文档库 最新最全的文档下载
当前位置:文档库 › 脱硫塔结构设计

脱硫塔结构设计

脱硫塔结构设计
脱硫塔结构设计

脱硫塔结构设计

一、脱硫塔结构定性设计

1.塔的总体布置

如图所示,一般塔底液面高度h

1

=6-15m;最低喷淋层离入口顶端高度

h 2=1.2-4m;最高喷淋层离入口顶端高度h

3

>=vt;v为空塔速度,m/s,t为时间,

s,一般取t>=1.0s;喷淋层之间的间距h

4

>=1.5-2.5m;除雾器离最近(最高层)喷淋层距离>=1.2m,当最高层喷淋层采用双向喷嘴时,该距离>=3m;除雾器离塔出口烟道下沿距离>=1m。

喷淋区的高度不宜太高,当高度大于6m时,增加高度对于效率的提高并不经济。喷淋区的烟气速度应与雾滴的滴谱范围相对应。从理论上讲,约有3%-6%的液滴量被夹带,在冷却区的夹带量大约为0.2%-0.5%与烟气进口的切向流动有关。

2.塔径的确定

脱硫塔的传质段的塔径主要取决于塔内传质、气液分布及经济性的考虑。在喷淋塔内,烟气流速较低时,压降上升幅度小于流速的上升幅度。随着烟气流速的提高,压力曲线逐渐变陡,直至液泛。液泛气速接近液滴自由沉降的终端速

度,并随着吸收液滴直径的增大而提高。故喷淋塔设计时,烟气流速的选取应与吸收液液滴直径相匹配,按常规,设计气速应为液泛气速的50%-80%。

由于喷雾型脱硫塔中,气流分布可以“自我校正”均匀,从这个角度看,塔径可以无限大。但塔的结构设计的经济性和设计难度等影响到塔径的大小,这需作综合分析,必要时分塔。

脱硫塔可设计成等直径塔,也可设计成变直径塔,具体应根据侧搅拌层数和储浆量大小确定。

3.塔底储浆量的确定

确定塔底储浆量的基本要素有:最大的SO

2负荷,这依赖于进气的SO

2

浓度

及出气所要求的SO

2

浓度;各部分的浆液pH值;在考虑了可能存在的离子影响(飞尘、石灰石和工艺水)条件下的石灰石实测溶解速率;石膏品质(如粒径大小)的要求。根据以上要求确定浆液所需停留的名义时间,该时间可由塔底总浆液量除以排石膏浆液量获得。

4.塔入口烟道的设计

脱硫塔入口烟气的均匀性直接影响到脱硫塔内烟气分布的均匀性。

烟气入口气液接触处为干湿交界面,浆液在此干燥结垢将影响塔运行的安全性和气流流向。设计时应在烟道入口上方及两侧安设挡水板,防止喷嘴喷出的浆液进入烟道内。运行时,上方挡水板形成的水帘有利于脱硫和气流均布,两侧挡水板可防止喷嘴喷雾产生的背压将浆液抽进烟道内(当烟道挡板未关,且无气体进入塔内时)。同时,靠近烟道侧的喷嘴应调整安装角度,防止喷入烟道。

5.塔出口烟道的设计

6.喷淋层的设计

喷淋层的设计时脱硫塔设计的重点和难点。

喷淋层的设计包括浆液管道、喷嘴的选择与布置。

喷嘴的数量和喷淋层数取决于脱硫效率,一般采用3-6层。喷淋层可用多台循环泵供浆或一层喷淋层单独对应供浆,后者更适合于大型脱硫塔且烟气负荷变化较大的场合。当某台循环泵或管路需检修时,只要将其停止来即可,不会影响到塔的运行;当锅炉负荷变化时,可通过增加或停止一台循环泵达到节能的效果,也可备用一套管路(包括循环泵、喷淋层及相关管道),以满足未来日益严格的

环保要求。

浆液管道的设计要求保证进入各喷嘴的压力相等,即所谓的均压。一般当脱硫塔直径较大时,已设计成多根主管型式,有利于均压。浆液管道在脱硫塔内的支撑固定装置可设计成单根或多根主梁支撑、支管塔壁固定的方式。

第一层(最低的一层)喷淋层离烟道上部一般保持2-4m的距离,以便使浆液能充分与烟气接触并避免进入烟道内,喷淋层与喷淋层之间的间距为1.5-2.5m,最高喷淋与除雾器间的距离至少应为1.2m。

对于逆流型喷淋塔,烟气速度为3-4.5m/s,雾滴的尺寸是有一定的限制范围的,也即对喷嘴最基本的要求是“烟气的携带量”。粒径小于500μm的液滴将被带至除雾器中,如果带至除雾器中的液滴太多,除雾器将无法正常运行,大量的雾滴将进入下游烟道和烟囱。对于一个典型的FGD系统来说,低于500μm直径的液滴不能超过5%,喷嘴形式的雾滴应选定在2500-3000μm之间的雾化颗粒,这种粒径的雾滴在最大程度地减少烟气中雾滴携带的同时,也能提供足够的吸收的气液表面积。喷嘴供应商均能提供详细的喷嘴粒径分布数据。

