文档库 最新最全的文档下载
当前位置:文档库 › 汽车起重机伸缩吊臂的优化设计(1)

汽车起重机伸缩吊臂的优化设计(1)

汽车起重机伸缩吊臂的优化设计(1)
汽车起重机伸缩吊臂的优化设计(1)

门式起重机结构优化设计

门式起重机结构优化设计 发表时间:2018-10-25T16:51:42.843Z 来源:《防护工程》2018年第15期作者:叶恭宇[导读] 在工作过程中能够承受和传递各种载荷,其整体性能决定着起重机的使用寿命。为了提高起重机的设计质量,对结构形式进行一定的优化设计,在确保其整体性能符合要求的前提下,尽可能减轻重量,节省材料,提高企业的经济效益。 叶恭宇 浙江省特种设备检验研究院浙江省杭州市 310020摘要:门式起重机是一种常用的物料搬运机械,广泛应用于工业生产中,具有货场利用率高、运行成本低以及装卸效率高等优点。金属结构是门式起重机的骨架,在工作过程中能够承受和传递各种载荷,其整体性能决定着起重机的使用寿命。为了提高起重机的设计质量,对结构形式进行一定的优化设计,在确保其整体性能符合要求的前提下,尽可能减轻重量,节省材料,提高企业的经济效益。 关键词:门式起重机;结构设计;设计要点 1结构优化的基本概念 1.1 设计变量 每项设计方案需要通过一组基本的参数表示,这些基本参数主要包括:构件长度、截面尺寸、某些位置的坐标值、重量、惯性矩、应力、变形、固有频率以及效率等。在对某个结构进行优化设计过程中,工艺和结构布置等方面的参数可以根据设计经验进行取值,其他参数可以在优化过程中进行调整,这些一直处于变化状态中的参数,被称为设计变量。设计变量主要有连续和离散两种不同的类型,在机械优化设计中涉及到的变量大多数都是连续变量,可以通过常规的优化方法进行求解。 1.2 目标函数 判定不同机械设计方案的优劣主要通过对设计指标进行系统全面的分析,设计指标通过一定的转化能够转变为相应的设计变量函数,该函数即为目标函数。不同的优化方案具有不同的目标函数,目标函数的范围非常广泛,可以是重量、体积,可以是功耗、产量等。建立目标函数是优化设计中的关键过程,目标函数根据目标数量的不同可以分为单目标函数和多目标函数,其中单目标函数是指在优化设计过程中,只对某一问题进行优化;多目标函数是指在优化设计过程中,同时对多个目标进行优化。在实际的优化过程中,目标函数越多,越有利于提高设计的水平,能够取得较好的设计效果,但是其优化难度也较高。 2门式起重机结构优化设计的基本方法与步骤本项目开发的 800 t 吊钩门式起重机是国内较大起重量的门式起重机,具有结构复杂、制造难度大等特点,具体体现为结构轻量化、可靠性、配套件选型以及安装调试 4 个方面,其主要采用的结构优化设计的基本方法与步骤如下 2.1采用有限元分析,实现结构最优化 主结构设计时,为减轻结构自重,实现轻量化设计,采用 Midas/civil 有限元分析技术对整机结构件进行强度、刚度校核。通过有限元分析,在钢结构满足强度、刚度要求的前提下,减小主梁、支腿截面尺寸、最优筋板布置。为减小局部应力,提高焊接质量,主梁采用 T 型钢结构,以控制焊接变形,使结构设计更加合理。 2.2 欧式小车设计结构,实现起重机轻量化,并重视门式起重机结构有限元静态计算结果 常规传统起重机小车结构见图 1,采用 8 轮结构,机构布置尺寸较大,自重达 84.4 t,增加了起重机主梁的负担。因此该起重机小车采用欧式结构,如图2 所示,定滑轮放置在小车架之上,较大地提高了上极限尺寸;车轮采用 6 轮结构,合理分布轮压,起升机构布置采用了单电机、单标准减速机 + 开式齿轮、单卷筒设计的结构型式,减小了起升减速机型号,降低了配套件成本,同时也大幅地减小了小车尺寸;小车结构自重。 同时,通过静载试验可知,小车在主梁跨中时产生的应力最大,上主弦应力比下主弦要小,而小车在支腿侧时产生的应力较小,主要为腹杆受力模式;通过动载试验可知,小车在主梁跨中时产生的应力最大,上主弦应力比下主弦要小,而小车在支腿侧时产生的应力较大,其中柔性支腿侧的应力达到最大值,此时腹杆受力较小,且小于材料的许用应力。最后,跨中和悬臂端下挠值均满足国家标准的要求,位移较小,刚度满足规范要求。

