温度均匀,而淬火则不要求温度均匀只需要满足淬硬层厚度。对于熔炼还需要考虑搅拌力的作用和功率密度。再者,频率高功率大的电源设备一般都比频率低比功率小的价格高。因此,选择电源频率最终需要考虑其综合经济技术指标。 电磁感应的三个效应 电磁感应在导体上产生的交流电流的分布是不均匀的,主要受到三个效应即集肤效应、临近效应和圆环效应的影响。 (1) 集肤效应、透入深度△及有效加热层 导线通过直流时,能保证导线中的电流密度是均匀的。但只要电流变化率很小,电流分布仍可认为是均匀的。对于工作于低频的细导线,这一论述仍然是可确信的。但在高频电路中,电流变化率非常大,不均匀分布的状态较为严重。最大电流密度出现在导体的表面层。这种电流集聚于导线表面的现象叫做集肤效应。集肤效应可解释如下:如图2.3(a)所示,当电流通过导体时,在导体的外部和内

部都建立了磁场,磁力线的形状是以导体的中心为圆心的同心圆,如果流过的电流是交变的,那么磁场也是交变的,显然与导体表面部分相交链的磁力线,比与导体内部(接近中心部分)所交链的磁力线要少,于是导体中心部分的自感电势,或者说中心部分的电感和阻抗,大于表面部分的电感和阻抗。电流总是沿阻抗最小的路径流动,所以电流会集聚在导体的表面层。 电流频率越高,自感电动势的作用越强,集肤效应也越显著。以上分析的是导体中通入交变电流时电流在导体中产生的集肤现象。另一种情形是导体放在交变电磁场中,也就是感应加热工件的情形,工件中的涡流也是交变电流,它沿截面的分布也是集聚在工件表面一层。在工业应用方面,对金属进行表面淬火就是利用集肤效应。 (2) 邻近效应 相邻两个导体分别通入交流电流时,两个导体会产生磁场,导体除了受自身产生的磁场影响外,还受另一个导体产生的磁场的影响,在这种相互影响下导体内的电流会重新分布。当两导体内电流的方向相反时导体内侧电流密度比较大;当

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

(串联谐振电路分析)

《电子设计与制作》 课 程 设 计 报 告

目录 一:题目………………………………………………………..二:原理………………………………………………………….三:电路图……………………………………………………….四:实验内容…………………………………………………….五:实验分析……………………………………………………六:心得体会…………………………………………………….

一、题目:串联谐振电路分析 二、原理 1.串联谐振的定义和条件 在电阻、电感、电容串联电路中,当电路端电 压和电流同相时,电路呈电阻性,电路的这种状态叫做串联谐振。 可以先做一个简单的实验,如图所示,将:三个元件R 、L 和C 与一个小灯泡串联,接在频率可调的正弦交流电源上,并保持电源电压不变。 实验时,将电源频率逐渐由小调大,发现小灯泡也慢慢由 暗变亮。当达到某一频率时,小灯泡最亮,当频率继续增加时, 又会发现小灯泡又慢慢由亮变暗。小灯泡亮度随频率改变而变 化,意味着电路中的电流随频率而变化。怎么解释这个现象呢? 在电路两端加上正弦电压U ,根据欧姆定律有 || U I Z = 式中 2 2 2 2 1 ||()()L C Z R X X R L C ωω= +-= +- L ω和 1 C ω部是频率的函数。但当频率较低时,容抗大而感抗小, 阻抗|Z|较大,电流较小;当频率较高时,感抗大而容抗小,阻抗|Z|也较大,电流也较小。在这两个频率之间,总会有某一频率,在这个

频率时,容抗与感抗恰好相等。这时阻抗最小且为纯电阻,所以,电流最大,且与端电压同相,这就发生了串联谐振。 根据上述分析,串联谐振的条件为 L C X X = 即 001 L C ωω= 或 01LC ω= 01 2f LC π= 0f 称为谐振频率。可见,当电路的参数 L 和C 一定时,谐振频率 也就确定了。如果电源的频率一定,可以通过调节L 或C 的参数大小来实现谐振。 2、串联谐振的特点 (1)因为串联谐振时,L C X X =,故谐振时电路阻抗为 0||Z R = (2)串联谐振时,阻抗最小,在电压U 一定时,电流最大,其值 为 00|| U U I Z R = = 由于电路呈纯电阻,故电流与电源电压同相,0? = (3)电阻两端电压等于总电压。电感和电容的电压相等,其大小

