文档库 最新最全的文档下载
当前位置:文档库 › 变压器谐波损耗计算及影响因素分析.

变压器谐波损耗计算及影响因素分析.

变压器谐波损耗计算及影响因素分析.
变压器谐波损耗计算及影响因素分析.

第 39卷第 4期电力系统保护与控制 Vol.39 No.4 2011年 2月 16日 Power System Protection and Control Feb.16, 2011 变压器谐波损耗计算及影响因素分析

张占龙 1,王科 1,2,李德文 1,周军 3,吴喜红 1,黄嵩 1,唐炬 1

(1.重庆大学输配电装备及系统安全与新技术国家重点实验室, 重庆 400030;2.重庆长寿供电局,重庆 401220; 3.四川自贡电业局,四川自贡 643000

摘要:为了准确分析配电网谐波对变压器损耗的影响,依据电路理论建立了变压器谐波损耗模型,推导出变压器谐波损耗的计算关系式。针对谐波次数和变压器负载不平衡引起的谐波损耗进行了分析,提出了变压器谐波损耗在线监测方法,并通过实验对该方法的有效性进行了分析。分析结果表明:建立的变压器谐波损耗模型一方面由于不需要考虑变压器一次侧谐波电流,简化了计算复杂程度;另一方面能够准确计算出变压器的各次谐波引起的变压器损耗。基于配电网 3次与 5次谐波引起

的变压器损耗占变压器总谐波损耗的90%以上,有效降低配电网 3次与 5次谐波对于变压器的降损节能具有很好的工程实用价值。

关键词: 变压器;谐波;不平衡;简化模型;在线监测

Transformer harmonic loss calculation and influence factor analysis

ZHANG Zhan-long1, WANG Ke1,2, LI De-wen1, ZHOU Jun3, WU Xi-hong1, HUANG Song1, TANG Ju1

(1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, China; 2. Chongqing Changshou Power Supply Bureau, Chongqing 401220, China; 3. Sichuan Zigong Electric Power Bureau, Zigong 643000, China

Abstract: In order to analyze the influence of distribution network harmonic on transformer loss accurately, transformer harmonic loss model is established according to circuit theory and its calculation formula is derived. Transformer harmonic loss caused

by harmonic order and transformer load imbalance is analyzed, a method about online monitoring transformer harmonic loss is proposed, and its effectiveness is analyzed by experiment. The result confirms that the calculation can be simplified by using transformer harmonic loss model because it does not need to consider the transformer primary side harmonic currents and transformer harmonics loss caused by each order harmonic can be calculated accurately. Effectively reducing third order and fifth order harmonic of distribution network has a good practical value for energy conservation of transformer because more than 90% of transformer harmonic loss is caused by them.

This work is supported by special fund of the National Basic Research Program of China (973 (No. 2009CB724506.

Key words: transformer; harmonic; unbalance; simplified model; online monitoring

中图分类号: TM406 文献标识码:A 文章编号: 1674-3415(201104-0068-05

0 引言

降损节能是智能电网发展方向之一,变压器作为电力系统中重要的输配电设备,其工作效率直接关系到电网电能转换的效率,也是用户能否正常使用电能的重要组成部分 [1]。随着电网中负载的复杂

基金项目 :国家重点基础研究计划 (973 资助 (2009CB724506 ;重庆大学输配电装备及系统安全与新技术国家重点实验室访问学者基金

(2007DA10512709408 、中国电机工程学会电力青年科技创新项目多样性,电网中存在的谐波和负荷不平衡已经是一种比较普遍的现象 [2],长期运行增加了变压器内部损耗,造成较大的电能损耗,缩短变压器寿命,严重时将对电网的安全、经济运行造成极大的影响。在变压器谐波损耗监测中, 文献 [3]提出了变压器谐波损耗的计算方法,分析了变压器谐波损耗与谐波电流畸变率的关系。文献 [4]提出了考虑集肤效应时的变压器谐波损耗计算方法。文献 [5]分析了谐波次数与变压器模型参数之间的曲线关系。上述研究成果集中在变压器谐波损耗的理论分析和谐波状

张占龙,等变压器谐波损耗计算及影响因素分析 - 69 -

态下的变压器参数变化,没有考虑变压器负载不平衡和谐波次数对变压器谐波损耗的影响。本文在文献 [3]提出的变压器谐波损耗模型的基础上进行了改进,简化了变压器谐波损耗计算复杂程度,并分析了谐波次数和三相负载不平衡与变压器谐波损耗之间的关系。

1 变压器谐波损耗模型

根据变压器开路试验和短路试验对变压器的

等效电路参数进行计算,然后根据集肤效应和叠加原理,得出变压器谐波等效模型—变压器 T 形等效电路如图 1所示。

图 1 变压器 T 形等效电路

Fig.1 T equivalent circuit of transformer

图 1中的等效电路参数激磁电阻 R m 和激磁电抗 X m

通过变压器开路试验计算而得; 原端电阻 R 1、副端电阻 R 2、原端电抗 X 1和副端电抗 X 2由短路试验计算而得。

图 2变压器开路试验原理图

Fig.2 Open-circuit test diagram of transformer

开路试验原理如图 2所示,试验时变压器二次侧开路,工程上为了试验时的安全和仪表选择的方便,开路试验通常在低压侧加压,高压侧开路,此时测出的值为归算到二次侧的值,需要将其再归算到高压侧,其归算计算公式为:

22

(m m Z k k

Z == (1

22

20

(220

3m m P k k I R R ==低压 (2

m X = (3

短路试验原理如图 3所示,试验时把二次侧绕组短路,一次侧加电压 U k ,输入功率 P k 、电流 I k , 由于短路试验所加电压很小,短路试验时变压器内部的磁通小,激磁电流和铁耗可以忽略不计,由此可求出变压器的短路阻抗 Z k ,如式(4所示。

1111N

k k k U U I I =

=k Z (4

图 3变压器短路试验原理图

Fig.3 Short-circuit test diagram of transformer

不计铁耗时,短路输入功率可以认为全部消耗在一次和二次绕组的电阻上, R k 的计算如式(5 所示, X k 的计算如式(6所示。在工程中大多采用一次侧电阻 R 1与二次侧 R 2相等的计算方法将二者分离,所以变压器等效参数中的 R 1=R 2=R k /2, X 1=X 2=X

k /2[6]。

1122

11N

k k

k k P P R I I =

= (5 k X = (6

当谐波作用于变压器时, 由于集肤效应的影响, 其内部参数会发生很大的变化。在图 1所示的变压器等效模型基础上,利用叠加原理将各次谐波分量看成是一系列

独立电流源,分别叠加在变压器上, 构成变压器的谐波等效模型,对于第 n 次谐波,变压器谐波等效模型如图 4所示。

R n (1

R n (2图 4变压器谐波等效模型

Fig.4 Transformer harmonic equivalent model

图 4中 n 为谐波次数, (1n I 为变压器一次侧所加的谐波电流, (2n I 为变压器二次侧的谐波电流。

(1n R 、 (1n X 为第 n 次谐波作用下变压器一次侧绕

- 70 - 电力系统保护与控制

组的电阻和电抗。 (2n R 、 (2n X 为第 n 次谐波作用下变压器二次侧绕组的电阻和电抗。 ( n m R 、 ( n m X 为第 n 次谐波作用下变压器的激磁阻抗和激磁电抗。

为了便于计算和测量,将一次侧电阻、电抗、激磁电阻和激磁阻抗归算到二次侧,这样在计算变压器谐波损耗时只需要测量其二次侧谐波电流,很大程度上简化了变压器谐波损耗计算的复杂性,变压器 n 次谐波等效模型如图 5所示, 其中 (1n r 、

(1n x 为变压器一次侧归算到二次侧的谐波电阻和电抗, ( n m r 、 ( n m x 为变压器一次侧归算到二次侧的激磁电阻和激磁电抗。

图 5简化的变压器谐波等效模型

Fig.5 Simplified transformer harmonic equivalent model

以变压器的基波等效模型参数值为基准,根据集肤效应原理,可以得到各次谐波损耗模型的参数值。导体每个单位长度的电阻和电感计算公式如下:

R (7

式(7中: b 为导体半径, mm ; 为电导率,铜为75.810s/m ×; c δ为集肤深度, mm ; ω为工作频

率, Hz ; μ为导体的绝对磁导率。

由式 (7 可知, 导体的工作频率越高, 其阻抗就越高。以 50 Hz时的电阻和电抗为基准,各次谐基波值 [7-8],

因此第 n 次谐波产生的变压器损耗计算关系式如式(8 :

222

(1(1(2(2( ( 333n n n n n n m n m P I r I r I r =++ (8 变压器谐波总损耗计算关系式如式(9:

222

(1(1(2(2( ( 2333n n n n n m n m n P I r I r I r ∞

==++∑总

(9 2 变压器谐波损耗影响因素分析

依据变压器谐波等效模型,影响变压器谐波损耗主要有两个因素:谐波次数和负载不平衡。为了有效计算与分析,选取的变压器为 , 0n Y y 连接方

式,额定容量 N 30kVA S =,一次侧和二次侧的额定电压比 1N 2N /10/0.4kV U U =,额定频率 50 Hz。通过变压器空载试验和短路试验原理,计算得出变压器谐波模型参数,如表 1所示,其中 n 为谐波次数 [9]。

表 1 变压器谐波损耗模型参数值

在变压器三相负载平衡且功率一定时,通过改变变压器各次谐波含有率,进而改变变压器谐波电流,计算出谐波次数与变压器谐波损耗之间的变化关系,如图 6

所示。

图 6 谐波次数与谐波损耗关系

Fig.6 Correlation between harmonic order and harmonic

loss

由图 6可知,在谐波含有率相同的情况下,谐波次数越高, 变压器谐波损耗值有不同程度的增加,

当谐波含有率为 4.58%,

各次谐波损耗的差异较小。以 3次谐波为基准,

当谐波含有率为 9.18%和 15.2%时,变压器各次谐波损耗增加率最高时分别可达93%和 105%。

当变压器负载总功率不变,对谐波电流含有率

(HRIh

为 4.58%、 9.18%和 15.2%的三种情况进行了变压器在单相运行、两相运行以及三相运行时的谐波损耗变化分析,如图 7所示。变压器三相负载不平衡加剧了变压器谐波损耗,当 HRIh 为 15.2%时,变压器不平衡运行造成的谐波损耗增加率最高可达 89%。