起重机伸缩臂的结构原理

起重机伸缩臂的结构原理 起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径,汽车起重机的吊臂是起重机最重要的部分。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 汽车起重机的吊臂一般包括主臂和副臂两部分。主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构–伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构–伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构–各节臂能独立进行伸缩的机构。 4、组合伸缩机构–当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 无销全液压伸缩机构的优点是臂长变化容易,工作臂长种类多,实用性很强。缺点是自重大,对整机稳定性的影响较大。 无销全液压伸缩机构有不同的组合形式,可以是多液压缸加一级绳排,可以是单液压缸或多液压缸加两级绳排。 多液压缸加一级绳排的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用油缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。 1.绳排系统 绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。现在在100吨以下的起重机上应用的比较广泛,其原理如图,就是简单的滑轮原理。对于四节臂以上起重臂的伸缩机构又分为以下两种:多缸或多级缸加一级绳排、单缸或多缸加两级绳排。DEMAG和TADANO部分产品采用第一种伸缩机构,这种伸缩机构的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用液压缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。在过去,徐重、浦沅、长起跟随LIEBHERR技术多年,普遍使用第二种伸缩机构,使用单缸或双缸加绳排实现四节或五节臂的伸缩。这种伸缩方式在国内最先进,但解决五节臂以上起重臂的伸缩难度很大。北起、泰起、锦重等厂家采用第一种伸缩机构(多个单级缸加一级绳排),但由于技术落后,第二缸、第三缸的进回油依靠软管卷筒输送。现在,大多数5节臂的起重机使用的是双缸双绳排的技术,一般为第2节臂独立伸缩,第3.4.5节臂同步伸缩;4节臂的一般单缸双绳排为2.3.4节同步伸缩。其局限性在于最末一、二节伸缩臂采用钢丝绳伸缩,其它伸缩臂用油缸伸缩,因而最末伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能;同时,对于大吨位的起重机,对钢丝绳的要求也非常高,符合要求钢丝绳非常难加工。虽然有些日本企业有将绳排技术发展到6节甚至更多,但是对于中大吨位起重机,一般企业还是优先考虑单缸插销技术。 2.单缸插销系统 单缸插销式伸缩臂技术是典型的机、电、液一体化系统.以较典型的德国利勃海尔为例,作为伸缩臂伸缩的执行机构,主要由(见图)1.伸缩缸、2.拔销机构、3.缸销等组成,为保证伸缩臂伸缩过程的安全性、可靠性,该机构采用内置式互锁系统即在伸缩油缸上装的弹簧驱动缸销销定伸缩臂后,才机械释放该节臂和其他节臂的连接。该方式确保某一节伸缩臂和伸缩油缸互相锁定后才能释放该节臂和其它节臂的联接。利勃海尔将拔销装置置于伸缩机构上方,其优点是结构简单,自锁性强,便于实现;格鲁夫GROVE、德马格(DEMAG)、多田野(TADANO&FAUN)将拔销装置置于伸缩机构两侧,结构布置上比较困难,对加工、装配精度要求高,插拔销难度相对较大。缸销则都布置在伸缩机构的侧方。单缸伸缩机构要求动作灵活、可靠性高、响应速度快、互锁性好,否则,很难实现吊臂的可靠伸缩。此技术采用单缸、互锁的缸销和臂销、精确测长电子技术,优点是重量最轻,对整机稳定性的影响最小,但技术难度大、成本较高、臂长种类少、伸缩时间长、臂长变化时麻烦。现在,徐重和浦沅等国内企业也成功研制出了此项技术,采用的是和LIEBHERR相似的拔销装置置于伸缩机构上方的形式。由于此技术对于电液的要求较高,尤其是在自动伸缩的PLC控制和伸缩系统的液压回路的设计上,国内企业的技术还不是太成熟,可靠性还不是太高,还有较长的路去走。 这里有个单缸插销系统的动画演示,是TADANO的,可以看一看,

起重机伸缩臂绳排伸缩原理

起重机伸缩臂绳排伸缩机构伸缩原理 主臂的伸缩机构很多,可以从两种角度进行分类,即按驱动形式的不同,以及各节臂间的伸缩次序关系不同进行分类。 按驱动形式的不同,可分为液压、液压—机械和人力三种。采用液压驱动时,执行元件选用液压油缸,利用缸体和活塞杆的相对运动推动,推动下节臂的伸缩,在设计三节臂伸缩机构时,为了减轻重量,还可以利用吊臂之间的伸缩比例,采用钢丝绳和滑轮组实现第三节臂的伸缩,以实现第三节臂的伸缩,这就形成了液压机械驱动。在某些情况下可以取消伸缩机构,代之采用人力驱动,或采用推杆和绳索的器件,而辅之以人工安装插销等方法伸缩吊臂,这就形成了人力驱动。这几种方法往往在小于等于三节臂的情况下使用。 对于拥有三节或三节以上的吊臂来讲,各节臂的伸缩方式可以由不同的选择,但是,由前面提到的大致可以分为三类。 (1)顺序伸缩:指吊臂在伸缩过程中,各节伸缩臂必须按一定先后顺序,完成伸缩动作。 (2)同步伸缩:指吊臂在伸缩过程中,各节伸缩臂同时以相同的形成比例进行伸缩。(3)独立伸缩:指吊臂在伸缩过程中,各节臂均能独立进行伸缩。显然,独立伸缩构,同样也可以完成顺序伸缩或同步伸缩的动作。 在现实中,三节伸缩臂或三节以上的伸缩机构,往往式上述几种伸缩机构的中和,而很少单独采用某一种伸缩机构。在三节伸缩臂时,基本上采用一个液压缸加一个滑轮组的同步伸缩机构。超过三节臂时,常用两个液压缸加一个滑轮组的伸缩机构,或采用三个液压缸的伸缩机构,五节臂时为两个液压缸加两个滑轮组,或最后一节的伸缩可用手动的或简单的插销式伸缩机构。 本次设计的四节臂伸缩,采用后种方法过于落后,顾采用第一种方法。即,用一个液压缸加两个滑轮组的伸缩方式。传动方案如图3.1