谐波、谐振的危害及防治措施实用版

YF-ED-J6734 可按资料类型定义编号 谐波、谐振的危害及防治 措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

谐波、谐振的危害及防治措施实 用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 在电网运行中,不可避免地会产生谐波与 谐振,二者既有联系,更有区别,以下就其定 义、产生原因、危害及预防措施作以介绍,供 参考。 1、定义 谐波是一个周期的正弦波分量,其频率为 基波频率的整数倍,又称高次谐波。通俗地 说,基波频率是50HZ,那末谐波就是频率为 100HZ、150HZ、200HZ...N*50HZ的正弦波。谐 振是交流电路的一种特定工作状况,在由电

阻、电感和电容组成的电路中,当电压相量与电流相量同相时,就称这一电路发生了谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2、产生原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中的某一设

串联谐振试验仪器

FS-405kVA/54kV 串联谐振试验仪器 一、被试品对象及试验要求 1.10kV,300平方毫米交联电缆8km,试验频率30~300HZ,电容量≤ 2.96μF,试验电压22kV。 2.35kV,300平方毫米交联电缆3km,试验频率30~300HZ,电容量≤0.57μF,试验电压52kV。 二、工作环境 1. 环境温度:-150C –450C; 2. 相对湿度:≤90%RH; 3. 海拔高度: ≤2500米。 三、装置主要技术参数及功能 1.额定容量:405kVA; 2.输入电源:单相380V电压,频率为50Hz; 3.额定电压: 54kV; 27kV; 4.额定电流: 7.5;15A; 5.工作频率:30-300Hz; 6.波形畸变率:输出电压波形畸变率≤1%; 7.工作时间:额定负载下允许连续60min;过压1.1倍1分钟; 8.温升:额定负载下连续运行60min后温升≤65K; 9.品质因素:装置自身Q≥30(f=45Hz); 10.保护功能:对被试品具有过流、过压及试品闪络保护(详见变频电源部分); 11.测量精度:系统有效值1.5级。

四、设备遵循标准 GB10229-88 《电抗器》 GB1094 《电力变压器》 GB50150-2006 《电气装置安装工程电气设备交接试验标准》 DL/T 596-1996 《电力设备预防性试验规程》 GB1094.1-GB1094.6-96 《外壳防护等级》 GB2900 《电工名词术语》 GB/T16927.1~2-1997 《高电压试验技术》 五、装置容量确定 35kV,300平方毫米交联电缆3km,试验频率30~300HZ,电容量≤0.57μF,试验电压52kV。 试验电流 I=2πfCU试 =2π×35×0.57×10-6×52×103=6.5A 对应电抗器电感量 L=1/ω2C=36H 设计六台电抗器,单台电抗器为67.5kVA/27kV/54H 验证: 10kV,300平方毫米交联电缆8km,试验频率30~300HZ,电容量≤2.96μF,试验电压22kV。 使用电抗器6并联,此时电感量为54/6=9 试验频率f=1/2π√LC=1/(2×3.14×√9×2.96×10-6)=30.8Hz。 试验电流 I=2πfCU试 =2π×30.8×2.96×10-6×22×103=12.5A 结论:装置容量定为405kVA/54kV/108kV/162kV,分六节电抗器,电抗器单节为 67.5kVA/27kV/2.5A/54H通过组合使用能满足上述被试品的试验要求。 试验时使用关系列表

LCR串联谐振电路基础知识

LCR串联谐振电路基础知识 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路的特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路频率计算公式: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。 7. 串联谐振电路品质因子(Q值): (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