张占龙,等变压器谐波损耗计算及影响因素分析 - 71 -

图 7三相负载不平衡与变压器谐波损耗关系

Fig.7 Correlation between three-phase load imbalance and

transformer harmonic loss

3 实验与数据分析

为了验证变压器谐波损耗在线监测方法以及影响因素分析结果的正确性和可行性,我们在甘肃兰州变压器厂进行了变压器谐波损耗在线检测与分析实验。选取变压器容量为 5 kVA,变比为 1:1, 1N 2N /380/380V U U =,变压器谐波损耗在线检测与分析实验接线如图 8所示 [10]。

图 8实验室变压器谐波损耗检测示意图

Fig.8 Schematic diagram of laboratory testing transformer

harmonic loss

变压器谐波损耗分析软件根据变压器的铭牌数据和变压器电路模型理论,建立其空载试验模型和负载试验模型,进而计算出变压器谐波参数。实验变压器的谐波损耗模型参数如表 2, n 为谐波次数。

表 2 变压器谐波损耗模型参数值

实验时, 变压器原端 A 、 B 、 C 和副端 a 、 b 、 c 、 N 分别接上钳式电流互感器,利用变压器谐波损耗采集终端测量变压器负载为线性负载和非线性负载时的变压器谐波损耗值,并对变压器谐波损耗传统模型和简化模型的计算结果进行比较, 如表 3所示。可以看出变压器在不同负载率的情况下,传统模型和简化模型的误差范围在 8%以内,证明本文提出的简化模型是可行的。

表 3 传统模型与简化模型测量误差比较

Tab.3 Comparison of error analysis between traditional model

and simplified model

变压器总谐波损耗/W 变压器负载率

传统模型简化模型误差

75.2% 54.26 51.65 4.8% 59.4% 20.53 19.76 3.9% 46.2% 11.65 10.87 6.9% 30.3%

2.53

2.31

8.0% 在分析变压器三相不平衡运行时的谐波损耗实

验中,只是重新分配变压器副端 a , b , c 三相的负载大小,整个变压器负载的功率和负载类型并没有改变,其计算结果如图 9、 10所示。

从图 9可以看出线性负载引起的谐波损耗很小,可以忽略不计。变压器谐波损耗主要是由非线性负载引起,从图 10(a 可以看出负载率为 75.2%与 30.3%时, 3次和5次谐波损耗值分别增加了 80倍和 25倍,其他各次谐波损耗稍有增加,从图 10(b 和图 10(c 可以看出变压器三相不平衡增加了变压器谐波损耗,其中图 10(c 中不平衡运行引起 3次和 5次谐波损耗的增加率分别为 33%和 65%。

- 72 - 电力系统保护与控制

图 9线性负载下的变压器谐波损耗分析

Fig.9 Transformer harmonic loss analysis in the conditions of line load

图 10非线性负载下的变压器谐波损耗分析 Fig.10 Transformer harmonic loss analysis in the conditions of nonlined load 4 结语

本文提出了基于变压器谐波损耗简化模型的在线监测方法,分析了三相不平衡和谐波次数对变压器谐波损耗的影响,实验结果一方面验证了该模型的正确性,表明采用该方法可以更加简便、及时地监测变压器谐波损耗,对于降低变压器损耗、判断其运行状态提供了数据参考,另一方面表明要降低变压器的谐波损耗还需要做好以下几项工作:

1有效治理电网中 3次和 5次谐波。

2 对变压器进行三相不平衡无功补偿。

3 合理设计非线性负载的电气参数, 避免设备对电网造成谐波。

参考文献

[1] 熊浩 , 孙才新 , 张昀 , 等 . 电力变压器运行状态的灰色层次评估模型 [J]. 电力系统自动化 , 2007, 31(7: 55-60. XIONG Hao, SUN Cai-xin, ZHANG Yun, et al. A

hierarchical grey evaluation model for operation condition of power transformers[J]. Automation of Electric Power Systems, 2007, 31(7: 55-60.

[2]梁志瑞 , 叶慧强 , 赵飞 . 电力系统谐波状态估计研究综述 [J]. 电力系统保护与控制 , 2010, 38(15: 157-160. LIANG Zhi-rui, YE Hui-qiang, ZHAO Fei. Overview on power system harmonic state estimation[J]. Power System Protection and Control, 2010, 38(15: 157-160. [3]刘成君 , 杨仁刚 . 变压器谐波损耗的计算与分析 [J]. 电力系统保护与控制 , 2008, 36(13: 33-36, 42.

LIU Cheng-jun, YANG Ren-gang. Calculation and analysis of transformer’s harmonic loss[J]. Power System Protection and Control, 2008, 36(13: 33-36, 42.

[4]汪彦良 , 岳智顺 , 王金全 , 等 . 谐波附加损耗及其降损节能分析 [J]. 电气技术 , 2009 (2: 15-19.

WANG Yan-liang, YUE Zhi-shun, WANG Jin-quan, et al. Analyzing the addition loss of harmonic and how to reducing it for energy-saving[J]. Electrical Technology, 2009 (2: 15-19.

[5] Makram E B, Thompson R L, Girgis A A. A new laboratory experiment for transformer modeling in the presence of harmonic distortion using a computer controlled harmonic generator[J]. IEEE Transactions on Power Systems, 1988, 3(4: 1857-1863.

[6]周顺荣 . 电机学 [M]. 北京:科学出版社 , 2007.