最新汽车起重机伸缩臂系统综述

论文 论文题目:汽车起重机伸缩臂系统综述 姓名 学号 学院 班级 专业

汽车起重机伸缩臂系统综述 摘要:随着经济建设的迅速发展,我国的基础建设力度正逐渐加大,道路交通,机场,港口,水利水电,市政建设等基础设施的建设规模也越来越大,市场汽车起重机的需求也随之增加。汽车起重机为安装在标准式或特制汽车底盘上的起重设备。而臂架是起重机的主要承载构件。起重机通过臂架直接吊载,实现大的作业高度与幅度。臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。针对徐工50t汽车起重机伸缩机构的分析和研究,从而改进汽车起重机的整机性能,降低成本,同时提高了起重机的作业能力及使用经济性。目前伸缩臂机构有两种形式,绳排系统和单缸插销式。绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。 关键词:伸缩臂;液压缸;臂架结构 Abstract:Boom is the main host of crane components. Directly through the jib crane hanging load, to achieve great height and range operations. Arm strength determines the maximum time from the weight lifting machine performance, its weight directly affect the machine overturning stability, structural design and therefore merits of boom, will directly affect the overall performance, such as the weight of the whole machine center of gravity height and machine stability. Thus, to ensure safe working conditions of boom to minimize the weight of boom, which improves overall quality and economy of great practical significance. Keywords:Telescopic boom; hydraulic cylinder; Structure of boom . 1.1QY40全液压起重机主要技术参数 整机主要性能参数 最大起重量*幅度 40t*3m 最大起升高度 46 m 滑轮组倍率 11 主臂长 11-33.5m(4节) 主臂全程伸缩时间 162Sec 主臂变幅范围 -2-80degree 主臂变幅时间 60Sec 主卷扬单绳速度 0-110 m/min 副卷扬单绳速度 >40 m/min M最大起升力矩 1401 kN.m 最大回转速度 0-2.0 r/min 最高行驶速度 68 km/h 最大爬坡度 37%

汽车起重机总体及吊臂结构设计开题报告

长安大学毕业设计(设计)开题报告表 课题名称汽车起重机总体及吊臂结构设计 课题来源自选项目课题类型工程设计指导教师温素英 机械设计制造及学生姓名郑冰学号2504080530 专业 其自动化

一、选题的意义 此次以汽车起重机的吊臂机构为设计重点,以及电动机、联轴器、缓冲器、制动器的选用,零件的校核计算及结构设计,使起重设备运行平稳,定位准确,安全可靠,技术性能先进。其主要目的是汽车起重机的结构和工作原理,掌握汽车起重机的设计方法,通过学习起重机的设计方法和步骤,提高学生分析问题和解决问题的能力,将自己所学的理论知识应用到实际工作生产中,培养实际动手能力。同时让我们了解制造业的发展,为以后工作做准备。另外这对我们顺利完成从学校到社会的过渡将会起到很大的作用。 二、汽车起重机在国内外的研究现状和发展趋势 2.1国内起重机的发展状况及趋势 在中国移动起重机领域,汽车起重机占据了80%以上的市场份额。从2000年到2009年,中国汽车起重机市场年增长率已经超过20%;2008年更是历史性地突破了2万台的销售成绩;这使得2009年中国汽车起重机引发大规模投资风潮,中国汽车起重机不但抵抗了金融危机负面影响,而且在销售以及市场份额中取得实质性增长。 依托强大的需求,中国是世界上最大的起重机生产和消费国家;徐工成为世界上最大的起重机制造商,在中国起重机市场,徐工的市场份额已接近60%;在国际市场上,它拥有超过30%的市场份额。中联重科则是另一个领先的起重机企业,受益于庞大的(中国)国内市场,它在全球起重机企业中排名前七。 当前中国新一代汽车起重机产品,起重作业的操作方式,大面积应用先导比例控制,具有良好的微调性能和精控性能,操作力小,不易疲劳。通过先导比例手柄实现比例输送多种负荷的无级调速,有效防止起重作业时的二次下滑现象,极大的提高了起重作业的安全性、可靠性和作业效率。

履带伸缩臂吊车多少钱

履带伸缩臂吊车多少钱 随着科技水平的发展,履带伸缩臂吊车生产厂家也是多种多样,不同的生产厂家具有不同的生产技术、不同的材质,使得产品的价格也参差不齐。小编建议选择性价比高的产品,而非仅仅价格便宜的产品。 底盘是履带式底盘,上装是轮式伸缩臂起重机(吊车),这种新型起重机越来越受到国内吊装公司的青睐,它叫“伸缩臂履带起重

