文档库 最新最全的文档下载
当前位置:文档库 › 制动器G072-REB0408APE

制动器G072-REB0408APE

制动器G072-REB0408APE
制动器G072-REB0408APE

汽车制动器分类

制动器(brake staff)简介 制动器就是刹车。是使机械中的运动件停止或减速的机械零件。俗称刹车、闸。制动器主要由制动架、制动件和操纵装置等组成。有些制 动器还装有制动件间隙的自动调整装置。为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。有些制动器已标准化和系列化,并由专业工厂制造以供选用。 制动器分为行车制动器(脚刹),驻车制动器(手刹)。在行 车过程中,一般都采用行车制动(脚刹),便于在先进的过程中减速 停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。 当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停 车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜), 下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。 制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。 前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、 橡胶、木材和石棉等。 制动系可分为如下几类:

制动器可以分为摩擦式和非摩擦式两大类。 ①摩擦式制动器。靠制动件与运动件之间的摩擦力制动。 ②非摩擦式制动器。制动器的结构形式主要有磁粉制动器(利用磁粉磁化所产生的剪力来制动)、磁涡流制动器(通过调节励磁电流来调 节制动力矩的大小)以及水涡流制动器等。 按制动件的结构形式又可分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器等; 按制动件所处工作状态还可分为常闭式制动器(常处于紧闸状态,需施加外力方可解除制动)和常开式制动器(常处于松闸状态,需施加 外力方可制动); 按操纵方式也可分为人力、液压、气压和电磁力操纵的制动器。 按制动系统的作用制动系统可分为行车制动系统、驻车制动系统、 应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 制动操纵能源制动系统可分为人力制动系统、动力制动系统和伺服 制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力 制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能 进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。 按制动能量的传输方式制动系统可分为机械式、液压式、气压式、

提升机制动系统计算

提升机制动系统计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

提升机制动系统的验算 一、副井最大静张力、静张力差的验算: 副井技术参数: 绞车型号:2JK —20 罐笼自重:3450kg 一次提物载重量:6332kg 提人重量:1275kg 提升高度:540m 每米绳重m 最大静张力:17000kg 最大静张力差:11500kg 变位质量:64228(kg s2/m ) 楔形连接器:227 kg 盘形制动器型号:TS-215(闸瓦面积749cm 2,摩擦半径1.7m ,油缸作用面积138cm 2,液压缸直径15.4cm,活塞杆直径7.0cm ,一个油缸产生的最大正压力6300kg )。 液压站型号:GE131B 型(制动油最大压力,最大输油量:9L/min,油箱储油量:500L ,允许最高油温:65℃)。 1、最大静张力的验算: PH Q Q Q F Z j +++=21m ax = 718+2448+3450+227+3569 =10413kg<18000kg 式中: Q 1—矿车重量 Q 2—碴重量 Q Z —罐笼自重(包括楔形连接器) P — 钢丝绳自重 H — 提升高度

通过计算,提升机最大静张力10413kg 小于提升机允许的最大静张力18000kg ,符合《煤矿安全规程规程》第382条规定要求。 2、最大静张力差的验算: PH Q Q F c ++=21m ax =3166+3443 =6609kg 〈12500kg 式中:Q 1—矿车重量, kg Q 2—碴重量, kg 通过计算,提升机最大静张力差6609kg ,小于提升机允许的12500kg ,符合《煤矿安全规程》第382条规定要求。 二、安全制动力矩的验算: 1、安全制动力矩: 式中: M Z —安全制动力矩 μ — 闸瓦与制动盘摩擦系数, R m — 摩擦半径,1.7m n — 制动闸副数,8副 N — 制动盘正压力 N=)/(C K F n l +?- K — 碟形弹簧刚度,4100kg/mm ?— 闸瓦最大间隙,2mm n l — 一组碟形弹簧片数,8片 C — 制动器各运动部分的阻力,

《气压盘式制动器制动力矩的计算》

T= 气压盘式制动器制动力矩的计算 1.制动力矩 在气压盘式制、动器中,制动力矩T f 主要来源于压力臂(增力杠杆元件)对气室推力Q 的放大,我们将其称之为传动比K ,经过增力机构放大的正推力为W p ,则W p =KQ 。 ηηe e p f KQfR fR W T 22== Tf=2W P fRe η Q ——气室推力; f ——摩擦块的摩擦系数; R e ——制动半径; η——机械传动效率。 2.制动半径 根据右图,在任一单 元面积RdR ?d 上的摩擦力 对制动盘中心的力矩为 ?dRd fqR 2,式中q 为衬块与 制动盘之间的单位面积 上的压力,则单侧制动块作用于制动盘上的

制动力矩为: θ?θθ)(322313222 1R R fq dRd fqR T R R f -==??- 单侧衬块给予制动盘的总摩擦力为: θ?θθ)(21 222 1R R fq dRd fqR fW R R p -==??- 得有效半径为: )2]()(1[34322212212121223132R R R R R R R R R R fW T R P f e ++-=--?== 式中R 1=134,R 2=214(考虑到制动盘的倒角) 计算得:R e =177。 3.压力臂力臂 下图为装配状态压力臂的工作范围图: 由上图简化成下列坐标关系:

坐标原点为气室推杆的安装基点; 压力臂工作圆心的坐标点为(67.57,38.84),极坐标为(77.94,29.892°); 工作半径R =67.65; 工作范围:α=74°~90°~85.83°; 气室推杆端部球头圆心的运动轨迹方程: 220002)cos(2R =+--ρααρρρ (1) 其中94.770=ρ;?=892.290α;65.67=R 代入(1)式得:012.1498)892.29cos(88.1552 =+?--αρρ (2) 设气室推出长度为H ,10-=ρH 。 制动力臂的长度为L ,由坐标关系图可以得到下式: ααsin )84.3857.67(ctg L -= (3) 因此,测出气室的推出长度,就可以求出压力臂的力臂长度。

盘式制动器工作原理

盘式制动器工作原理 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动。制动钳上的两个摩擦片分别装在制动盘的两侧。分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好象用钳子钳住旋转中的盘子,迫使它停下来一样。这种制动器散热快,重量轻,构造简单,调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。有些盘式制动器的制动盘上还开了许多小孔,加速通风散热提高制动效率。反观鼓式制动器,由于散热性能差,在制动过程中会聚集大量的热量。制动蹄片和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。 当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。 所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮

盘式制动,后轮鼓式制动的方式。 四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。但由于结构问题使它在制动过程中散热性能差和排水性能差,容易导致制动效率下降,因此在近三十年中,在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。

制动器的设计计算

§3 制动器的设计计算 3.1制动蹄摩擦面的压力分布规律 从前面的分析可知,制动器摩擦材料的摩擦系数及所产生的摩擦力对制动器因数有很大影响。掌握制动蹄摩擦面上的压力分布规律,有助于正确分析制动器因数。在理论上对制动蹄摩擦面的压力分布规律作研究时,通常作如下一些假定: (1)制动鼓、蹄为绝对刚性; (2)在外力作用下,变形仅发生在摩擦衬片上; (3)压力与变形符合虎克定律。 1.对于绕支承销转动的制动蹄 如图29所示,制动蹄在张开力P 作用下绕 支承销O ′点转动张开,设其转角为θΔ,则蹄片 上某任意点A 的位移AB 为 AB =A O ′·θΔ 由于制动鼓刚性对制动蹄运动的限制,则其径向位移分量将受压缩,径向压缩为AC AC =AB COS β 即 AC =A O ′θΔCOS β 从图29中的几何关系可看到 A O ′COS β=D O ′=O O ′Sin ? AC =O O ′Sin ?θΔ? 因为θΔ?′O O 为常量,单位压力和变形成正比,所以蹄片上任意一点压力可写成 q=q 0Sin ? (36) 亦即,制动器蹄片上压力呈正弦分布,其最大压力作用在与O O ′连线呈90°的径向线上。 2.浮式蹄 在一般情况下,若浮式蹄的端部支承在斜支座面 上,如图30所示,则由于蹄片端部将沿支承面作滚动 或滑动,它具有两个自由度运动,而绕支承销转动的 蹄片只有一个自由度的运动,因此,其压力分布状况 和绕支承销转动的情况有所区别。 现分析浮式蹄上任意一点A 的运动情况。今设定蹄片和支座面之间摩擦足够大,制动蹄在张开力作用

下,蹄片将沿斜支座面上作滚动,设Q 为其蹄片端部圆弧面之圆心,则蹄片上任意一点A 的运动可以看成绕Q 作相对转动和跟随Q 作移动。这样A 点位移由两部分合成:相对运动位移和牵连运动位移BC ,它们各自径向位移分量之和为 (见图 30)。 AD =AB COS β+BC COS(?-α) 根据几何关系可得出 AD =(θΔ·OQ +BC Sin α) Sin ?+BC COS αCOS ? 式中θΔ为蹄片端部圆弧面绕其圆心的相对转角。 令 θΔ·OQ +BC Sin ?=C 1 BC COS α=C 2 在一定转角θΔ时,1C 和2C 都是常量。同样,认为A 点的径向变形量AD 和压力成正比。这样,蹄片上任意点A 处的压力可写成 q=q 1Sin ?+q 2COS ? 或 q=q 0Sin(?+?0) 也就是说,浮式蹄支承在任意斜支座面上时,其理论压力分布规律仍为正弦分布,但其最大压力点在何处,难以判断。 上述分析对于新的摩擦衬片是合理的,但制动器在使用过程中摩擦衬片有磨损,摩擦衬片在磨损的状况下,压力分布又应如何呢?按照理论分析,如果知道摩擦衬片的磨损特性,也可确定摩擦衬片磨损后的压力分布规律。根据国外资料,对于摩擦片 磨损具有如下关系式 fqv K W 11= 式中 W 1——磨损量; K 1——磨损常数; f ——摩擦系数; q——单位压力; v ——磨擦衬片与制动鼓之间的相对滑 动速度。 通过分析计算所得压力分布规律如图31所 示。图中表明在第11次制动后形成的单位 面积压力仍为正弦分布αsin 132=q 。如果摩 擦衬片磨损有如下关系: 2222v fq K W = 式中 2K ——磨损常数。 则其磨损后的压力分布规律为αsin C q =(C