之比,称为谐振时之品质因子。 (2) Q值计算公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当f = f r时,Z = R 为最小值,电路为电阻性。 当f > f r时,X L>X C,电路为电感性。 当f <fr时,X L<X C,电路为电容性。 当f = 0或f = ∞时, Z = ∞ ,电路为开路。 (5) 若将电源频率f由小增大,则电路阻抗Z 的变化为先减后增。 9. 串联谐振电路之选择性如图(3)所示: (1) 当f = f r时, ,此频率称为谐振频率。 (2) 当f = f1或f 2时, ,此频率称为旁带频率、截止频率或半功率频率。

电网谐振过电压的防治

电网谐振过电压的防治 刘志清山东诸城市供电公司(262200)电网谐振过电压与系统结构、容量、参数、运行方式及各种自动装置的特性有关。谐振过电压,一般因操作或故障引起系统元件参数出现不利组合而产生。诸城市电网10~35kV系统为不接地或经消弧线圈接地系统,电网中存在大量星形接线的电压互感器,其一次绕组直接接地,成为电网对地电容电流、高次谐波电流的充放电途径,此电流必然通过电压互感器一次绕组,使电压互感器铁心深度饱和,在电网接地、倒闸操作、运行方式变化等情况下,将出现电网电压不稳定,甚至出现谐振。另外,近年来热电厂联网数量不断增多,发电机电感参数周期性变化将引起发电机自励磁(参数谐振)过电压。 谐振过电压对电网造成危害极大,诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加强对其防治非常必要。 诸城金安热电厂并网发电后,数月时间在其并网的35kV系统内连续发生3次谐振过电压。谐振时,相电压最高达到41kV、最低16kV,持续时间15min左右。谐振期间,采用切除电容器等操作电网手段改变电网参数后,只能使谐振暂时消除几分钟,然后再次谐振,所幸未导致电网设备损坏。 谐振发生后,经过分析论证热电厂联网发电机是该区域35kV电网谐振源,该区域35kV电压互感器一次绕组中性点接地点多达9

个,电网抗谐振过电压能力薄弱且无任何防治措施,致使电网具备了发生谐振过电压的条件。为此,应从技术上采取措施。 为防止并网运行发电机电感参数周期性变化引起的自励磁过电压,要求并网发电热电厂必须采取如下措施: ·尽量避免发电机直接空充线路,无法避免时应确保发电机容量大于并网空载线路的充电功率; ·避免发电机带空载线路启动,或避免以全电压向空载线路合闸; ·要求并网运行的热电厂发电机采用快速励磁自动调节器,限制发电机同步励磁过电压; ·并网发电的热电厂35、10kV母线上的星形接线电压互感器,其中性点一次侧加装消谐器。二次侧开口三角加装二次消谐器或合适消谐电阻。 为防止不接地系统或经消弧线圈接地系统中,因合闸充电或在运行时接地故障消除等原因的激发,使中性点接地的电压互感器过饱和可能产生的谐振过电压,采取如下措施: ·优先选用励磁特性饱和点较高的抗谐振型电压互感器; ·减少同一系统中电压互感器高压侧中性点接地数量,除电源侧电压互感器高压侧中性点接地外,其它电压互感器中性点尽可能不接地; ·在电压互感器开口三角绕组装设二次消谐器或消谐电阻; ·在电压互感器一次绕组中性点装设一次消谐器。 采用性能良好的设备,提高运行维护水平,避免下列条件下的铁