机”,90年代起源于欧洲,目的仅仅用于野外风电设别吊装,但随着技术的不断完善,应用范围越来越广,其无可比拟的优点越来越被人们所熟知而在国外迅速流行。 这款起重机(吊车)目前在国外很流行,但在国内还基本处于空白。伸缩臂履带起重机作为特种起重机械,在山地、湿地、沼泽、沙漠、森林、油田、建筑工地、桥梁工地、公路铁路工地等作业场地松软、凹凸不平、空间狭窄的场合使用,也能用于常规吊装作业。 而现在,在桥梁建设、工厂内作业、服务作业、输送机的组装和电力输送线的建设、机场、高速公路和铁路建设对伸缩臂履带起重机(吊车)的需求也在极速增长。 伸缩臂履带起重机与轮式起重机比相较最大的优点是起重作业

时不用打支腿,不论什么地方作业,遇到反复移动机位的情况时,它可以带载行走,同时履带还能进行变轨,在狭窄的工况中都能游刃有余,大大节约时间,提高生产率。 与履带起重机相比,它不必在工地上组装和架设臂架,同时吊臂根据施工需要可自由变化长度,安装方便快捷,便于运输,而且运输成本极低。 河南斯派特机械设备有限公司创立于2015年,由德国HXC集团参与投资和研发,是一家集研发,生产,销售微型履带起重机于一体的专业性公司。SPT品牌充分注重产品的安全性,实用性,功能性。该公司系列产品SPT299,SPT499一经推出就受到了广大客户的一致好评。 同类型的产品比质量,同质量的产品比价格,同样的价格比服务。河南斯派特机械设备有限公司为您提供出厂的价格,高质量的产品,让您买的放心、用的安心。

伸缩臂式履带起重机抗倾覆稳定性研究

伸缩臂式履带起重机抗倾覆稳定性研究 通过对伸缩臂式履带起重机的抗倾覆稳定性进行分析,得出试验前抗倾覆稳定性的校核计算方法,总结出整机抗倾覆稳定性试验方法,在实际生产中将校核计算结果和试验方法进行验证。 标签:履带起重机;抗倾覆稳定性;载荷;试验方法 伸缩臂式履带起重机(以下简称伸缩臂起重机)作为流动式起重机的一种,是将伸缩臂式汽车起重机的伸缩臂部分与桁架式履带起重机的履带式行走装置部分结合的产物,以其臂长转换快捷、可实现带载行走的优点被市场广泛认识并接受。 伸缩臂起重机的抗倾覆稳定性是指起重机在自重和外载荷的作用下抵抗倾覆的能力,是影响起重机使用性能、保证安全使用的重要指标,也是保证伸缩臂起重机安全工作的充要条件之一。 为确保伸缩臂起重机的安全使用,不仅需要在试验前通过校核计算确保其抗倾翻稳定性合格,同时也要在通过试验对其抗倾覆稳定性进行校核。 1 抗倾覆稳定性校核计算条件、试验条件及要求 伸缩臂起重机抗倾覆稳定性校核计算、试验条件及要求如下: (1)起重机在整机指定位置处必须安装上设计规定的工作状态时的全部工作装置; (2)环境温度范围-20℃~+40℃,工作场地海拔高度不超过1000m; (3)抗倾覆稳定性试验时,风速不大于8.3m/s; (4)工作场地地面应水平、坚实、平整,地面倾斜度不大于1%,地面及支撑面的承载能力必须大于起重机工作时所产生的接地比压; (5)试验载荷应标定准确,垂直载荷相对标定值允差为±0.5%,水平载荷相对标准值允差为±1.5% 2 抗倾覆稳定性校核计算方法 伸缩臂起重机再进行抗倾覆实验之前,为确保试验安全、有效的进行,需要对伸缩臂起重机起升性能表的额定载荷的抗倾覆能力进行校核计算。 2.1 抗倾覆稳定性条件

汽车起重机吊臂结构与伸缩原理

汽车起重机吊臂结构与伸缩原理 发布日期:2012-05-03 来源:网络我要评论(0) 核心提示:汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 一、汽车起重机的吊臂结构 汽车起重机的吊臂一般包括主臂和副臂两部分。汽车起重机主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。 汽车起重机副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 二、汽车起重机的吊臂伸缩原理 (一)汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构--伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构--伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构--各节臂能独立进行伸缩的机构。 4、组合伸缩机构--当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 (二)汽车起重机按伸缩机构的技术分,可以分为无销全液压伸缩机构和自动插销式伸缩机构。

起重机吊装方案

目录 一、编制依据 大型设备吊装工程施工工艺标准(SHJ515—90); 公司吊装技术装备及人员技术状况; 起重工操作规程(SYB4112—80); 设备起重机吊装工程便携手册; 设备吊耳图集(HG21574-94)。 二、工程概况 杭州市水业集团有限公司投资建设的祥符水厂饮用净水技术改造工程位于杭州市拱墅区莫干山路1373号杭州市水业集团有限公司祥符水厂现有厂区用地范围内,总用地面积约99045平方米,供水规模25万m3/d。其中宦塘增压泵房和宦塘增压泵房改造工程是由上海市政工程设计院设计,工程施工区域为一般环境施工,建筑防雷为二类防雷建筑。本工程主要吊装物为各类大口径管道,大口径蝶阀、闸阀、流量仪,行车梁等材料设备。 三、作业环境 现场施工场地比较狭窄,个别地段需要采用挖掘机整理场地,并平铺钢板,由于条件有限,本工程吊装作业采用汽车式起重机。