[7] Wakilen G J. 电力系统谐波基本原理、分析方法和滤波器设计 [M]. 徐政 , 译 . 北京 : 机械工业出版社 , 2005. [8] Thompson R L, Elham B, et al. A laboratory experiment for transformer modeling in the presence of harmonic Ddistortion[C].

//System Theory, Proceedings of the Twentieth Southeastern Symposium. 1988, 3: 475-479.

(下转第 78页 continued on page 78

- 78 - 电力系统保护与控制 in power system modeling and computation[C]. // IEEE International Conference on Systems, Man and Cybernetics. 1992:754 - 760.

Back/forward substitution method for radial distribution load flow based on node-layer[J]. Power System Protection and Control, 2010,38(14:63-66. [17] 钱锋,陈星莺. 10 kV 配电网规划研究[D]. 南京:河海大学,2003 QIAN Feng , CHEN Xing-ying. Study of 10 kV distribution network planning[D]. Nanjing: Hohai University,2003. [18] 杨建军,战红,陈宪国. 基于遗传算法并避免不可行解的配电网络重构优化[J]. 电力系

统保护与控制, 2008, 36(17:43-46. YANG Jian-jun, ZHAN Hong, CHEN Xian-guo. Optimization of distribution network reconfiguration of important problems in avoiding infeasible solutions based on genetic algorithm[J]. Power System Protection and Control, 2008, 36(17:43-46. [19] 王秀云,任志强,楚冬青. 用于降低网损的配电网络优化

重构方法的研究[J]. 电力系统保护与控制,2008, 36(12: 21-24. WANG Xiu-yun, REN Zhi-qiang, CHU Dong-qing. Study of algorithm on distribution network optimum reconfiguration for reducing line loss[J]. Power System Protection and Control, 2008,

36(12: 21-24. 收稿日期:2010-02-27;修回日期:2010-05-24 作者简介:张亚璇(1983-),女,硕士研究生,从事配电网规划研究;E-mail:

yaxuan5142@https://www.wendangku.net/doc/fc13455849.html, 严萃群(1974-),男,本科,工程师,从事农村电网生产

技术管理工作;唐巍(1971-),女,教授,从事电力系统分析、配电网规划、

配电网经济运行方面的研究。 planning[J]. [11] Wang Zi-an,Alvarado Fernando L. Interval arithmetic in power flow analysis[C]. // IEEE Power Engineering Soc. IEEE Transactions on Power Systems. Baltimore(United States:1992:1341-1349. [12] Miranda V,Saraiva J T. Fuzzy modelling of power system optimal load flow[C]. // IEEE Power Engineering Soc, IEEE Transactions on Power Systems. Baltimore, United States:1991:843-849. [13] 王平洋. 配电系统规划中的若干重要问题[J]. 电网技

术,2001,25(5):1-5. WANG Ping-yang. Some distribution planning[J]. Power System Technology , 2001,25(5):1-5. [14] 张焰,陈章潮. 电网规划中的模糊潮流计算[J]. 电力系统自动化,1998,22(3):20-22. ZHANG Yan,CHEN Zhang-chao. The calculation of fuzzy 20-22. [15] 朱海峰,程浩忠,张焰,等. 利用盲

数进行电网规划的潮流计算方法[J]. 中国电机工程学报, 2001,(8) 21 : 74-78. ZHU Hai-feng, CHENG Hao-zhong, ZHANG Yan, al. et Power flow analysis of electric power networks flexible planning by means of unascertained number[J]. Proceedings of the CSEE,2001,21(8):74-78. [16] 李如琦,谢林峰,王宗耀,等. 基于节点分层的配网潮流前推回代方法[J]. 电力系统保护与控制,2010,

38(14:63-66. LI Ru-qi, XIE Lin-feng, WANG Zong-yao, et al. load flow in electric power Automation of Electric Power Systems,1998,22(3):(上接第 72 页continued from page 72)收稿日期:2010-03-02;修回日期:2010-11-29 作者简介:张占龙(1971-),男,副教授,博士,硕士生导师,研究方向为电磁兼容与故障检测、数字仪器设备、计算机测量与控制;E-mail: zhangzl@https://www.wendangku.net/doc/fc13455849.html, 王科(1981-),男,硕士研究生,研究方向为电气设备故障检测。 [9] 吴天明, 赵新力, 刘建存. MATLAB 电力系统设计与分析[M]. 北京: 国防工业出版社, 2007. [10] 郝治国, 赵学文, 张保会. 变电站变压器经济运行实时监控系统[J]. 继电器, 2002, 30(1: 18-21. HAO Zhi-guo, ZHAO Xue-wen, ZHANG Bao-hui. Resarch on real-time SCADA system for economic operation of transformers in substations[J]. Relay, 2002, 30(1: 18-21.