VF型串联谐振装置技术优势

VF型串联谐振装置技术优势 VF型串联谐振装置是由我公司多年生产经验与市场客户反馈升级的zui新一代交流耐压谐 振试验装置,采用多种技术,该设备已广泛应到600MW火电站、300MW水电站及500KV变 电站的交接试验,深受用户好评。 VF型串联谐振装置技术特点: 1、采用低干扰发明技术,降低了高压谐波干扰,增大了输出功率,保护了试品的安全; 名称:一种低干扰的串联谐振耐压试验装置; 号:ZL200820000344.2 名称:调频串联谐振耐压试验装置; 号:ZL201520703658.9 名称:用于电力系统泄漏电流的监测装置; 号:ZL201520700846.6 名称:一种无局放的谐振耐压试验装置; 号:ZL201520700850.2 名称:一种大型水轮机组的工频谐振交流耐压试验装置; 号:ZL201520703683.7 2、国家电网建设和改造推荐产品[证书编号:071239] 国家权威部门的检测、鉴定和推荐; 3、具有多重软硬件保护,安全可靠, 过压保护、闪络保护、过流保护、掉电保护、过热保护、系统放电保护; 4、采用干式真空环氧浇注的电抗器体积小、重量轻、Q值高; 5、为高电压试验专业设计的变频控制电源, 输出波形失真度小,试验电压稳定性高; 6、四种试验模式 自动试验模式—自动寻找谐振点,自动升压,自动计时,自动降压完成试验; 自动调谐模式—自动寻找谐振点,手动升压,自动计时,自动降压完成试验; 自动升压模式—自动/手动寻找谐振点,自动升压,自动计时,自动降压完成试验; 手动试验模式—手动寻找谐振点,手动升压,自动计时,自动降压完成试验; VF型串联谐振装置技术参数 1、试验电压:0-1000kV 2、试验容量: 0-5000kVA 3、谐振频率范围: 20~300Hz 4、系统测量精度:0.5级 5、连续工作时间: 满功率输出下,工作时间60分种 6、频率调节分辩率:0.01Hz 7、供电电源电压: AC220V/380V±15% 单相50Hz 尊敬的客户:

HVFRF型自动调频串联谐振系统

HVFRF型自动调频串联谐振系统 详细介绍 一、概述 HVFRF型自动调频串联谐振试验系统于2005年通过英国NQA公司ISO9001国际质量体系认证。 HVFRF型自动调频串联谐振试验系统主要适用于电力、冶金、工矿企业动力部门等用户的6kV~35kV电压等级的电缆、发电机或其它容性试品进行现场试验的成套装置。该装置由变频控制箱、励磁变压器、电抗器和电容分压器组成。利用电抗器和试品电容串联组成LC谐振回路,通过调节输出频率,找到谐振点,在被试品上获得较高的试验电压。它是用小容量低电压的电源获得高电压大容量的输出,是当前高压试验的一种新方法,已得到广泛的应用。 二、特点 1、选用320×240点阵LCD显示屏(带背光)分辨率高,字体清晰。在室内外强弱光线下均能一目了然。 2、试验数据可屏存,并可任意调阅,有计算机接口,可外接打印机打印。选用进口机箱和不锈钢面板,按键与面板一体,外形美观。 3、三种操作方式 ⑴自动调谐手动升压 ⑵手动调谐手动升压 ⑶自动调谐、自动升压 自动调谐——使用最新快速跟踪法,寻找谐振频率点只需30~40S 左右,调谐完成后,锁定谐振频率。无谐振点时,提示区显示“调谐失败”。手动调谐时30Hz~300Hz无谐振点,提示区显示“无谐振点”,此时自动切断升压回路。禁止继续升压,确保试品、设备、人身的安全。 升压速度采用动态跟踪控制——当高压接近已设定的试验电压时,自动调整升压速率,能有效防止电压过冲造成对试品的损伤。 机内设置试验时间定时器——当试验电压升至设定值,自动启动计