四、主要吊装工程量 五、起重机械的选用 考虑起重机的起重能力,现场道路安全及经济效益等各方面因素,结合现场构件重量,几何尺寸,安装高度来选择起重机施工中采用25T汽车吊车吊装DN700气动闸阀、DN600气动闸阀、DN1800流量仪、DN2000蝶阀、DN1000蝶阀,采用80T汽车吊车吊装DN2000钢管、DN1800钢管,50T汽车吊车吊装DN1400钢管、DN1000钢管。 六、吊装程序、方法和要求 (一)施工准备 1、认真学习施工图纸,并组织班组了解安装的技术要求进行技术及安全交底。 2、认真核对吊装物体的数量、重量、规格。 3、检查钢筋的质量是否达到质量要求。 4、对各种规格的钢筋模板进行分类,编号。 5、查看机械设备,吊环是否齐全可靠。 (二)吊装程序、方法、要求:

起重机伸缩臂绳排伸缩原理

起重机伸缩臂绳排伸缩原理

起重机伸缩臂绳排伸缩机构伸缩原理 主臂的伸缩机构很多,可以从两种角度进行分类,即按驱动形式的不同,以及各节臂间的伸缩次序关系不同进行分类。 按驱动形式的不同,可分为液压、液压—机械和人力三种。采用液压驱动时,执行元件选用液压油缸,利用缸体和活塞杆的相对运动推动,推动下节臂的伸缩,在设计三节臂伸缩机构时,为了减轻重量,还可以利用吊臂之间的伸缩比例,采用钢丝绳和滑轮组实现第三节臂的伸缩,以实现第三节臂的伸缩,这就形成了液压机械驱动。在某些情况下可以取消伸缩机构,代之采用人力驱动,或采用推杆和绳索的器件,而辅之以人工安装插销等方法伸缩吊臂,这就形成了人力驱动。这几种方法往往在小于等于三节臂的情况下使用。 对于拥有三节或三节以上的吊臂来讲,各节臂的伸缩方式可以由不同的选择,但是,由前面提到的大致可以分为三类。 (1)顺序伸缩:指吊臂在伸缩过程中,各节伸缩臂必须按一定先后顺序,完成伸缩动作。 (2)同步伸缩:指吊臂在伸缩过程中,各节伸缩臂同时以相同的形成比例进行伸缩。(3)独立伸缩:指吊臂在伸缩过程中,各节臂均能独立进行伸缩。显然,独立伸缩构,同样也可以完成顺序伸缩或同步伸缩的动作。 在现实中,三节伸缩臂或三节以上的伸缩机构,往往式上述几种伸缩机构的中和,而很少单独采用某一种伸缩机构。在三节伸缩臂时,基本上采用一个液压缸加一个滑轮组的同步伸缩机构。超过三节臂时,常用两个液压缸加一个滑轮组的伸缩机构,或采用三个液压缸的伸缩机构,五节臂时为两个液压缸加两个滑轮组,或最后一节的伸缩可用手动的或简单的插销式伸缩机构。 本次设计的四节臂伸缩,采用后种方法过于落后,顾采用第一种方法。即,用一个液压缸加两个滑轮组的伸缩方式。传动方案如图3.1

汽车起重机伸缩臂系统综述

汽车起重机伸缩臂系统综述

————————————————————————————————作者:————————————————————————————————日期:

论文 论文题目:汽车起重机伸缩臂系统综述 姓名 学号 学院 班级 专业

汽车起重机伸缩臂系统综述 摘要:随着经济建设的迅速发展,我国的基础建设力度正逐渐加大,道路交通,机场,港口,水利水电,市政建设等基础设施的建设规模也越来越大,市场汽车起重机的需求也随之增加。汽车起重机为安装在标准式或特制汽车底盘上的起重设备。而臂架是起重机的主要承载构件。起重机通过臂架直接吊载,实现大的作业高度与幅度。臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。针对徐工50t汽车起重机伸缩机构的分析和研究,从而改进汽车起重机的整机性能,降低成本,同时提高了起重机的作业能力及使用经济性。目前伸缩臂机构有两种形式,绳排系统和单缸插销式。绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。 关键词:伸缩臂;液压缸;臂架结构 Abstract:Boom is the main host of crane components. Directly through the jib crane hanging load, to achieve great height and range operations. Arm strength determines the maximum time from the weight lifting machine performance, its weight directly affect the machine overturning stability, structural design and therefore merits of boom, will directly affect the overall performance, such as the weight of the whole machine center of gravity height and machine stability. Thus, to ensure safe working conditions of boom to minimize the weight of boom, which improves overall quality and economy of great practical significance. Keywords:Telescopic boom; hydraulic cylinder; Structure of boom . 1.1QY40全液压起重机主要技术参数 整机主要性能参数 最大起重量*幅度 40t*3m 最大起升高度 46 m 滑轮组倍率 11 主臂长 11-33.5m(4节) 主臂全程伸缩时间 162Sec 主臂变幅范围 -2-80degree 主臂变幅时间 60Sec 主卷扬单绳速度 0-110 m/min 副卷扬单绳速度 >40 m/min M最大起升力矩 1401 kN.m 最大回转速度 0-2.0 r/min 最高行驶速度 68 km/h