SO

2

喷淋层喷嘴喷出的雾冠在1mm范围内能完全覆盖塔断面,一般要求具有120%-250%的覆盖率。

喷嘴应具有较大的自由畅通孔径,一般应大于45mm,否则易被结垢碎片等杂物所堵塞。

在脱硫塔的喷嘴布置中,若按“等距”布置,则从脱硫塔壁开始0-1.3m的外部圆周区域喷淋密度比脱硫塔中心区域要小得多,塔壁处的烟气速度高,二氧化硫浓度也高。研究表明,脱硫塔中心部分的脱硫率可达99%-100%,脱硫效率从塔中心至塔壁的脱硫效率则逐渐减少,最终造成总的脱硫效率降低。为此,可采取脱硫塔中间布置空心双向喷嘴、塔壁布置实心喷嘴的方式来增加塔壁附近的喷淋密度。这种方式在一定程度上改善了塔内气流的均布,但由此带来的问题是壁流也很严重。

7.除雾器区域的设计

脱硫塔一般采用两级除雾器,两级除雾器间的距离应为1.8mm左右,以便检修维护。

除雾器距最近喷淋层的距离与该层采用的喷嘴形式有关,当采用向下喷雾的

喷嘴时,其间距应大于1.2m;当采用双向喷雾的喷嘴时,其间距应大于3m。

除雾器上沿距烟道出口下沿应大于1m。

二、脱硫塔的优化设计

实施以下设计可提高脱硫效率、降低投资和运行费用。

1.增加液体再分布装置

由前述可知,短路和壁流减少了气液接触的有效传质面积,液气交接面处的传质效率也很低。

液体再分布装置(ALRD,MET专利产品)是把塔壁上的液膜收集起来,重新破碎成液滴,分配到烟气中,一方面靠近塔壁的喷嘴也可布置得离塔壁远些,既可减少贴壁流动的浆液,又可减轻对塔壁防腐层的冲刷;另一方面又可使贴壁流动的浆液发挥余热,克服了壁流现象造成脱硫效率降低的负面影响。

安装液体再分配装置后的性能测试结果表明,系统脱硫效率可提高2%-5%。

2.提高脱硫塔气速

将逆流脱硫塔的气速增加到4-5m/s,提高流速可提高气液两相的湍流,一方面可降低烟气与液滴之间的膜厚度,液膜增强因子增加,从而提高总传质系数;另一方面,喷淋液滴的下降速度减小,持液量增大,使得吸收区的传质面积增大。

当烟气流速低于3m/s时,脱硫效率与烟气速度无关;高于3m/s时,液滴表面的振动加大,液滴中的混合增强,表面更新加快,可促进二氧化硫吸收反应,有利于脱硫效率的提高;当烟气流速从3.0m/s提高到4.5m/s时,脱硫率上升幅度较大,进一步提高烟气流速时,脱硫率的提高趋于平缓。同时,烟气速度受除雾器性能和液泛速度的制约。

低烟气流速时,压降的增大幅度大于传质面积,而高烟气流速时,结果则相反,传质面积的增大幅度大于压降。这一点在ABB的高流速实验中也得到证实:在脱硫率不变的条件下,烟速从2.3m/s提高到4.3m/s,液气比减少到32%,相应的传质速率增加50%,总能耗可下降25%;根据中试结果,从节能观点出发,空塔流速最好大于4.57m/s。

3.增加托盘、气流分布板

4.采用Sauter粒径更小双向喷嘴

尺寸较小的喷嘴可降低雾滴平均直径,增加了比表面积,增加了塔断面覆盖率。例如,某脱硫塔每个喷淋层原来是由25只130mm的喷嘴组成,每只喷嘴的流量为31.5L/s,后来改为每层60至84只50mm的喷嘴,每只喷嘴的流量为12.6 L/s,前后压力操作不变,同时增加了一块穿流孔板,以改变塔入口处的气流分布。经此改进后,脱硫效率由80%提高到96%。

脱硫设计计算

4.2废气处理工艺选择 综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高(>95%),吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。 4.2.2 工艺说明 脱硫工艺原理: 干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na2SO3溶液,Na2SO3溶液与石灰反应,生成CaSO3和NaOH,CaSO3经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。 工艺过程分为三个部分: 1石灰熟化工艺: 生石灰干粉由罐车直接运送到厂内,送入粉仓。在粉仓下部经给料机直接供熟化池。为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。 配制浆液和溶液量通过浓度计检测。 2吸收、再生工艺: 脱硫塔内循环池中的NaOH溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSO3浆液。将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH值后加入碱液,脱硫工艺要求的PH值为9~11。 3废液处理系统:

脱硫塔在运行中存在的问题解析

脱硫塔在运行中存在的问题解析 随着环保形式的日益严峻,如何保证脱硫塔的安全稳定运行显得越来越重要。脱硫剂湿法消化、循环流化床一半干法脱硫工艺具有投资少、运行费用低等优点,那么,我们在日常使用时,脱硫塔会出现哪些运行问题呢?下面,除尘设备小编分享: 1.脱硫塔粘结;该工艺采用双流体喷枪实现向塔内喷入消石灰浆液及冷却水。由于喷 枪角度及位置不合理、脱硫塔人口烟气温度过高导致喷水量过大等原因,造成脱硫塔内壁粘结。粘结最厚处达3m左右,严重影响了脱硫塔内的气流分布及烟气流速,造成脱硫效率急剧降低。粘结物脱落还会造成喷枪砸弯、脱硫塔底部锥斗堵塞等一系列问题,不利于脱硫的稳定运行。 2.返灰循环量不足;由于匹配增压风机能力偏小、烧结机漏风率过大等原因,造成脱 硫塔文丘里下部压力过低,限制了返灰的循环量,且经常性发生塌床,返灰不能实现高倍率循环,造成资源浪费的同时,塌床易造成扬尘污染。 3.浆液泵磨损严重;设计浆液泵为扬程100m、流量15m/h,而实际脱硫塔喷浆位 置与浆液泵的实际高度差为30m左右,浆液泵扬程严重不匹配,造成浆液泵及管道内部压力偏高,浆液泵壳体及叶轮磨损严重。 4.空压机故障频繁;此脱硫系统设置2台30m空压机提供所需压缩空气。由于存在 运行环境较差、厂房设置标高不足影响散热等问题,经常出现因排气温度过高、进口空滤堵塞等问题造成故障停机。 5.更换浆液回流阀影响达标排放;喷人脱硫塔的浆液流量通过回流管路控制,由于浆 液的长期冲刷,浆液回流阀需定期补焊或更换。在处理浆液回流阀时,需停浆液泵停止喷浆,造成出口短时间超标排放。 6.消化器板结;制浆系统消化器在长期制浆后内壁易造成Ca(OH)板结,如清理不及 时易造成消化器卡死,影响脱硫系统的稳定运行。且消化器排浆管道角度偏小,浆液流速过慢造成管道沉积,影响消化器的制浆量。 7.除尘器放灰路由不合理;除尘器放灰设置2台支刮板并入1台主刮板,然后经斗式 提升机至中间灰仓,如主刮板机出现故障,则除尘器无法放灰,返灰缺失势必影响脱硫系统的达标排放。

天明电厂脱硫塔防腐工程施工方案

天明酒精电厂脱硫塔防腐施工方案 1.工程概况及特点.......................................... 错误!未定义书签 2. 编制依据 (1) 3. 作业准备和条件要求 (2) 4. 施工工序关键的质量控制点 (6) 5. 作业程序内容 (7) 6. 质量管理及保证措施 (11) 7. 安全措施及文明施工 (12) 8. 附录 ................................................... 错误!未定义书签1.工程概况及特点 天明酒精自备电厂脱硫防腐范围包括脱硫塔、烟道弯头。防腐工艺采用乙烯基树脂玻璃鳞片胶泥,喷砂除锈,涂层外观无气泡、无流挂、漆膜饱满均匀,涂层厚度3毫米,长期耐温150摄氏度,瞬间耐高温180摄氏度。 注:为了满足工期、质量要求,本项目采用低温固化工艺。最低适宜温度零下 25 °。 2编制依据 2.1. 《玻璃鳞片衬里施工技术条件》HG/T2640-2004 2.2. 《玻璃鳞片树脂防腐衬里标准》日本JIS6940 -1998 2.3. 《涂装前钢材表面锈蚀等级和除锈等级》GB8923-88 2.4. 《工业设备、管道防腐蚀工程施工及规范》HGJ229-1991 2.5. 《金属构件有机衬里要求》DIN28053 28055 2.6. 《建筑防腐蚀工程施工及验收规范》GB50212-2002 2.7. 《电力建设安全工作规程》(DL/5009.1-2002 ) 2.8. 《第四部分烟气脱硫衬里》GB18241.4