变压器损耗计算公式

变压器损耗计算公式 简介: 负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器. 将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比. 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比. UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示. 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比. 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比. PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损.其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示). 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗. 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率. 3、变压器节能技术推广 1) 推广使用低损耗变压器; (1)铁芯损耗的控制

变压器损耗计算公式分析

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK -------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取

系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。

(完整版)变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β ——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.wendangku.net/doc/fc13455849.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

变压器损耗估算1

变压器损耗估算315kVA 项目新上S13-315/10/0.4变压器1台。由变压器型号查得下列参数: 表*-*-* 变压器参数表 有功功率损耗: △P= P0+β2P K=0.48+0.772×3.65=2.64kW 变压器空载时的无功功率损耗: Q0= I0S N×10-2 =0.3×315×10-2=0.95kVar 变压器额定负载时的无功功率: Q k = U K S N×10-2=4.0×315×10-2=12.6 kVar 变压器总的无功功率: △Q= Q0+β2 Q k =0.95+0.772×12.6=8.42 kVar 变压器综合有功功率损耗: △PZ=△P+K Q△Q =2.64+0.1×8.42=3.48kW 注:K Q为无功经济当量,取0.1;β为负载系数,取0.77。 变压器年工作日为365天,每天24小时,则变压器全年投入运行小时数T=8760h。1台S13-315/10变压器的年电能损耗为:3.48×8760×1=3.05万kWh 变压器损耗估算100kVA 项目新上S13-100/10/0.4变压器1台。由变压器型号查得下列参数:

有功功率损耗: △P= P0+β2P K=0.2+0.772×1.5=1.09kW 变压器空载时的无功功率损耗: Q0= I0S N×10-2 =0.3×100×10-2=0.3kVar 变压器额定负载时的无功功率: Q k = U K S N×10-2=4.0×100×10-2=4.00 kVar 变压器总的无功功率: △Q= Q0+β2 Q k =0.3+0.772×4.00=2.67 kVar 变压器综合有功功率损耗: △PZ=△P+K Q△Q =1.09+0.1×2.67=1.36kW 注:K Q为无功经济当量,取0.1;β为负载系数,取0.77。 变压器年工作日为365天,每天24小时,则变压器全年投入运行小时数T=8760h。1台S13-100/10变压器的年电能损耗为:1.36×8760×1=1.19万kWh

变压器损耗分为铁损和铜损

变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时) 配变的空载损耗(铁损),由附表查得,供电时间为变压器的实际运行时间,按以下原则确定:

变压器的损耗计算分析

变压器的损耗计算分析 在电力系统中变压器是利用效率最高的电气设备之一,一般中、小变压器都可达96~98%。在电力系统中,累积变压器的总损耗可占20~25%。 (一)变压器的空载损耗 此损耗包括铁芯中磁滞和涡流损耗及空载电流在初级线圈电阻上的损耗,前者称为铁损后者称为铜损。由于空载电流很小,后者可以略去不计,因此,空载损耗基本上就是铁损。 影响铁损的因素很多,以数学式表示,则 式中P n、P w——表示磁滞损耗和涡流损耗 k n、k w——常数 f——变压器外施电压的频率赫 B m——铁芯中最大磁通密度韦/米2 n——什捷因麦兹常数,对常用的硅钢片,当B m=(1.0~1.6)韦/米2时,n≈2,对目前使用的方向性硅钢片,取2.5~3.5。 根据变压器的理论分析,科假定初级感应电势为E1(伏),则: E1=K f B m(2) K为比例常数,由初级匝数及铁芯截面积而定,则铁损为: 由于初级漏阻抗压降很小,若忽略不计, E1=U1 (4) 可见,变压器的铁损与外施电压有很大关系如果电压V为一定值,则铁损不变,(因为f不变),又因为正常运行时U1=U1N,故空载损耗又称不变损耗.如果电压波动,则空载损耗即变化。 (二)负载损耗 此损耗是指变压器初、次级线圈中电流在电阻上产生的铜损耗及励磁电流在励磁电阻上产生的铁损耗。当电流为额定电流时,后者很小,可以不计,故主要是电流在初、次级线圈电阻上的铜损。 对三相变压器在任意负载时,铜耗表达式:

式中I1——初级线圈的负载电流 I2’——次级线圈折算到初级的电流 R1——初级线圈的电阻 R2’——次级线圈折算得初级的电阻 由上式可见,变压器的铜损和负载电流的平方成正比。考虑到负载运行时,负载电流的变化,故此损耗又称可变损耗。 若令β表示负载系数,即 则铜损 式中~线圈电流为额定值时的铜损。 (三)附加损耗 此损耗包括附加铁损及附加铜损,由于这两种损耗数量很小,又难以测定,可以不计。总之,变压器的损耗主要是不变损耗和可变损耗。 变压器的效率,其计算公式 如果负载的性质一定,令φ2表示功率因数角,则在额定电压下,三相变压器输出功率 S N——变压器的额定容量。输入功率,可根据功率平衡得到 (8)式表明变压器的效率和其额定容量初、负载的性质与大小以及变压器本身的损耗有关。

变损和线损的计算

变损和线损的计算 一、变损: 变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK-------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05;

(2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZΔP),以百分比表示;其中PZ为变压器二次侧输出功率。