伸缩臂汽车式起重机 型号QAY200

伸缩臂汽车式起重机型号QAY200 最大额定起重量:200t 最大起升力矩:6774kN.m 整机长度:16130mm 整机宽度:3000mm 整机高度:4000mm 整机总重:71000kg(行驶状态) 一、起重机底盘部分 徐工自行设计并专业化制造的带全宽驾驶室的6桥底盘,最高行驶速度为70km/h; 驱动/转向:12×6×10; 行驶车速:71km/h; 爬坡度:48%。 1.1、车架 徐工自行设计并专业化制造,优化重量比,防扭转箱型结构,进口高强度钢材制造。支腿收缩在特制箱体中,箱体位于1桥和2桥之间以及车架后端。并且具有前后牵引挂钩。 1.2、底盘发动机 制造商:德国奔驰(型号OM502LA.Ⅲ/3); 型式:电控、V形八缸、水冷却、增压中冷、电喷、柴油发动机; 输出功率:390kw/1800rpm; 最大扭矩:2400Nm/1080rpm; 环保性:排放符合欧洲III标准; 燃料箱容量:约400L。 1.3、动力传动系统 1.3.1 变速箱 德国ZF公司的16AS2602变速箱。具有16个前进档和2个倒档,速比范围大,即可满足低速场地和爬坡行驶又可满足高速行驶。机械变速箱自动控制,操纵可自动和手动选择,自动显示当前档位和手动操纵需要更换的档位。 1.3.2 分动箱 分动箱采取大输入扭矩。额定扭矩高达30000N.m。带差速锁气缸。 1.3.3 车桥 1、3轴为转向从动轴, 2、6轴为转向驱动轴,4轴非驱动转向轴,5轴为转向贯通驱动轴,2、6轴带轮间差速器及差速锁,5轴带轴间差速器及差速锁。

1.3.4 传动轴 优化的传动轴布置,传动轴传动平稳、可靠。最优化力传输,采用端面齿联结传动轴,传递扭矩较大,最大可达43500Nm。 1.4、桥悬架 油气悬挂,每根桥承担载荷相当,不高于12t。液压系统调平,底盘可以升高或降低150mm。通过能力强。 1.5、转向 采用德国ZF公司的ZF7421转向器,液压助力系统,保障转向轻便灵活。转向形式为12X10,1、2、3、5、6轴转向。 1.6、轮胎 12.00,进口法国米其林,适用于重型载重车辆。 1.7、制动 行车制动:双回路气压制动,作用于所有车轮; 驻车制动:弹簧贮能制动,作用于3-6轴车轮; 辅助制动:采用发动机辅助制动,安全可靠,延长制动摩擦片使用寿命。 1.8、底盘驾驶室 新型钢结构驾驶室,减震性和封闭性优良,两侧外开式车门。全宽驾驶室视野开阔,空间宽敞。内饰精良舒适,配置安全玻璃,3只雨刷器,大视野后视镜,电控洗窗器,电子门窗升降器,配高级CD音响。驾驶员和副驾驶员航空座椅,可调多种位置。控制仪器和仪表齐全,布置符合人机工程方案。左位方向盘可调节高度和角度,杂物箱,灭火器。 空调:由发动机供热的加热器,除霜风挡。制冷空调。 1.9、液压系统 定量泵通过取力器联接至发动机,以控制转向和液压支腿。 1.10、液压支腿 4点支撑,水平和垂直支腿全液压操纵,电控操纵控制台安装在底盘两侧,控制台装夜光水平仪用于调平起重机,并有照明灯和增速按钮。水平支腿为两级伸缩方式,支腿的支脚用滑动装置收存垂直支腿下。支腿设计用于抬起整个起重机身以使起重机在各种工况条件更好地作业。(不需要第五支腿的情况下可以完成全圆周360度作业); 支撑区域:纵向约9.625m,横向约8.7m。 1.11、电气设备 采用24V直流;电气系统具有国标规定的完整的汽车照明系统;车辆的动作,如油门、支腿操纵等都是通过电气控制实现的,使动作轻便、快捷;电气系统有很强的检测、逻辑、运算等能力,具有故障自诊断、集中显示及自我保护功能;