提升绞车的常用闸和保险闸制动计算

提升绞车的常用闸和保险闸制动计算 提升绞车的常用闸和保险闸制动时,每个闸所产生的制动力矩与实际提升最大静荷重旋转力矩之比K值都不得小于3。 当常用闸或保险闸制动轮与滚筒同轴时,由于制动轮直径和滚简直径不同,制动安全系数不能直接用制动力与最大静张力之比,必须用制动力矩与最大静荷重旋转力矩之比,即: K=F z R z /F r R r 式中 F z ——制动力; R z ——制动轮半径; F r ——钢丝绳最大静张力; R r ——钢丝绳提升中心到滚筒轴中心的旋转半径。 当常用闸或保险闸制动轮与滚筒不同轴时,还应将减速比和传动效率计算 在内,即K=(F z R z /F r R r )×i·η 式中 i——减速比; η——减速器传动效率。 常用闹和保险闸的作用是在需要时,能可靠地使提升系统停止运行。要使提升系统可靠地停止运行,每个闸的制动力矩只比最大静荷重旋转力矩大是不够的,还必须克服系统的转动惯量才能停住车。在充分考虑了重物下放时,制动力矩要克服最大静荷重和较大的系统转动惯量再有一定的安全系数后,确定K不得小于3。由于保险闸是在紧急情况下自动施闸的,如果系统转动惯量小,会使制动减速度大于提升容器的自然减速度,导致松绳,提升容器反向冲击,易断绳跑车。可使K≥2,因为上提重物停车时,钢丝绳承受的最小冲击张力是最大静张力的2倍。当K<2时,停车会不可靠,所以保险闸的K值不得小于2。 工作闸由于是人工控制施闸,不能造成施闸太急松绳跑车,必须K不得小于3。 保险制动的K值不小于2的第2个原因是,当前主井提升还没有全部达到定重装载,或定重装置失效时,提升容器将被装满为止,而货载在矸石多、水大(尤其是综合采煤放顶时,有时肝石很多)时,一台9t箕斗容积,可能装载达到×=17t,一台12t箕斗容积为,装载量可以达到22t。如果是等重平衡绳提升,最大静张力将达到额定值的~倍,如果保险制动K值达到2,就会因过载提升中过流保护动作停电制动不住而坠斗。 保险制动K值不得小于2的第3个原因是,一般提升机电机的过载能力为左右,绞车正常时在额定静张力(差)状态下工作,当箕斗里装满了矸石或矿车载重增加,挂车超多时,如果载重达到正常值的2倍以上,绞车提不动还可以,一旦没有超过电机的最大负载转矩,将重物提升中途,因过流保护动作而停电紧急制动时,也会因保险制动K值小于2而造成坠斗、跑车。例如某年7月,某矿一台回绳摩擦轮提升绞车,就是因为定重装置故障没有及时修复,将载重为12t的箕斗,装满了矸石,在提升未到终点时过流保护动作,保险制动后未闸住而高速坠斗,造成了全矿停产18天的重大提升事故。由此吸取的教训是,定重装载、保险制动K值不小于2非常重要。同时提升绞车的过电流整定,在不影响电机安全和寿命前提下,适当放宽反时限过流保护的时间是有好处的,而保护短路和严重卡斗的瞬动电流整定还是越小越好。 保险制动力是否越大越好呢,不是,保险制动的"保险",体现在特殊情况下需要紧急制动时,保险制动会自动、快速进行制动,因此要采用配重或弹簧

汽车制动方式有哪些

汽车制动方式有哪些 汽车因为车轮的转动才能够在道路上行驶,当汽车要停下来时,怎么办呢?驾驶者不可能像动画片中一样的把脚伸到地面去阻止汽车前进,这时候就得依靠车上的刹车装置,来使汽车的速度降低直到停止。 刹车装置皆由刹车片和轮鼓或碟盘之间产生摩擦,并在摩擦的过程中将汽车行驶时的动能转变成热能消耗掉。汽车刹车片从类型上分为:用于盘式制动器的刹车片、用于鼓式制动器的刹车蹄、用于大卡车的来令片。 常见的刹车装置有“鼓式刹车”和“盘式刹车”二种型式,它们的基本特色如下: 一、鼓式刹车: 鼓式刹车应用在汽车上面已经近一世纪的历史了,但是由于它的可靠性以及强大的制动力,使得鼓式刹车现今仍配置在许多车型上(多使用于后轮)。鼓式刹车是藉由液压将装置于刹车鼓内之刹车片往外推,使刹车片与随着车轮转动的刹车鼓之内面发生摩擦,而产生刹车的效果。 鼓式刹车的刹车鼓内面就是刹车装置产生刹车力矩的位置。在获得相同刹车力矩的情况下,鼓式刹车装置的刹车鼓的直径可以比盘式刹车的刹车盘还要小上许多。因此载重用的大型车辆为获取强大的制动力,只能够在轮圈的有限空间之中装置鼓式刹车。 鼓式刹车的作用方式: 在踩下刹车踏板时,脚的施力会使刹车总泵内的活塞将刹车油往前推去并在油路中产生压力,压力经由刹车油传送到每个车轮的刹车分泵活塞,刹车分泵的活塞再推动刹车片向外,使刹车片与刹车鼓的内面发生摩擦,并产生足够的摩擦力去降低车轮的转速,以达到刹车的目的。 简单的说,鼓式刹车就是在车轮毂里面装设二个半圆型的刹车片,利用“杠杆原理”推动刹车片,使刹车片与轮鼓内面接触而发生摩擦,使车轮转动速度降低的刹车装置。 鼓式刹车之优点: 1.有自动刹紧的作用,使刹车系统可以使用较低的油压,或是使用直径比刹车碟小很多的刹车鼓。 2.手刹车机构的安装容易。有些后轮装置盘式刹车的车型,会在刹车盘中心部位安装鼓式刹车的手刹车机构。 3.零件的加工与组成较为简单,而有较为低廉的制造成本。 鼓式刹车的缺点: 1.鼓式刹车的刹车鼓在受热后直径会增大,而造成踩下刹车踏板的行程加大,容易发生刹车反应不如预期的情况。因此在驾驶采用鼓式刹车的车辆时,要尽量避免连续刹车造成刹车片因高温而产生热衰退现象。 2.刹车系统反应较慢,刹车的踩踏力道较不易控制,不利于做高频率的刹车动作。 3.构造复杂零件多,刹车间隙须做调整,使得维修不易。 二、盘式刹车: 由于车辆的性能与行驶速度与日剧增,为增加车辆在高速行驶时刹车的稳定性,盘式刹车已成为当前刹车系统的主流。由于盘式刹车的刹车盘暴露在空气中,使得盘式刹车有优良的散热性,当车辆在高速状态做急刹车或在短时间内多次刹车,刹车的性能较不易衰退,可以让车辆获得较佳的刹车效果,以增进车辆的安全性。 并且由于盘式刹车的反应快速,有能力做高频率的刹车动作,因此许多车款采用盘