时,计时到设定值的前10S时声响提示,时间到即自动降压至“零”,并切断升压回路,同时提示区显示“试验结束”。 屏幕显示菜单中内置:“6kV、10kV、35kV电压等级电力电缆的试验电压”选择及“5min、10min、15min试验时间”选择,若选择不满足用户要求可以在“自定义”区内自行输入需要的试验电压和试验时间(1~99min)。 自动启动计时功能,自动降压并关闭高压回路。 本装置输出电压,初始合闸电压,试验电压波形等均符合 GB/T16927-1997及GB1094-85的要求,具有体积小、重量轻、操作方便、高指标的特点,是一套非常理想的现场试验装置。 4、完善的保护功能 设有零位、过流、过压、过热及高压闪络等多种保护,保护功能动作时屏幕上均为中文显示;装置在额定电压、电流工作下时发生高压闪络或击穿,不会损坏整套设备,装置可正常工作;若装置接线错误,高压自动闭锁,无法升压。 ⑴自动零位启动保护 ⑵过压保护——设置试验电压的1.1倍保护 ⑶过流保护——输出电流>额定值1.1倍保护 ⑷高压闪烁保护——在试验或升压中如有高压放电闪烁保护 ⑸综合保护——当试验线联接有误或断线时保护。(如变频器、励磁变、电抗器、分压器等测量线) ⑹过热保护——功率器件温度≥80℃时保护 三、主要技术指标 ·电源:AC三相380V±10% 50Hz/60Hz (变频电源功率在6KW以上) AC单相220V±10% 50Hz/60Hz (变频电源功率在6KW以下) ·工作频率:30~300Hz ·频率分辨率:0.01Hz ·频率调节:0.1Hz~1.0Hz ·成套装置输出波形:正弦波波形畸变≤1.0% ·系统测量精度:≤1.5 ·电压调节:动态调节,最小0.01% ·试验电压稳定度1.0% ·工作环境温度:-15℃—45℃湿度≤90% ·噪声:≤60dB ·海拔:≤1800m ·回路Q值:≥30 ·本机具有,零位保护过流、过压、过热、闪烁和其它综合保护 四、装置组成及参数 1、HVFRF型变频电源主控制器 ·电源:AC220V±10% 50Hz/60Hz 输出电压0—220V 输出电流≥30A(变频电源功率在6kW以下);AC380V±10% 50Hz/60Hz 输出电压0—400V 输出电流≥20A(变频电源功率在6kW以上) ·输出频率:25~300Hz

实验一 RLC串联谐振电路的研究

2 1实验一 RLC 串联谐振电路的研究 一、实验目的 1、学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线; 2、加深理解电路发生谐振的条件、特点、掌握电路品质因数(电路Q 值)的物理意义及 其测定方法。 二、实验设备和器材 函数信号发生器1只 交流毫伏表1只(0~600V) 电路原理实验箱1只 三、实验原理与说明 1.在图1.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的 感抗、容抗随之而变,电路中的电流也随f 而变。取电阻电路电流I 作为响应,当输入电压U i 维持不变时,在不同信号频率的激励下,测出电阻R 两端的电压U 0之值,则I=U 0/R 。然后以f 为横坐标,以I 为纵坐标,绘出光滑的曲线,此即为幅频特性,亦称电流谐振曲线,如图1.2所示。 2. 在 处(X L =X C )即幅频特性曲线尖峰所在的频率点,该频率称为 谐振频率,此时电路呈纯阻性,电路阻抗的模为最小,在输入电压U i 为定值时,电路中的电流达I 达到最大值,且与输入电压U i 同相位,从理论上讲,此时,U i =U R =U 0, U L =U C =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式 测定,U C 与U L 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐 振曲线的通频带宽度 再根据 求出Q 值,式中f 0为谐振频率,f 1和f 2是失谐时,幅度下降到最大值的 倍时的上、 下频率点。 Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好,在恒压源供电时,电路的品 质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 四、实验内容 1.按图1.3接线,取C=0.1μF ,R=200Ω,调节信号源输出电压为V P-P = 2.83V ,有效值约 U i =1V 正弦信号,并在整个实验过程中保持不变。(本实验的电感L 约30mH) 2.找出电路的谐振频率f 0,其方法是,将交流毫伏表接在R (200Ω)两端,令信号源的 频率由小逐渐变大(注意要维持信号源的输出幅度不变),当U 0的读数为最大时,读得频率表上的频率值即为电路的谐振频率f 0,并测量U 0、U C 、U L 之值(注意及时更换毫伏表的量限),记入表格中。 3. 在谐振点两侧,先测出下限频率f 1和上限频率f 2及相对应的U R 值,然后按频率递增 或递减500H Z 或1KH Z ,依次各取8个测量点,逐点测出U R ,U L ,U C 之值,记入数据表格。 LC f f π21 0==O C O L U U U U Q ==1 2f f f -=?1 2f f f Q o -=

相关文档