起重机滑轮组补偿臂架的优化设计

文章编号:1001-3997(2000)01-0027-02 起重机滑轮组补偿臂架的优化设计 陈贤(珠海市东区恒升建材公司,珠海 519000)Optim al Design for the Compensation Arm of A crane CHE N XI AN [摘要]提出了在滑轮组补偿臂架起重机变幅机构设计中确定补偿点的最优化数值解法。这种方法基于优化设计的思想,利用电子计算机,选定必要的设计参量就可以得到最优化的设计结果。 关键词:起重机;补偿点;优化设计 [Abstract ]This paper puts for ward an optimal numerical method o f determining the compensation point in the design o f a crane with compensation arm o f pulley block .This method is based on the concept o f optimal design .With the help o f computer ,food design results can be obtained provided necessary design parameter s are selected . K ey w ord :crane ;compensation point ;optim al design 中国分类号:TH12 文献标识码:A 在滑轮组补偿臂架起重机设计中确定补偿点是非常重要的一项工作,因为补偿点的位置直接影响到起重机在变幅过程中驱动功率的大小及工作性能。目前,确定补偿点有两种方法:一种是图解法,反复次数多、工作量大、结果误差大。另一种是解析法,这种方法是控制变幅过程中绕臂铰轴的力矩,并给出了一定范围内的有关参数。作者分析研究了对补偿点的设计要求及两种解法的优缺点,为了提高设计质量和设计速度,研究了一种用于确定补偿点的最优数值解法。 1 补偿点位置的确定方法 1.1 确定补偿点位置简述 确定补偿点位置的设计如图1所示。当根据工作需要和 结构布置选定臂架长度L ,最大幅度R max ,最小幅度R min ,,臂架铰点O ,起升滑轮组的倍率m 1和补偿滑轮组倍率m 2后,为使起升物品在变幅过程中沿着近似水平的轨迹运动,就需适当选择补偿点A 的位置,使l 1的长度在变幅过程中得到补偿。 1.2 推导确定补偿点的数学表达式 变幅机构的运动可以看成平面问题,用于计算的坐标系 及计算简图如图1所示。 起重机钢丝绳总长(略弹性变形)应为常数,即 D =m 1l 1+m 2l 2=con st (1)式中:l 1———起升滑轮到臂架端点的距离; l 2— ——臂架端点到补偿点的距离;m 1— ——起升滑轮组倍率;m 2— ——补偿滑轮组倍率。起升滑轮组的中心高度为 s =L sin φ-l 1 (2) 把(1)式代入(2)式得 s =L sin φ-D -m 2l 2 m 1 (3) 从△OAB 中应用余弦定理得边长l 2= L 2 +x 12 +x 12 -2L x 12+x 12 sin (φ+θ )(4) 把(4)式代入(3)式得 s =L sin φ-D m 1+m 2m 1 L 2+x 12+x 22 -2L x 12+x 22 sin (φ+θ )因为 sin θ=x 1Π x 12 +x 2 2 所以 s =L sin -φ D m 1+m 2m 1 L 2+x 12+x 22-2L x 12+x 22sin[φ+arcsin (x 1Π x 12+x 22)] 图1 计算简图 — 72—《机械设计与制造》 Feb.2000 №1 M achinery Design & M anu facture 3来稿日期:1999-08-09

履带伸缩臂起重机有限元模态对比分析

履带伸缩臂起重机有限元模态对比分析 摘要:针对履带式伸缩臂起重机,建立了整机三维模型,提出了模型简化方案。利用ABAQUS软件对起重机在额定工况下有吊载和无吊载的整机模型进行了模态 分析,得出了10阶共振频率和振型。对两个模型的模态进行对比分析,得出了 起重机起吊后的模态变化,为避免共振现象的发生提供了理论依据。 关键词:履带式伸缩臂起重机、模态分析、有限元法、整机 0.引言 履带式伸缩臂起重机不仅拥有履带式底盘附着力大、转换方便、带载行走的 特点,还结合了伸缩臂架自由调节长度的优点,在当今施工领域具有广泛的应用 市场。为提高公司自主研发的ZTCC550履带式伸缩臂起重机的产品质量,提高产 品的安全性能,本文应用ABAQUS软件对起重机进行了计算模态分析,对比了有 吊载和无吊载情况下起重机整机模态,为起重机在极限工况下避免共振提供了帮助。 1. 有限元模型建立和简化 本文的研究对象为为我公司所设计的ZTCC550履带式伸缩臂起重机的整机模型,基本结构如图1所示[1]。 图1 ZTCC550起重机结构简图 起重机的最大额定载荷为55t,整车整备重量为63t;伸缩臂由5节臂组成, 为U型截面,全伸臂长40.3m;采用履带式底盘,履带架可自由展开,搭载自卸 式配重,可360回转。 本文主要分析最大起重量工况下的起重机模态:主臂全缩,吊臂仰角为74°,起吊载重为55吨。 为了得到更加准确的模态分析结果,对模型进行简化是一个重要环节[2]。本 文针对履带起重机的结构特点对其进行了模型简化: ①钢丝绳和吊钩省略,主臂上不受力的辅助件省略,3、4、5节臂受力等效 作用在各滑轮上; ②两组卷扬卷筒在安装位置(大致的几何中心,可选择卷筒轴线的中点)施 加刚性拉力(适当考虑钢丝绳质量); ③所有原动/驱动部件总成均简化成集中质量,如发动机、油泵等。 ④各液压缸简化成一维刚性单元或高刚度单向弹簧单元(据长度、等效截面积、推力确定刚度),两端由铰接或安装位置而定,等效质量在一维单元两端分 布施加; ⑤驾驶室、上下车配重装置简化成集中质量等效作用在铰接点处; ⑥控制系统、液压小元件及管路省略,小型小质量标准件省略; ⑦各焊接部位需要对焊缝进行处理,填平各坡口,保证焊接部位的连续性。 关键部位(主臂、回转台、底座、履带架等)需要增加角焊缝对连接部位进行强化。 本文为了对比在最大起重量工况下有吊载和无吊载的起重机模态,仅在臂架 头加载不同集中质量以示区别:对于无吊载的工况,臂头仅加载吊钩载荷1.1t; 对于有吊载的工况,臂头加载55t。 起重机优化后的整机模型如图2所示。