《气压盘式制动器制动力矩的计算》

气压盘式制动器制动力矩的计算 (Calculation on braking torque of air disc brake ) 勇波 摘要: 气压盘式制动器ADB (air disc brake )制动力矩的大小,从一开始使用就是争论的焦点。本文试图从实证研究入手,建立制动力矩的数学模型。 关键词: 气压盘式制动器ADB (air disc brake ); 制动力矩——使汽车运动减速或停止的力矩; 压力臂——气压盘式制动器中产生增力的杠杆元件; 传动比——ADB 增力机构对输入力的放大比例。 参考书目: 《最新汽车设计实用手册》 林秉华 正文: 20世纪90年代,气压盘式制动器ADB (air disc brake )开始被广泛应用于商用车辆,近几年在国内发展迅速,城市公交客车、中高档客车已经普遍采用ADB 配置。但各种各样的仿制产品在行业内落地生根的同时,理论上的研究显得比较冷清。在此,我抛砖引玉,对ADB 产品的传动比和制动力矩的计算方法作一番探讨和归纳。 1.制动力矩 在气压盘式制动器中,制动力矩T f 主要来源于压力臂(增力杠杆元件)对气室推力Q 的放大,我们将其称之为传动比K ,经过增力机构放大的正推力为W p ,则W p =KQ 。 ηηe e p f KQfR fR W T 22== Q ——气室推力; f ——摩擦块的摩擦系数; R e ——制动半径; η——机械传动效率。 2.制动半径 根据右图,在任一单元面积RdR ?d 上的摩擦力 对制动盘中心的力矩为?dRd fqR 2,式中q 为衬块 与制动盘之间的单位面积上的压力,则单侧制动块 作用于制动盘上的制动力矩为: θ?θ θ)(3 223132221R R fq dRd fqR T R R f -==??- 单侧衬块给予制动盘的总摩擦力为: θ?θ θ)(212221R R fq dRd fqR fW R R p -==??- 得有效半径为:

盘式制动器使用说明书

盘式制动器使用说明书

————————————————————————————————作者:————————————————————————————————日期: ?

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目录 一、性能与用途………………………………………………………………….1 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑…………………………………………………………….………..12 六、特别警示 (1) 七、故障原因及处理方法...................................................... (12) 附图1:盘式制动器结构图………………………………………….….…….15 附图2:盘形闸结构图…………………………………………….….…….16 附图3: 制动器限位开关结构图………………………………….….…….17 附图4: 盘式制动器的工作原理图 (18) 附图5:盘式制动器安装示意图………………………………….….…….19 附图6: 制动器信号装置安装示意图…………………………….….…….20 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。

制动力矩计算

鼓式制动器制动力矩的计算 1、制动器效能因数计算 根据制动器结构参数可知: A 、 B 、 C 、r 、φ、(结构参数意义见附图二) 其中θ为最大压力线和水平线的夹角。 由以下公式计算μ=0.35时(μ为摩擦片与制动鼓间摩擦系数),制动器领蹄和从蹄的制动效能因数。 θ=)tan(B C ar μγt a n ar = )t a n s i n s i n t a n (θφφφφθ+-=ar e θθγλ-+=e θθγλ+-=e ' φφφρsin 2sin 4+= r B A +=ξ r C B k 22+= 领蹄制动效能因数: 1sin cos cos 1-=?γ θρλξ?e k K

从蹄制动效能因数: 1 sin cos 'cos 2+=?γθρλξ ?e k K 制动器的总效能因数,可由领、从蹄的效能因数按如下公式计算: 2 11 24??φ?????+?=K K K K K 2、制动器制动力矩计算 单个制动器的制动力矩M 为: R P K M ??= 其中:K 为制动器效能因数 P 为制动器输入力,加于两制动蹄的张开力的平均值; R 制动鼓的作用半径,即制动器的工作半径r 制动器输入力η??=i F P /2 其中:F 为气室推杆推力,由配置的气室确定 i 为凸轮传动比,e L i /= (L 为调整臂臂长,e 为凸轮力臂,即凸轮基圆半径) η为传动效率,一般区0.63 例:某Φ400X180制动器,A=150 B=150 C=30 r=0.2 Φ=115° μ=0.35 η=0.63 通过上公式计算得1??K =1.530 2??K =0.543 2 11 24??φ?????+?K K K K K ==1.603 取F=9900N(0.6MPa 气压下气室输出力) L=125 e=12 R P K M ??==R L F K ????η/2e=1.603*9900*125*0.63*0.2/(2*12)