2.9. 《工程建设标准强制性条文》2006年版。 1.作业准备和条件要求 1.1. 施工组织体系 3.1.1项目管理组织结构图

电厂脱硫吸收塔喷淋灭火装置研究

电厂脱硫吸收塔喷淋灭火装置研究 发表时间:2019-07-30T15:30:00.497Z 来源:《电力设备》2018年第33期作者:朱世见谢典健 [导读] 摘要:随着我国政府在环境保护方面的力度不断增加,电厂的废气排放也受到了一定的限制,其中,电厂所排放的废气中,以SO2和NOx为主,且目前二氧化硫的去除以湿法脱硫为主,湿法脱硫最重要的设备是吸收塔,在吸收塔新建、扩建及检修过程中,近年因防火措施不当导致吸收塔着火事件频频发生。 华电潍坊发电有限公司山东省潍坊市 261200 摘要:随着我国政府在环境保护方面的力度不断增加,电厂的废气排放也受到了一定的限制,其中,电厂所排放的废气中,以SO2和NOx为主,且目前二氧化硫的去除以湿法脱硫为主,湿法脱硫最重要的设备是吸收塔,在吸收塔新建、扩建及检修过程中,近年因防火措施不当导致吸收塔着火事件频频发生。本文以电厂脱硫吸收塔喷淋灭火装置为研究对象,着重介绍了喷淋灭火装置的安装方案,该装置有效解决了吸收塔着火时消防水瞬间一键开启,消防水可将吸收塔内全面覆盖,有效防范了吸收塔着火事件,并指明这一技术在实际应用中所要注意的事项。 关键词:电厂;脱硫吸收塔;喷淋灭火装置 脱硫吸收塔的设计、建造与使用,大大减少了火力发电厂在发电过程中所产生的硫化烟气对环境的污染。然而,由于吸收塔内改造检修期间,因动火作业防火措施不到位,经常发生的着火事件引起了发电单位的高度重视。本文介绍的喷淋灭火装置可实现一键启停,开启本装置后吸收塔内消防水全面覆盖塔内区域,可有效地对吸收塔着火区域进行灭火,降低脱硫吸收塔新建、扩建及检修过程中着火事件的发生概率。目前,在脱硫吸收塔的加装喷淋灭火装置成为吸收塔灭火的主要的手段之一。 一、脱硫吸收塔的作用概述 在传统火力发电过程中,尽管对煤炭中硫化物的含量有着明确的标准,但是,在燃烧过程中,不可避免的会向空气中排放硫化烟尘,不仅对周边环境造成了破坏,还威胁着电厂周围居民的生命健康安全。 为有效降低电厂SO2气体的排放量,五大发电集团火力电厂均已经按照国家环保部及地方环保部门要求扩改建吸收塔、新建串联吸收塔,有效提高了二氧化硫的去除效率,确保出口二氧化硫浓度排放指标满足国家和地方环保部门要求。 二、脱硫吸收塔着火原因分析 脱硫吸收塔内部从上至下一般为除雾器层、喷淋层、氧化风管及搅拌设施,其中除雾器材质为聚丙烯PP、FRP材质,聚丙烯极易着火,大部分吸收塔着火是由除雾器先着火所导致。除此之外,吸收塔的防腐层为衬胶和鳞片,二者在防腐过程中、与动火作业交叉时极易着火,也是引发火灾的重要因素之一。 在吸收塔新建、扩改建和机组检修过程中,动火作业在所难免,在焊接过程中焊渣、焊火星会导致除雾器着火,吸收塔设计为圆筒状,着火后浓烟滚滚,时常伴有明火,且火势难以控制。据国家电力系统数据统计,在2015~2016年间,因除雾器着火的吸收塔火灾事故共计19次,直接和间接经济损失达8.5亿元。 三、脱硫吸收塔中喷淋灭火装置的设计 喷淋灭火装置的设计思想是能在吸收塔着火初期,对吸收塔内进行消防水的全覆盖,并且水量足以对吸收塔区域进行有效灭火。结合现有脱硫吸收塔喷淋系统,增加灭火功能设计,在理论上可以确保脱硫系统、湿式除尘器系统在新建、扩改建、检修及试运期间的消防安全,预防火灾或减少火灾危害,保障人身和财产安全。 1. 水源设计 脱硫吸收塔喷淋水源设计为两路,一路为消防水水源,直接连通消防水管道,另一路水源来自脱硫循环水,作为备用水源,可有效解决吸收塔内喷淋水系统的用水问题。 2. 管路设计 每台机组供水管路共分两路水源,水源供给一级吸收塔喷淋灭火系统、二级吸收塔及湿式电除尘器喷淋灭火系统。供水主路采用电动门进行启停,启停电路接入公司脱硫集控室DCS系统,可确保着火瞬间开启喷淋灭火装置。喷淋灭火装置管路设置旁路手动门,便于在电动门故障时手动操作开启阀门,且控制喷淋的手动阀门安装在两台机组的脱硫浆液循环泵之间的综合管架下方零米地面上,远离吸收塔、湿式除尘器本体的区域,以便于故障情况下手动操作。 管路布置充分考虑防冻的因素,消防水主路水源采用保温岩棉进行保温;备用水源为脱硫循环水,在正常情况下管道排空,不采用保温措施。喷淋灭火装置水平管道设置0.5%的坡度,便于管道放空,在管道低位设置放水门。 在材料的选择上,应当采用无缝钢管,壁厚不小于4毫米。并且,为了保证喷淋灭火装置供水管道的正常工作,避免流速过快对管道造成的破坏,管内水速应不大于2m/s。 3. 喷头的位置设计 在脱硫吸收塔喷淋灭火装置的喷头选择上,应考虑到喷淋面积、喷头位置等一系列因素,通过对比,喷头采用螺旋式垂直喷头和水平式喷头两种,可确保吸收塔、湿除及烟道区域消防水全面覆盖,根据吸收塔顶部、湿除顶部和烟道的具体情况,合理科学科学设计两种喷头在吸收塔中的位置。 在一级吸收塔中,根据吸收塔出口形状,在除雾器上方环绕塔壁水平安装16只喷枪,在吸收塔出口烟道垂直安装6个喷枪。距喷头3米处,喷淋保护半径为3米。喷淋满足全覆盖的要求,即达到100%的覆盖率。 对于二级吸收塔的喷淋灭火装置设计,在塔侧安装12个喷枪,喷淋满足全覆盖的要求,即达到100%的覆盖率,具体设计如图1所示。

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

脱硫系统运行操作手册 docx资料

*****************安装脱硫设施工程石灰石_石膏法湿法脱硫工程 操 作 手 册 ***************** 2017年10月

前言 制定本操作手册的目的是为了加强本工程脱硫装置的标准化管理,保证脱硫装置的正常安全运行,使脱硫装置的运行维护操作程序化、规范化。本手册只对操作和维护起指导作用。 如果在长时间运行后,由于脱硫操作人员经验的不断积累,最终发现操作程序与目前的手册不同,应向承包商报告此情况以修改操作手册,承包商保留修改和添加的权利。为保证系统的正常运行,装置必须置于有效的监督之下,且操作人员必须明确自己应承担的责任。