起重机吊装方案

目录 一、编制依据 (1) 二、工程概况 (1) 三、作业环境 (1) 四、吊装物体说明 (1) 五、起重机械的选用 (2) 六、吊装程序、方法和要求 (2) (一)施工准备 (2) (二)吊装程序、方法、要求 (2) 七、安全保证措施 (3) (一)一般要求 (3) (二)技术措施 (3) (三)制度措施 (9) 八、起重吊装施工事故预防控制措施 (9) 九、起重吊装事故应急救援预案 (11)

一、编制依据 大型设备吊装工程施工工艺标准(SHJ515—90); 公司吊装技术装备及人员技术状况; 起重工操作规程(SYB4112—80); 设备起重机吊装工程便携手册; 设备吊耳图集(HG21574-94)。 二、工程概况 杭州市水业集团有限公司投资建设的祥符水厂饮用净水技术改造工程位于杭州市拱墅区莫干山路1373号杭州市水业集团有限公司祥符水厂现有厂区用地范围内,总用地面积约99045平方米,供水规模25万m3/d。其中宦塘增压泵房和宦塘增压泵房改造工程是由上海市政工程设计院设计,工程施工区域为一般环境施工,建筑防雷为二类防雷建筑。本工程主要吊装物为各类大口径管道,大口径蝶阀、闸阀、流量仪,行车梁等材料设备。 三、作业环境 现场施工场地比较狭窄,个别地段需要采用挖掘机整理场地,并平铺钢板,由于条件有限,本工程吊装作业采用汽车式起重机。 四、主要吊装工程量

五、起重机械的选用 考虑起重机的起重能力,现场道路安全及经济效益等各方面因素,结合现场构件重量,几何尺寸,安装高度来选择起重机施工中采用25T汽车吊车吊装DN700气动闸阀、DN600气动闸阀、DN1800流量仪、DN2000蝶阀、DN1000蝶阀,采用80T汽车吊车吊装DN2000钢管、DN1800钢管,50T汽车吊车吊装DN1400钢管、DN1000钢管。 六、吊装程序、方法和要求 (一)施工准备 1、认真学习施工图纸,并组织班组了解安装的技术要求进行技术及安全交底。 2、认真核对吊装物体的数量、重量、规格。 3、检查钢筋的质量是否达到质量要求。 4、对各种规格的钢筋模板进行分类,编号。 5、查看机械设备,吊环是否齐全可靠。 (二)吊装程序、方法、要求: 1、吊装前首先对钢筋、模板进行排列检查,核对钢筋模板规格型号是否正确,有无损伤。 2、吊装时注意上下,左右的人和物。

随车起重机伸缩臂架的毕业优化设计

目录 摘要---------------------------------------------------------------------------------------------1 前言---------------------------------------------------------------------------------------------2 1. 概述------------------------------------------------------------------------------------------6 1.1 随车起重机用途和特点--------------------------------------------------------------6 1.2 型号意义--------------------------------------------------------------------------------6 1.3 术语解释--------------------------------------------------------------------------------6 1.4 结构原理--------------------------------------------------------------------------------6 2. 伸缩臂架的计算----------------------------------------------------------------------------7 2.1 伸缩臂架的作用载荷及分析---------------------------------------------------------7 2.2 伸缩臂架的临界力的计算------------------------------------------------------------9 2.3 伸缩臂架的刚度校核------------------------------------------------------------------9 2.4 伸缩臂架的强度校核-----------------------------------------------------------------13 2.5 伸缩臂局部稳定性校核--------------------------------------------------------------17 2.6 伸缩臂的整体稳定性校核-----------------------------------------------------------19 3. 回转机构的选型---------------------------------------------------------------------------21 3.1 回转支承的受载情况-----------------------------------------------------------------21 3.2 回转支承选型所需技术参数--------------------------------------------------------21 4. 液压系统的设计计算---------------------------------------------------------------------26 4.1概述---------------------------------------------------------------------------------------26 4.2工作原理---------------------------------------------------------------------------------26 4.3 性能分析--------------------------------------------------------------------------------29 4.4 液压缸主要尺寸的确定--------------------------------------------------------------29 4.5 液压泵的选择--------------------------------------------------------------------------31 4.6 油箱的选择-----------------------------------------------------------------------------32 4.7 管件--------------------------------------------------------------------------------------33 5. 结论与展望---------------------------------------------------------------------------------35 5.1 结论--------------------------------------------------------------------------------------35 5.2 随车起重机的发展趋势--------------------------------------------------------------36 6. 毕业设计总结------------------------------------------------------------------------------38 7. 致谢------------------------------------------------------------------------------------------39 8. 参考文献------------------------------------------------------------------------------------40

相关文档
相关文档 最新文档