汽车制动器哪种类型比较适用

汽车制动器哪种类型比较适用 汽车制动器从总体结构上可以分为盘式制动器和鼓式制动器两种类型,鼓式可以分为内张式和外束式,外束式现在比较少见,鼓式 一般都是内张式,内张鼓式制动器按照类型可以分为领从蹄式,双 向双领蹄式,双向双从蹄式,单向自增力式,双向自增力式,盘式 制动器可以分为全盘式和钳盘式,钳盘式可以分为固定钳盘式和浮 动钳盘式,全盘式可以分为封闭液式和封闭干式。 盘式制动器是最常见的一种刹车系统,盘式制动器以静止的刹车碟片,夹住随轮胎转动的刹车碟盘以产生摩擦力,使车轮转动速度 降低的刹车装置。当踩下刹车踏板时,刹车总泵内的活塞会被推动,而在刹车油路中建立压力。压力经由刹车油传送到刹车卡钳上之刹 车分泵的活塞,刹车分泵的活塞在受到压力后,会向外移动并推动 制动块去夹紧刹车盘,使得制动块与刹车盘发生磨擦,以降低车轮 转速。 盘式制动器还分普通盘式和通风盘式两种。通风盘式制动器是在两块刹车盘之间预留出一个空隙,使气流在空隙中穿过,有些通风盘 还在盘面上钻出许多圆形通风孔,或是在盘面上割出通风槽或预制 出矩形的通风孔,通风盘式刹车利用风流作用,其冷热效果要比普通 盘式刹车更好。 盘式制动器优点 盘式制动器散热性好,连续踩踏刹车时比较不会造成刹车衰退而使刹车失灵的现象,反应迅速,制动力平均,排水性好等,盘式刹 车系统的反应快速,可做高频率的刹车动作,因而较为符合ABS系 统的需求,并且盘式刹车没有鼓式刹车的自动刹紧作用,因此左右 车轮的刹车力量比较平均,与鼓式刹车相比较下,盘式刹车的构造 简单,且容易维修。 盘式制动器缺点

因为没有鼓式的自动刹紧作用,使盘式制动器的刹车力较鼓式的刹车为低,盘式刹车的来令片与刹车盘之间的摩擦面积较鼓式刹车的小,使刹车的力量也比较小,手刹车装置不易安装,有些后轮使用盘式刹车的车型为此而加设一组鼓式刹车的手刹车机构(盘鼓式刹车),盘式刹车磨损较大,致更换频率可能较高。 鼓式制动器算是最早应用在车辆上的刹车系统,制动鼓安装在车轮上并随车轮一起转动,里面安装有刹车片,在刹车时,刹车活塞会向外推动刹车片与制动鼓产生摩擦,达到制动的效果。 鼓式制动器优点 鼓式制动器结构简单,制造成本较低,大多都应用在低端轿车的后轮或者是大货车的刹车系统上,刹车力大,很多人以为鼓刹刹车效果不好,其实不全对。 鼓式制动器缺点 鼓式制动器比较大,但是热衰减明显,散热差,由于制动工作机构是封闭在制动鼓内的,制动鼓在受热膨胀之后与刹车片的接触面会变小,连续刹车之后热量无法快速散掉,影响制动效率,所以,如果不是长时间制动的话,鼓式刹车还是有一定优势。 由于成本高,陶瓷制动器广泛应用在超级跑车上,无论是在制动性能还是散热性方面,陶瓷刹车盘都比普通钢制刹车盘优异很多,其使用寿命是普通钢制刹车盘的四倍,陶瓷制动器是在1700度高温下碳纤维与碳化硅合成的增强型复合陶瓷,陶瓷刹车盘不会生锈,几乎没有热衰减,制动力强等等优势。 如今市面上鼓式现在逐渐被盘式取代,原因就是散热不好,制动力不强,什么自增力式双向领蹄式什么的都是浮云,现在市面上之所以还有鼓式的存在,最大根本就是其价格低廉,多用于微车。 猜你感兴趣:

制动器设计及计算实例汇总

制动扭矩: 领蹄: 111????=K r F M δ 从蹄:222????=K r F M α 求出1??K 、2??K 、1F 、 β θ 2F 就可以根据μ计算出制 动器的制动扭矩。 一.制动器制动效能系数1??K 、2??K 的计算 1.制动器蹄片主要参数: 长度尺寸:A 、B 、C 、D 、r (制动鼓内径)、b (蹄片宽)如图1所示; 角度尺寸: β 、 e (蹄片包角)、α(蹄片轴中心---毂中心连线的垂线和包角 平分线的夹角,即最大单位压力线包角平分线的夹角,随磨擦片磨损而增大); μ为蹄片与制动鼓间磨擦系数。 2.求制动效能系数的几个要点 1)制动时磨擦片与制动鼓全面接触,单位压力的大小呈正弦曲线分布,如图2,max P 位于蹄片轴中心---毂中心连线的垂线方向,其它各点的单位压力 σsin max ?=P P ; 2)通过微积分计算,将制动鼓 与磨擦片之间的单位压 力换算成一个等效压力, 求出等效压力的方向σ 和力的作用点1Z 、2Z (1OZ 、2OZ ),等效力 P 所产生的摩擦力1XOZ (等于μ?P )即扭矩(需建 立M 和蹄片平台受力F 之间的关系);实际计算必须找出M 与F 之间的关系式: ????=K r F M