110KV系统损耗计算

110KV电压供电系统与35KV电压供电系统损耗比较 一、110KV电压供电系统损耗计算 (一)110KV电压供电线路损耗 相关参数:线路长3公里,LGJ120导线,电阻0.2422欧姆/公里,功率因数cosф取0.90,平均电压115KV 1、△P=3I2R=( P )2*R u cosф =( 5810 )2*0.2422*3 115*0.9 =2.29KW 2、平均负荷利用小时数t t= 3226*104 =5552.5 5810 3、年运行线路损耗电能 △W =△P*t=2.29*5552.5 =12715.125=1.27万KWh (二)110KV供电变电器损耗 -8000/110变压器,变压器空载损耗△Po=14KW,变压器负载损耗△查表S 7 Psc=50KW 变压器运行损耗功率: △P △P=△Po+△Psc( St )2 =14+50*( 5810 )2 Sn 8000*0.9 =46.56KW 变压器年运行损耗电能 △W=△P*t =46.56*5552.5=258524.4KWh =25.85万KWh (三)线路损耗和变压器损耗总和 25.85+1.27=27.12万KWh (四)110KV供电年损耗电费: 271200*0.523=141837.6元 二、35KV系统损耗计算 (一)35KV电压供电线路损耗 相关参数:线路长5公里,LGJ150导线,电阻0.198欧姆/公里,功率因数cosф取0.90,平均电压37KV。 1、P=3I2R=( P )2*R u cosф =( 5810 )2*0.2422*3 37*0.9

=30.14KW 2、平均负荷利用小时数t t= 3226*104 =5552.5 5810 3、年运行线路损耗电能 △W =△P*t=30.14*5552.5 =167352.35=16.7万KWh (二)35KV供电变压器损耗 查表S -8000/110变压器,变压器空载损耗△Po=11.5KW,变压器负载损耗 7 △Psc=45KW 变压器运行损耗功率: △P △P=△Po+△Psc( St )2 =11.5+45*( 5810 )2 Sn 8000*0.9 =40.8KW 变压器年运行损耗电能 △W=△P*t =40.8*5552.5=226542KWh =22.7万KWh (三)线路损耗和变压器损耗总和 22.7+16.7=39.4万KWh (四)35KV供电年损耗电费: 394000*0.537=211578元 三、35KV供电比110KV供电年损耗增加量: 211578-141837.6=69740.4元 四、35KV供电比110KV供电年电费增加量: 32260000*(0.537-0.523)+69740.4=521380.4元 注:缺SZ10-8000/110变压器相关技术参数。 现依S7-8000/35和S7-8000/110变压器技术参数计算。 按2004年电费单价标准。 35KV:0.537元/KWh 110KV:0.523元/KWh

变压器铜损铁损计算公式及线损

变压器铜损铁损公式及线损计算 变压器损耗参数测试仪对变压器铜损铁损计算公式 变压器得损耗分为铁损与铜损,铁损又叫空载损耗,就就是其固定损耗,实际就是铁芯所产生得损耗(也称铁芯损耗),而铜损也叫负荷损耗。 变压器空载损耗 空载损耗指变压器二次侧开路,一次侧加额率与额定电压得正弦波电压时变压器所吸取得功率.一般只注意额定频率与额定电压,有时对分接电压与电压波形、测量系统得精度、测试仪表与测试设备却不予注意。对损耗得计算值、标准值、实测值、保证值又混淆了. 如将电压加在一次侧,且有分接时,如变压器就是恒磁通调压,所加电压应就是相应接电源得分接位置得分接电压。如就是变磁通调压,因每个分接位置时空载损耗都不相同,必须根据技术条件要求,选取正确得分接位置,施加规定得额定电压,因为在变磁通调压时,一次侧始终加一个电压于各个分接位置。 一般要求施加电压得波形必须为近似正弦波形。所以,一就是用谐波分析仪测电压波形中所含谐波分量,二就是用简便办法,用平均值电压表,但刻度为有效值得电压表测电压,并与有效值电压表读数对比,二者差别大于3% 时,说明电压波形不就是正弦波,测出得空载损耗,根据新标准要求应就是无效了。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK ---—-——(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -——----(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ —-—--—(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0—-空载损耗(kW)

PK--额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT-—负载波动损耗系数 QK--额定负载漏磁功率(kvar) KQ—-无功经济当量(kW/kvar) 上式计算时各参数得选择条件: (1)取KT=1、05; (2)对城市电网与工业企业电网得6kV~20kV降压变压器取系统最小负荷时,其无功当量KQ=0、1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗得特征 P0——空载损耗,主要就是铁损,包括磁滞损耗与涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度得磁滞系数得次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片得厚度三者得积成正比。 PC--负载损耗,主要就是负载电流通过绕组时在电阻上得损耗,一般称铜损。其大小随负载电流而变化,与负载电流得平方成正比;(并用标准线圈温度换算值来表示).

变压器损耗定义(精)

变压器的损耗包含两部分,空载损耗与负载损耗。 1.变压器的空载损耗 变压器的空载损耗又称铁耗,它属于励磁损耗与负载无关。 1.1空载损耗的组成 通常变压器的空载损耗包括铁芯材料的磁滞损耗、涡流损耗以及附加损耗几部分。 1.1.1磁滞损耗 磁滞损耗是铁磁材料在反复磁化过程中由于磁滞现象所产生的损耗。磁滞损耗的大小与磁滞回线的面积成正比。微观地来看,磁滞损耗与硅钢片内部的结晶方位、结晶纯度、内部晶粒的畸变等因素都有关系。由于磁滞回线的面积又与最大磁密B m 的平方成正比,因此磁滞损耗约和最大磁密B m 的平方成正比。此外,磁滞损耗是由交变磁化所产生,所以它的大小还和交变频率f 有关。具体来说磁滞损耗P c 的大小可用下式计算 21c m P C B f V =?? (1-1) 式中,C 1——由硅钢片材料特性所决定的系数(与铁芯磁导率、密度等有关); B m ——交变磁通的最大磁密; f ——频率; V ——铁磁材料总体积。 注:在日本东京制铁株式出版社的《新日本制铁电磁钢板》中提到有的硅钢片厂家认为,磁滞损耗的大小与B m 的1.6次方成正比。 1.1.2涡流损耗 由于铁芯本身为金属导体,所以由于电磁感应现象所感生的电动势将在铁芯内产生环流,即为涡流。由于铁芯中有涡流流过,而铁芯本身又存在电阻,故引起了涡流损耗。具体来说,经典的涡流损耗P w 的大小可用下式计算 2222m w B f t P C ρ??= (1-2) 式中,C 2——决定于硅钢片材料性质的系数; t ——硅钢片的厚度; ρ——硅钢片的电阻率。 1.1.3异常涡流损耗 在上文的标注所提到的文献中,提出了“异常涡流损耗”的概念,也有的把它作为附加铁损的一部分来看待,一般认为它的大小与硅钢片内部磁区的大小(结晶粒的大小)以及硅钢片表面涂层的弹性张力等有关,并可以用下式来进行估算 223s f B v t P C ρ??= (1-3)