1.烟气脱硫系统工艺介绍 1.1设计原则 (1)认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准进行设计,能够适应锅炉运行时的负荷波动,在满足供热的同时,达到设计的排放参数; (2)选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。 (3)充分结合厂方现有的客观条件,因地制宜,制定具有针对性的技术方案。 (4)系统平面布置要求紧凑、合理、美观,实现功能分区,方便运行管理。 (5)设计采用石灰石—石膏湿法脱硫工艺,该方法技术成熟、脱硫效率高达98%以上、运行安全可靠、操作简便。 (6)烟气系统不设增压风机,设置烟气旁路,不设置烟气—烟气换热器,脱硫后的烟气排入厂里现有大烟囱。 (7)采用烟气在线自动监测系统,对脱硫后的烟气排放进行实时监控,严格执行环保要求排放标准。 1.2工艺原理及工艺流程 1.2.1工艺化学反应机理 石灰石—石膏湿法脱硫工艺的主要原理是:送入吸收塔的脱硫吸收剂石灰石浆液,与进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气中的氧气发生化学反应,生成二水

火电厂脱硫的几种方法

火电厂脱硫的几种方法(总12 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

火电厂脱硫的几种方法(1) 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD 技术中,按脱硫剂的种类划分,可分为以下五种方法:1、以CaCO3(石灰石)为基础的钙法,2、以MgO为基础的镁法,3、以Na2SO3为基础的钠法,4、以NH3为基础的氨法,5、以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。A、湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。B、干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。C、半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 1脱硫的几种工艺 (1)石灰石——石膏法烟气脱硫工艺

脱硫事故喷淋

脱硫吸收塔入口烟气事故喷淋装置 一、概述 1.事故喷水装置是为了保证脱硫吸收塔旁路挡板取消后,脱硫系统在吸收塔浆液循环泵停 运等事故工况下,避免吸收塔内除雾器因温度过高导致设备损毁而新增的系统。 2.事故喷水装置布置在两台吸风机出口烟道汇合后地面水平段;事故喷水装置水源分为两 路,分别为消防栓系统来水及除雾器冲洗水泵来水;两路水源管上各设置一道气动门,为防止气动门自动开启时拒动,在消防供水管上设置手动旁路。 3.为保证正常运行工况,事故喷水装置备用时,喷嘴不被烟气中灰尘堵塞,在事故喷水装 置入口处接入氧化风,用来对事故喷水喷嘴进行吹扫。 4.事故喷淋装置需定期试验,为避免定期试验后喷淋装置底部管道内存水酸化及水灰混合 结垢,事故喷水母管下部安装排放门;为避免烟道内积水,在喷淋装置所处烟道底部设有排水槽。 二、事故喷淋装置顺控 1.若除雾器冲洗水泵运行,联锁关闭除雾器冲洗水各阀,开启除雾器冲洗水至喷淋气动门、 1A喷淋气动门、1B喷淋气动门为吸收塔提供事故喷水降温,若喷水压力低于0.4MPa(暂定),延时10s联锁启动消防水至喷淋气动阀; 2.若除雾器冲洗水泵未运行,开启消防水至喷淋气动门、1A喷淋气动门、1B喷淋气动门, 为吸收塔提供事故喷水降温;若喷水压力低于0.4MPa(暂定),延时5s联锁启动除雾器冲洗水泵,联锁开除雾器冲洗水至喷淋气动门。 三、保护及联锁 1.吸收塔入口烟气温度(喷淋装置前)高于150℃报警。 2.吸收塔入口烟气温度(喷淋装置前)高于160℃,三取二,或者烟囱入口温度高于70℃, 三取二,延时1秒,联锁启动事故喷水。 3.四台浆液循环泵全停且吸收塔入口烟气温度(喷淋装置前)高于80℃,联锁启动事故 喷水。 4.吸收塔入口烟气温度(喷淋装置前)高于180℃,三取二,同时四台浆液循环泵全停, 延时1秒,触发MFT。 5.烟囱入口温度(喷淋装置前)高于70℃报警。

脱硫塔

第一章运行管理 一、工艺流程及流程简介 1.1工艺流程 1.1 工艺流程图 1.2工艺流程简介 锅炉烟气经引风机、多管除尘器、后,首先进入脱硫除尘塔内与经喷嘴雾化后的脱硫液进行脱硫反应;烟气在塔内通过三层喷淋装置进行三级脱硫除尘反应,SO2总脱除率可达99%以上,除尘效率达到99%以上;脱硫塔内 NaOH吸收SO2发生中和反应生成NaHSO3与Na2SO3,然后流入下游水池进行循环使用,完成对烟气中SO2的吸收净化。 经一级除尘脱硫后的干净烟气通过塔上部的弯头、管道进入二级脱硫除尘塔经过收水器进一步净化脱水,,除去烟气中夹带的水,经过脱硫除雾后的烟气进入烟囱排放。随着脱硫反应的进行,循环池内pH值不断下降,当循环池内pH值降低到10以下时,要及时向循环池补充钠碱以防pH值过低影响脱硫效果。 二、人员配备 1、脱硫控制室配室操作人员3人,负责脱硫工程的日常工作。 2、脱硫工程配机修人员1人,负责站区日常的设备维修工作。 三、各主要处理单元运行控制参数 1、循环池中有关参数的控制 循环池中pH应控制在10以上,低于10时脱硫效果不理想。 2、脱硫塔内有关参数的控制 脱硫塔出口pH应控制在7.0以上。 第二章操作规程 一、循环泵房及泵房内循环水泵、冲洗水泵、排液泵 1、循环泵作用 向脱硫塔供脱硫液。 1.1、开泵前准备 (1)检查循环池内水位,确保循环池内水位不低于池深的2/3。