3)制动扭矩计算 蹄片受力如图3: a. 三力平衡 领蹄:111OE H M ?= 从蹄:222OE H M ?= b. 通过对蹄片受力平衡分析(对L 点取力矩) ()1111G L H b a F ?=+? ()1111/G L b a F H +?= ∴ ()11111/G L OE b a F M ?+?= 111????=K r F M ∴ 111 1G L OE r B A K ? += ?? 同理: 2 22 2G L OE r B A K ? += ?? c. 通过图解分析求出1OE 、2OE 、11G L 、22G L 与制动器参数之间的关系,就可以计算出1??K 、1??K 。 3.具体计算方法: 11-?= ?ρ γ?K l K ; 1'2+?= ?ρ γ?K l K r B A l +=; r C B K 2 2+= 1) 在包角平分线上作辅助圆,求Z. 圆心通过O 点,直径=e e e r sin 2sin 4+?

制动力矩的解释

佐宏自动化工控小学堂 变频器的选型 电机容量的选定 在选定变频器之前,首先进行电机的选定。根据应用计算负载惯量,然后计算电机的必需容量、必需转矩并选定电机。 简易选定方法(所需要的输出的计算法) 这种计算方法就是计算通常的运行状态下电机必需的输出选定电机。因为未包含加减速状态等计算,因此在选定电机时,要在计算值上再留有余量。对于像风扇、传输机及搅拌器等恒定状态下持续进行的应用,可进行简易选定。 ※不适用于下述应用。 要求急剧的上升 频繁地重复运行/停止 动力传输部的惯量大 动力传输部的效率低 直线运动的情况下:恒定功率-Po[kW] 旋转运动的情况下:恒定功率-Po[kW] 详细选定方法(R.M.S计算法) 计算为了实现应用的动作模式的有效转矩及最大转矩,然后再选择电机的一种方法。可进行与动作形式相对应的详细的电机选定。 转换到电机轴的惯量的计算 应用以下所示的惯量的计算公式,计算所有的零部件的惯量,然后换算成换算到电机轴的惯量。 转换到电机轴的转矩及有效转矩的计算 根据计算出的换算到电机轴负载惯量及电机转子惯量计算加速转矩,根据负载上所施加的外力及摩擦力计算负载转矩,然后计算电机动作所必需的复合转矩。 加速转矩 换算到电机轴负载转矩(外力?摩擦) 复合转矩及有效转矩的计算 可应用伺服电机的电机选定软件,进行上述的换算到电机轴的惯量的计算及有效转矩?最大转矩的计算。敬请使用。 电机的选定

将上述的计算结果应用到下述的计算公式中,计算有效转矩?最大转矩。 将2个计算结果中值大的一个选定为电机容量。 在选定电机时,要用比所计算的容量高、留有误差部分的容量来进行设定。 与有效转矩相当的容量 电机容量=[kW]=1.048NTRMS10-4 N:最大转数(r/min) 可提供最大转矩的电机容量 电机容量=[kW]=1.048NTMAX10-4/1.5 N:最大转数(r/min) 变频器容量的选定 选定用按照“电机的选定”的结果选定的电机能使用的变频器。从根本上讲,请选定与所选定的电机容量相适合的最大适用电机容量的变频器。选定变频器后,确认是否满足以下项目,如不能满足,则选定大1级容量的变频器再次进行确认。 电机额定电流≤变频器额定输出电流 应用程序上的连续最大转矩输出时间≤1分钟 变频器过载耐量为“额定输出电流的120%、1分钟”时,请用0.8分钟进行确认。 使用带PG的矢量控制在转数0(r/min)情况下所必需要保持转矩,或者在低频(10Hz以下)情况下频繁地需要额定150%以上的转矩时,请使用比变频器的选定结果大1级的变频器。. 制动电阻选型 制动电阻的必要性 如应用中减速时及下降时所产生的再生能量过大,则有变频器内部的主电路电压上升导致损坏的可能。 因为通常变频器中内置有过电压保护功能,检测出主电路过电压(OV)后则停止,不会造成损坏。但是,因在检测出异常后电机会停止,所以就难于进行稳定的持续运行。 有必要应用制动电阻器/制动电阻器单元/制动单元,将再生能量释放到变频器外部 再生能量是… 连接在电机上的负载,在旋转时有动能、在高位置时有势能。电机减速、或负载减小时,该能量会返回到变频器。这种现象称为再生,该能量即称为再生能量。 制动电阻的避免方法 避免制动电阻连接的方法有以下的方法。

汽车名词解释-档位制动参数

变速箱/制动参数 本篇文章主要来对变速箱和制动的相关参数来进行说明。 ●档位个数 通常我们常说的变速箱拥有几个档位指的是前进挡的个数,档位是指发动机在转速一定情况下,用来调整变速箱的齿轮比,从而来达到合理的扭矩。档位个数越多,发动机输出功率的区域划分越细,这样就能让发动机在更小的转速范围内工作,随时保证最佳工作状态,不但可以获得更好的动力输出,还能保证更好的燃油经济性,缺点是档位个数越多结构越复杂,制造成本也相对较高。 如今变速箱的档位个数基本上在4-8个。 大部分手动变速箱都是5档或6档,其中5档的比较多,例如:捷达、思域等;6档的比较少,例如:卡罗拉、奔腾、1.6T的君威等。 大部分自动变速箱都是4-6档,比较先进的有7档和8档的。其中4档的常见车型有:骐达、悦动、福克斯等;5档的常见车型有:思域、雅阁、睿翼等;6档常见车型有:朗逸、君威、迈腾等;7档的常见车型有:奔驰的诸多车型,高尔夫6代等,8档的车型则非常少了,只有雷克萨斯LS460h、宝马5系GT这两款车型。●变速箱名称 变速箱是由变速传动机构和操纵机构组成,就是用来传递发动机的输出动力,能变换齿轮的组合以应付不同需求。 ★功能: 1.改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件,同时使发动机在有利(功率较高而油耗较低)的工况下工作。 2.在发动机旋转方向不变情况下,使汽车能倒退行驶。 3.利用空挡,中断动力传递,以发动机能够起动、怠速,并便于变速箱换档或进行动力输出。 ●变速箱类型 根据原理不同,变速箱主要分为:手动变速箱、自动变速箱、手自一体变速箱、无极变速变速箱和双离合变速箱。

φ420制动器制动力矩计算

φ420制动器制动力矩计算(正常STR 后) 一 后制动效能因数 鼓式制动器的主要几何参数 1 后制动器结构参数:(领从碲式、凸轮驱动) 制动鼓直径(半径R ) φ420(R210) mm 制动蹄片宽度: 185 mm 摩擦片包角α 0 : 110° 摩擦片起始角β: 35° 凸轮轴位置h : 315 mm 制动蹄支承点坐标a(e): 160(38) mm 制动器调整臂长L : 145 mm 制动凸轮渐开线基圆直径(2r): φ25 mm 2 其它参数计算: ? =36.13a e arctg γ ?+=36.481γ βa ?+=36.1581 02ααα ?+=72.20621 03ααα ?=36.1032 3 α ?=552 α 5.1642 2' e a a +=

3 效能因数计算: 1) 单个领蹄的制动效能因数 B f R a A R h f BF ?-? ? = ' 1 2)单个从蹄的制动效能因数 B f R a A R h f BF ?+? ? = ' 2 上两式中: 866.02 sin 2 sin 4cos sin 3 3 00=???-= αααααA 896.02 cos 2 cos 130' =??+=ααR a B 3) 整个制动器的制动效能因数 2 1214BF BF BF BF BF +?= 计算 分别取 摩擦系数38 .035.0=--f f 时 时 当 38.035.0==f f BF 1 =1.44 BF 1 =1.687 BF 2 =0.53 BF 2 =0.56 BF =1.55 BF =1.682 二 后制动力矩计算 1 气室输出力: η??=S P F 式中:P---气室工作气压。取P=0.6Mpa S---气室的有效面积 η---气室效率. 取η=0.9

制动器结构设计

第四章制动器结构设计 5.1 制动器主要结构参数的选取 5.1.1 制动鼓直径D 或半径R 的选取 5.1.2 制动蹄摩擦衬片的包角?及宽度?的选取 试验表明,摩擦衬片包角6在90-100之间时,磨损最小,制动鼓温度最低,制动效能最高。减小6角,有利于散热,但单位压力增大,磨损加剧。6角过大 将使制动作用不平顺,容易使制动器发生自锁。因此初步选取摩擦片包角为100. 5.1.3 摩擦衬片起始角6。。一般村片均布于制动蹄中央,使6。=No —6/2。根据?值为100,可得6。为40。有时,应单位压力的分布,将衬片相对于最大压力点对称布置,以改善磨损均匀性和制动效能。 5.1.4 制动器中心到张开力Fo 作用线的距离。在保证制动鼓内轮缸和制动凸轮能够布置的条件下,a 应尽可能大,以提高制动效能。初步设计时定为a=o .8R 左右。 5.1.5 制动蹄支承点位置座标k 和c 。 如图5-1,在保证两蹄支承毛面互不干涉的条件下,k 应尽可 能小,以使尺寸c 尽可能大。初步设计可取c=o .8R 左右。代入得? 5.1.6 摩擦片的摩擦系数 根据参考文献【1】,领从蹄式制动器的摩擦片系数f 一般在0.3-0.35之间,当f 增大到一定值时,由于自行增势作用易导致自锁。通常取f =o .3可使计算接近实际值。 5.2 凸轮张开力的确定及蹄自锁性校核 5.2.1 张开力P1与P2的确定 在计算鼓式制动器时,必须建立制动蹄对制动鼓的压紧力与所产生的制动力矩之间的关系。为计算有一个自由度的制动蹄片上的力矩1Tf T ,在摩擦衬片表面上取一横向单元 面积,并使其位于与1y 轴的交角为α处,单元面积为αbRd 。,其中b 为摩擦衬片宽度,R 为制动鼓半径,αd 为单元面积的包角,如图4-1所示。