(2)检查管路系统是否有跑、冒、滴、漏现象存在,如有要及时处理。 (3)检查水泵及系统零部件是否齐全完好。如:所有紧固件是否紧固;连轴器间隙是否合适;水泵注油孔是否已按规定注油;仪表、阀门是否完好等。 (4)进行手动盘车旋转两周看是否正常,应不卡不重,无异常声音。否则应查明原因进行处理。 (5)检查循环泵有无冷却水,是否打开。 (6)检查机械部分时,不得将水泵电路开关合闸使电机处于带电状态,且在配电柜上挂有“有人操作,不许合闸”标牌。 1.2.操作顺序 (1)开启循环泵 打开泵进口管路的碟阀,开启循环泵。当压力表显示压力达到额定压力 0.3-0.4MPa后即为所需工况。 (2)关闭循环泵 循环泵停止工作后,慢慢关闭进水管路上的碟阀 1.3.泵在运行中,应注意以下事项: (1)开启水泵后,如压力表指针不动或剧烈摆动,有可能是泵内积有空气,停泵后排净泵内空气再启动。 (2)检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大、过小应立即停机检查。 (3)注意轴承温度,轴承最大温度不得大于95度。 (4)按动停泵按钮后,严禁马上再按启泵按钮,否则会发生水击造成设备管路损坏等重大事故。因此,特别规定,停泵10分钟后才允许按启动按钮,待无异常情况后方允许离开开关柜。 (5)泵电动机在不允许连续起动,启动间隔时间至少为10分钟。 2冲洗水泵的作用 向脱硫塔除雾器提供冲洗水,冲洗除雾器,防止除雾器积灰致使除雾器压降过大。建议每小时冲洗时间不低于10分钟。 2.1、开泵前准备

1号机脱硫吸收塔喷淋层改造

1号机脱硫吸收塔喷淋层改造施工方 案 生产厂长: 检修副总: 设备部专业: 除灰分场主任: 编制: 设备管理部

一、设备简介: 1号机脱硫吸收塔是按一炉一塔布置,吸收塔采用喷淋塔,吸收塔浆液喷淋层系统是由北京朗瑞达科技发展有限公司安装,设有四层喷淋装置,喷淋层间距1.8米,每层喷淋层都布置了170个喷嘴。吸收塔总高度34.7米,吸收塔直径17.5米。 二、施工原因: 1号机组运行期间,每次停机开塔检修,均有浆液喷淋支管脱落,由于浆液喷淋管路分为四层,每层对应1台浆液循环泵,从A-D浆液循环泵对应的喷淋层自21.4m起间隔1.8m,到26.8m止。每层布置一条Φ1200衬胶喷淋母管,母管两侧垂直均布7条不同长度的喷淋支管,每条支管有若干喷头。各支管均只有两个承力点,且跨距较长最长8.15m,加之浆液循环泵起停管道振动,长时间运转粘结接口老化松脱,易脱落,如喷头或支管脱落,首先影响浆液循环泵正常运行,其次如果脱落喷淋支管上层脱落,由于各层支管喷头吸收塔界面全覆盖,可能砸坏下层喷淋层。另外如果脱落支管或喷头断口角度向着塔壁或烟道,会损坏塔壁防腐层,造成漏泄或者浆液喷入吸收塔入口烟道,造成浆液外流,损坏烟道,更严重者浆液流入增压风机,造成机组非停。为解决上述问题,决定对吸收塔喷淋层进行加固。 三、施工方案: 1.沿A浆液循环泵喷淋母管中心线穿过吸收塔的水平断面,在距离喷淋母管中心线3m与吸收塔塔内相交处下方0.2m处,焊接1条200的槽钢(槽钢槽口与喷淋管平行)。

2.焊接前将对应2焊接点处塔壁防腐打磨掉,打磨面积0.25㎡。防止焊接过程中造成火灾。 3.同样的方式在A浆液循环泵喷淋母管对侧焊接1条200的槽钢。保证2条槽钢平行对称。 4.在焊接完毕的槽钢的1/3位置垂直焊接高度为650的200槽钢,再在喷淋母管对侧焊接好的槽钢上垂直焊接高度为650的200槽钢。然后用200槽钢将2条刚焊接好的650高度的槽钢焊接起来。 5.在喷淋母管两侧水平槽钢另一端1/3位置,采取同样的方式焊接。 6.在水平方向槽钢与个喷淋支管接触面上间隙处,垫上适当厚度的防腐材料,并安装白钢关卡。 7.焊接前各焊接接口打磨好坡口,所有焊口均要求满焊。 8.将施工中各破损处防腐及新焊接槽钢,重新做防腐,若使用树脂鳞片,厚度3-5mm,若衬胶,要求厚度5-8mm。 9.按上述方法将其余三层喷淋层按此法加固。 施工方式如下图