盘式制动器结构、工作原理盘式制动器图示前桥驱动桥盘式制动器结构

一、盘式制动器结构、工作原理 1、盘式制动器图示: 前桥驱动桥 2、盘式制动器结构 1、副钳体 2、左摩擦块 3、右摩擦块 4、自调机构 5、气室 6、主钳体 7、制动盘 8、托架 9、滑销 3、工作原理: 制动时,气室(5)推动自调机构(4)向左压出,使右摩擦块(3)与制动盘(7)右侧制动,由于制动盘(7)的轴向移动受限制,因此在反作用力的作用下,主副钳体向右移动,使左摩擦块(2)与制动盘 (7)左侧制动,最后将旋转的制动盘(7)刹住。 二、盘式制动器使用、保养 1、日常检查制动器钳体密封体:

①检查副钳体端2个滑销密封盖,如出现松脱或者遗失及时给予更换或安装; ②检查主钳体端2个滑销端盖,如出现松脱或者遗失及时给予更换或安装; ③检查主钳体上密封帽,如存在裂纹、损伤或者遗失及时给予更换或安装; ④推动主、副钳体滑动检查4个滑销密封圈,如存在裂纹和损伤及时给予更换。 2、定期检查内容: 3、制动盘失效判定标准: ①尺寸检查:如图:A=制动盘厚度45mm(新),B=制动盘厚度37mm(极限); ②裂纹检查:如图所示:检查制动盘上的裂纹和磨损划痕; A1=小裂纹在表面上延伸,此情况允许。 B1=小于0.75a长、1.5mm宽和深的裂纹径向延伸,此情况允许。 C1=小于1.5mm深的环形槽,此情况允许。 D1=径向贯通裂纹是不允许的,制动盘必须更换。 4、摩擦片更换及间隙调整:

4.1、摩擦块拆卸 4.1.1拨出传感器线束的插座,拿出摩擦块压板总成和摩擦块。 4.1.2一字槽螺钉旋具将弧形弹簧拆卸;用平口螺丝刀将传感器线束的内、外感应头撬出。取下摩擦块。 注意:撬内、外感应头应避免将绕在感应头上的线束伤断! 4.2、摩擦块安装 将摩擦块安装在托架内,再用压棒将传感器感应头预先压入摩擦块的U形槽中。 注意:摩擦块安装在托架内后,必须保证摩擦材料与制动盘对应,防止摩擦片装反后出现制动故障;传感器感应头按图示方向装入U形槽,不得装反以及压坏线束。线束插头按箭头方 向拔出 内感应头 外感应头

制动器制动力矩的改善措施

制动器制动力矩的改善措施 汽车制动力矩不足会出现滑坡现象,还会降低行车制动效能,直接影响车辆行驶的安全性。所以对于制动力矩不足的问题必须采取有效的改进措施。 某越野车辆在路面良好的规定坡度坡道上停驻时,由于制动力矩不足出现车辆滑坡(向下方滑移)现象。根据驻车坡度和整车参数计算,要求单个后轮驻车制动力矩不小于10 034.5N·m,而实测后轮最大驻车制动力矩为5400N·m,与要求相差甚远。 本文通过对某越野车辆后轮制动器驻车制动力矩不足的原因分析得出,除了制动器的主要结构参数选择不合理是制动力矩不足的主要原因之外,制动蹄强度不足也是制动力矩达不达标的主要原因之一。采取增加制动气室输出推杆的推力和制动调整臂长度、减小渐开线凸轮基圆半径、增加制动蹄强度等改进措施后,能使制动力矩达到要求值。 制动器结构 该越野车的后轮制动器见图1,是定心渐开线凸轮促动领从蹄鼓式制动器,气压驱动,制动气室是行车制动与驻车制动兼用的复合式储能弹簧制动气室。制动器制动时,凸轮机构保证了两蹄的位移相等,因此,作用于两蹄上的法向反力和由此产生的制动力矩也分别相等,领从蹄的张开力与其效能因数成反比。 图1 后轮制动器结构 1.制动鼓 2.制动蹄及滚轮 3.凸轮轴 4.制动底板 5.凸轮轴支座 6.制动调整臂 7.制动气室 原因分析 1.实物复检 将此制动器拆开,对各零部件进行复检,结果发现各零部件均满足资料要求,由此可排除制造缺陷因素。

2.制动力矩的计算 单个制动器产生的制动力矩M计算如下: 式中 Q——弹簧制动气室输出推杆的推力,N; L——制动调整臂长度,mm; η——凸轮支承的传动效率; rb——渐开线凸轮基圆半径,mm; f′——凸轮与滚轮接触点处的摩擦系数; m——切向力(摩擦力)的力臂,mm; K1、K2——领蹄、从蹄的效能因数; R——制动鼓半径,mm。 此制动器的主要结构参数为:Q=7500N,L=132mm,η=0.6~0.8,计算时取η=0.7;rb=13mm,f′=0.15,m=13.62mm,R=190mm,K1=1.01,K2=0.45。经计算得出单个制动器产生的制动力矩M=5449.58N·m,与实测值(5400N·m)相符。因此确定制动力矩不足的主要原因是设计不合理,应进行改进。 3.试验及分析 (1)方案一将原20/24型制动气室改为20/30型制动气室,增大制动气室输出推杆的推力Q,并减小凸轮基圆半径(rb=10mm)。经计算得出单个制动器产生的制动力矩 M=9055.28N·m。而实测此状态的后轮最大驻车制动力矩仅为6800N·m,测量值与计算值相差很多。

相关文档
相关文档 最新文档