火电厂脱硫的几种方法

火电厂脱硫的几种方法(1) 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:1、以CaCO3(石灰石)为基础的钙法,2、以MgO为基础的镁法,3、以Na2SO3为基础的钠法,4、以NH3为基础的氨法,5、以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。A、湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。B、干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。C、半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处

理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 1脱硫的几种工艺 (1)石灰石——石膏法烟气脱硫工艺 石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。 它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。 (2)旋转喷雾干燥烟气脱硫工艺

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

脱硫塔喷淋

2.7.2 喷淋层 喷淋层又可以称为液体分布器,它是由喷淋管和喷嘴组成,将夜通过喷淋管的分配作用达到均匀分布的每个喷嘴,由喷嘴喷出,与逆向流动的烟气充分接污染气体即在此吸收。 触,SO 2 1 喷淋层中喷淋管及管网的设计 ①喷淋层中的喷淋管目前主要有2种材质和结构形式:(1)全玻璃钢(FRP)材质,由于玻璃钢的材料特性,这种结构需要在喷淋管底部设置支撑梁。(2)主管用碳钢,内外衬胶,支管用FRP管,主管和支管之间用法兰连接,主采用等径钢管,管径大、壁厚,自身起到支撑梁的作用,FRP支管底部可以不设支撑梁。据了解国外支管都用柔性接头,而我国只能做插管手糊加强性连接,考虑此连接部受弯和喷浆时可能由颤抖现象而引起疲劳开裂(因为喷头处压力为0.07MPa,喷头质量有8kg,支管呈悬臂梁状态工作而且浆液流动也没有柔性连接畅通)。欧洲大部分用FRP(玻璃纤维增强塑料)材料制作,质量较轻。而日本、台湾则有用钢管内外衬橡胶的,质量较重。签于国内制造厂商不能保证欧洲国家那样制作的FRP管的质量,而国内引进的这些装置在我国刚运行不久,还需经过较长时间的观察、考核。国内初次设计,为了保证安全起见,暂按钢管内外衬橡胶设计,但用FRP管肯定是今后国内发展的方向。在实际运行中,全玻璃钢喷淋层底部的支撑梁有被上部喷嘴喷出的浆液击穿破坏的现象。为避免由此带来的隐患,本工程喷淋层采用第2种形式,喷淋FRP支管底部不设支撑梁。吸收塔喷淋区域塔径,喷淋FRP支管较长,要求喷淋层供应商利用管道分析软件对喷淋层进行受力分析,选择合理管壁厚,通过在支管上加筋提高FRP支管的强度和刚度,并对其各个生产环节进行认真监督检验。最上层喷浆管至第一段除雾器高差。根据喷浆后雾滴大小及烟气上升流速考虑,一般在3m~3.5 m左右。 ②喷淋层中管网的作用是浆液通过分布在喷淋管上的喷嘴喷出雾状液以吸收烟气中的S02。要求管内外均耐磨蚀,管内同时要求耐浆液腐蚀,管表面要求耐浆液冲刷。其设计,首先要考虑喷头的布置,应保证塔内喷出浆液匀称,避免疏密不均。喷头的数量根据液/气比需要的浆液量而定。为保证浆液与烟气的接触充分,一般喷浆管分成3~4层(极个别厂有用2层的,但用的是锥尾式单向喷头),喷淋层间距通常为lm~2m,一般按1.5~1.7m计。

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

脱硫塔着火分析和预防措施

脱硫塔着火分析和预防措施 1、脱硫塔着火事故,根源均是防腐材料 近几年随着环保意识的加强及环保法规的完善,各企业纷纷增加脱硫工艺,脱硫塔的建设项目逐年增多,在对脱硫塔的防腐过程中由于施工不当引起的火灾事故时有报道,网上搜索“脱硫塔着火”关键词时一条条新闻一张张图片让人触目惊心,如果有心人仔细研读这些事故追查原因,大家不难发现绝大多数事故均是:防腐材料着火。 目前人们常用的玻璃鳞片胶泥,主要由60%左右901乙烯基树脂、酮类固化剂、20%左右玻璃鳞片、15%滑石粉等填料、2%苯乙烯稀释剂组成,在施工时为了使涂料具有流动性需加入10%左右苯乙烯作为稀释剂,苯乙烯因分子量较大,挥发性较差,在玻璃鳞片的鱼鳞结构良好的防渗遮蔽作用下,苯乙烯更难挥发,因此在玻璃鳞片胶泥施工完毕后较长时间内涂层中依然存在大量苯乙烯,安全隐患增加;苯乙烯蒸汽密度大于空气,当苯乙烯挥发后会沉降到施工区域底部,随着时间的延长,底部苯乙烯的浓度越来越高甚至会达到其爆炸极限。

玻璃鳞片胶泥的耐温极限大约在180℃左右,当遇到电焊等高温时,涂层遭到破坏,封闭在涂层内的苯乙烯、有机树脂等充分与空气接触具备了燃烧的条件从而产生燃烧,如玻璃鳞片胶泥的耐温幅度大幅升高至短暂高温不破坏,则会因涂层隔绝氧气而不具备燃烧条件而杜绝或延缓燃烧,但遗憾的是制作玻璃鳞片胶泥的树脂因结构原因无法实现较大幅度的耐温提升,且该成膜物自身就是可燃有机物。 2、脱硫塔失火事故的人为原因分析 (1.)工程管理人员思想上不重视,管理上不到位。 在脱硫塔进行防腐衬胶之前,项目公司、监理部以及施工单位的管理人员对衬胶防火工作的重要性认识不足,思想上不重视,麻痹大意,没有召开专题安全会议,没有明确各自的安全责任,没有制定防止火灾的安全措施。 (2.)人员安全意识淡薄。 项目公司、施工单位安全监察人员和技术人员没有对施工人员进行安全技术交底和防火安全教育,施工人员防火安全意识淡薄,没有掌握防火安全技术,不知道衬胶施工为什么要防火,怎样才能防火。

脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计 脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU=)ln() ()(***2 2*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[ 82.0W a k L ?=]4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

某发电厂1000MW机组烟气脱硫塔强度和稳定性分析 蔡亚东

某发电厂1000MW机组烟气脱硫塔强度和稳定性分析蔡亚东 发表时间:2017-12-25T12:00:07.750Z 来源:《电力设备》2017年第25期作者:蔡亚东[导读] 摘要:文章利用SolidWorks软件对吸收塔进行实体建模,并运用有限元分析软件ANSYS WORKBENCH,在考虑自重、风载荷、地震载荷情况下,对烟气脱硫吸收塔进行动力特性分析,经计算分析,得到吸收塔固有频率和振型,塔体结构发生失效主要表现在大矩形开孔侧的塔壁。 (大唐环境产业集团股份有限公司北京 100097)摘要:文章利用SolidWorks软件对吸收塔进行实体建模,并运用有限元分析软件ANSYS WORKBENCH,在考虑自重、风载荷、地震载荷情况下,对烟气脱硫吸收塔进行动力特性分析,经计算分析,得到吸收塔固有频率和振型,塔体结构发生失效主要表现在大矩形开孔侧的塔壁。为吸收塔的整体设计及维护提供了参考。 关键词:吸收塔;有限元分析;动力特性;应力 Abstract:The FE model software SolidWorks is used to establish the model of absorber.The FE analysis software ANSYS Workbench is used to analyze the dynamic performance and stress of the absorber under combined load of weight,the wind loads and seismic load.The natural frequency and vibration mode of absorber is solved.It is found that the main structure failure is in large rectangular opening side of absorber.It provides reference of designing and maintenance for absorber. Key words:absorber;Finite element analysis;Dynamic performance;stress; 1.引言 大气环境中的二氧化硫污染是当今人类面临的重大环境问题之一,烟气脱硫是降低燃煤所产生的主要污染物二氧化硫的重要措施,吸收塔是烟气脱硫系统中的主体部分,为大型薄壁壳体钢结构。其内部设置各种管道,支撑梁,塔体开设烟气进出口,并通过型钢加强,整个结构形式非常复杂。塔体失效的主要表现形式是由于压应力而导致的局部失稳,因此导致局部失稳的压应力作为重点校核对象。塔体的大开孔对塔体抗弯、抗震能力削弱很大,开孔边缘处存在应力集中。塔体内壁需进行玻璃鳞片防腐,由于玻璃鳞片性质较脆,塔体发生较大弹性变形时,容易引起鳞片的龟裂导致脱落。因此避免塔体发生较大弹性变形也是设计应考虑的。 对于吸收塔的设计计算,我国还没有专门的设计规范,随着数值计算的发展,对于这类结构的动力特性分析,可以利用SolidWorks软件对吸收塔进行实体建模,并利用ANSYS有限元分析技术对其结构进行动力特性分析,提高结构设计的安全性和经济性,为该类工程设计提供参考。 2.吸收塔有限元模型 2.1吸收塔的基本情况 该项目脱硫吸收塔结构分为三部分。下段筒体直径为23m,中段筒体直径为20m,上段烟气出口直径为10.2m。直径变化处采用圆台面过渡,两个圆台面的高度分别为2.6m和4.91m。在标高24.9m,27.4m,29.9m,32.4m,34.9m处分别设置5层喷淋层,在标高38.4m和41.4m处设置两层屋脊式除雾器。进口烟道中心标高为19.6m,宽度为15.6m,高度为4.3m,厚度为6mm,用截面为H型钢和T型钢加强筋。出口烟道中心标高为55.6m,直径为10.2m,外沿用截面为T型钢加强。吸收塔筒体分别环向加强筋,加强筋截面用H型钢。进出口烟道及塔体材料为Q235钢,密度为7800kg/m3,泊松比为0.3。 2.2吸收塔模型的建立与导入 SolidWorks软件具有强大的基于特征的实体建模功能,通过拉伸,旋转,抽壳等操作来建立吸收塔复杂的三维实体模型,该模型包括塔壁,烟气出入口段,加固肋等,其他管道人孔门等对计算结果影响较小而在建模时忽略。在模型中设定不同分段搭壁板和出入口段的壁板厚度,加强筋截面尺寸形状等,完成建模。如图2.1。根据常压容器和塔式容器计算规范推算出吸收塔壁各段的壁板厚度,如表1.1所示。

相关文档
相关文档 最新文档