电力变压器常用计算公式

电力变压器常用计算公式 1、变压器空载损耗计算: 00%100 rT I Q S ≈ 0Q -变压器在空载时的无功损耗,kvar ; 0%I -变压器空载电流百分数; rT S -变压器额定容量,kVA 。 2、变压器负载损耗计算 %100 K rT u Q S ≈ K Q -变压器在额定负载时的无功功率,kvar ; %u -变压器额定短路阻抗电压百分数; rT S -变压器额定容量,kVA 。 3、变压器功率损失 20K P P P β?=+ P ?-变压器功率损失,kW ; 0P -变压器的空载损耗,kW ; β-变压器负载率; K P -变压器短路损耗,kW ; 4、变压器无功功率损失 20K Q Q Q β?=+ Q ?-变压器无功功率损失,kVar ; 0Q -变压器在空载时的无功损耗,kvar ; β-变压器负载率; K Q -变压器在额定负载时的无功功率,kvar ;

5、变压器的损失率 2021 20%100%cos K N K P P P P P S P P ββφβ+??==?++ %P ?-变压器的损失率; P ?-变压器功率损失,kW ; 1P -变压器电源侧输入功率,kW ; 0P -变压器的空载损耗,kW ; β-变压器负载率; K P -变压器短路损耗,kW ; N S -变压器额定容量,kVA ; 2cos φ-变压器负载功率因数; 6、变压器的无功损失率 2011 %100%100%K Q Q Q Q P P β+??=?=? %Q ?-变压器的无功损失率 Q ?-变压器无功功率损失,kVar ; 1P -变压器电源侧输入功率,kW ; 0Q -变压器在空载时的无功损耗,kvar ; β-变压器负载率; K Q -变压器在额定负载时的无功功率,kvar ; 7、变压器负载率 22 cos N P S βφ= β-变压器负载率; 2P -变压器电源侧输入功率,kW ;

变压器损耗率一般是多少-变压器损耗率计算公式

变压器损耗率一般是多少?变压器损耗率计 算公式 变压器损耗是现代物理学领域的概念,是指空载损耗Po、短路损耗Pk及杂散损耗Ps之和。变压器的空载损耗和负载损耗分别指的是铁损和铜损. 变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时) 配变的空载损耗(铁损),由附表查得,供电时间为变压器的实际运行时间,按以下原则确定: (1)对连续供电的用户,全月按720小时计算。 (2)由于电网原因间断供电或限电拉路,按变电站向用户实际供电小时数计算,不得以难计算为由,仍按全月运行计算,变压器停电后,自坠熔丝管交供电站的时间,在计算铁损时应予扣除。 (3)变压器低压侧装有积时钟的用户,按积时钟累计

的供电时间计算。 2、铜损电量的计算:当负载率为40%及以下时,按全月用电量(以电能表读数)的2%计收,计算公式:铜损电量(千瓦时)=月用电量(千瓦时)×2% 因为铜损与负荷电流(电量)大小有关,当配变的月平均负载率超过40%时,铜损电量应按月用电量的3%计收。负载率为40%时的月用电量,由附表查的。负载率的计算公式为:负载率=抄见电量/S.T.Cos¢ 式中:S——配变的额定容量(千伏安);T——全月日历时间、取720小时; COS¢——功率因数,取0.80。 电力变压器的变损可分为铜损和铁损。铜损一般在0.5%。铁损一般在5~7%。干式变压器的变损比油侵式要小。合计变损:0.5+6=6.5 计算方法:1000KV A ×6.5%=65KV A 65KV A×24小时×365天=569400KWT(度) 变压器上的标牌都有具体的数据。

变压器损耗计算公式

1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量 KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制, 可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0 PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 3、变压器节能技术推广 1)推广使用低损耗变压器; (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生

变压器负载率计算公式

变压器: 变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。 变压器负载率: 变压器的平均负载率定义为:一定时间内,变压器平均输出的视在功率与变压器额定容量之比。将负载曲线的平均负载系数乘以一个大于1的倍数,负载曲线的平均负载系数越高。 损耗特征: P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0 PC 变压器的损耗比=PC/P0

变压器的效率=PZ/(PZ ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 损耗计算: (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05 (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar

变压器 -- 负载损耗

变压器-- 负载损耗 负载损耗是指额定电流下与参与温下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是 A 级绝缘材料,其参考温度是根据传统概念加以规定的,都是75 ℃。而干式变压器的参考温度都按公式算出,参考温度等于允许温升加20 ℃,其物理概念是绝缘材料的年平均温度。A 级绝缘材料的参考温度为60 ℃加20 ℃等于80 ℃,它与油浸式(同为 A 级绝缘材料)的参考温度75 ℃差5 ℃。干式变压器的E 级绝缘材料参考温度为95 ℃,B 级为 100 ℃,F 级为120 ℃,H 级145 ℃,C 级为170 ℃。负载损耗只是衡量产品损耗水平的一个参数,或者说是考核产品合格与否的一参数,而不是运行中的实际损耗值。运行中温度是变量,负载电流也是变量,所以运行中负载损耗不是变压器名牌上标定的负载损耗值,主要是运行温度不等到于参考温度。 另外,对比产品损耗水平时,尤其干式变压器,一定要在规定参考温度下对比。反过来,如B 级与H 级干式变压器有相同负载损耗,因为参考温度是在温升限值的基础上加以规定的,在实际运行中如都是额定负载,实际负载也接近相同。 在温度换算时应注意,电阻损耗与温度成正比,负载损耗中附加损耗与温度成反比。所以应将负载损耗分解成二部分后再换算。在温度换

算时,对铜导线而言,参考温度应按规定35 加规定参考温度值计算,测量负载损耗时温度也应加班费35 后再换算。 低损耗变压器的负载损耗的功率因数较低,所以测量系统与测量设备与仪表的选取用与以前提到的测量空载损耗的要求相同。 负载损耗的计算值、标准值、保证值与实测的概念也与空载损耗相同。但是在实际测量中,所加电流不能低于50% 额定电流。这是新标准的要求,否则实测值不能换算,即使换算也无效。负载损耗的评价值比空载损耗要低些,但负载损耗的绝对值大,如超出同样的百分数,或同样的测量误差,其z 绝对值还是大的。 空载损耗与温度基本无关,而负载损耗是温度的函数。 这里还要强调一下,如果产品要进行型式试验,空载损耗是指冲击试验后的实测值,如果硅钢片的漆膜质量不好,冲击试验后空载损耗会增加。测负载损耗时,绕组温度应接近外围温度,在干燥出炉后不久,或注油的油温比室温高时不宜立即测量负载损耗,因为负载损耗是温度的函数。另外,测负载损耗的时间要短,时间一长,绕组温度会变。用作短接绕组的短路工具要有足够的导电截面,短接大电流绕组时必须用螺栓拧紧。否则短路工具联接不好时会在联接处产生局部过热,这部分热量倒涌入绕组时会影响测量精度。 对有载调压变压器而言,在新标准里还有新的要求,除保证额定电流下,即主分接位置下的负载损耗外,还要保证最大与最小分接位置的

电力变压器空载损耗与负载损耗的计算方法及计算公式

电力变压器空载损耗与负载损耗的计算方法及计算公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β ——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业, 实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换 算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生 涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。

变压器损耗计算(经典)

变压器损耗计算(经典) 变压器损耗计算 简介: 变压器经济运行与否,是由所带负荷大小、本身能耗的功率以及变压器在磁化过程中引起的空载无功损耗、绕组电抗中的短路无功损耗等因素决定的。 关键字:电力变压器,损耗,经济运行 ( 前言 电力变压器作为电力系统电压变换的主要设备,被广泛应用于输电和配电领域,变压器容量的选择直接影响到电网的运行和投资。对供电部门的公用变压器而言,会使低压网络变大造成过多地消耗有色金属; 选择容量过大的变压器会很快满载,甚至过载,将会限制负荷的发展。变压器经济运行与否,是由所带负荷大小、本身能耗的功率以及变压器在磁化过程中引起的空载无功损耗、绕组电抗中的短路无功损耗等因素决定的。 变压器在变换电压及传递功率的过程中,自身将会产生有功功率损耗和无功功率损耗。变压器的有功功率和无功功率损耗又与变压器的技术特性有关,同时又随着负载的变化而产生非线性的变化。因此,必须根据变压器的有关技术参数,通过合理地选择运行方式,加强变压器的运行管理,充分利用现有的设备条件,以达到节约电能的目的。2( 变压器的负载与损耗的关系 电力变压器的有功功率损耗包含变压器空载损耗和变压器负载损耗两部分,在 定的负载下,变压器的有功功率损耗可用下式表示 P=Pn+Pl (2,1) P-- 总的有功功率损耗;Pn-- 空载有功功率损耗;Pl-- 在一定负载下的负载有功功率损耗 Pn=Pt+KQt=Pt+K(I0%Se/100) (2,2) Pl=Pf+KQf=Pf+K(Ud%Se/100) (2,3) Pt 为变压器额定空载有功损耗即变压器铁耗。 Qt 为变压器变压器额定励磁功率 10%为变压器空载电流 Pf 为变压器额定负载有功损耗即变压器铜损 Ud%为变压器阻抗电压

变压器供电线路功率损耗的计算

变压器供电线路功率损 耗的计算 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

变压器、供电线路功率损耗的计算 1.变压器功率损耗的计算 变压器的功率损耗,包括有功功率损耗ΔPT和无功功率损耗ΔQT。有功损耗又分为空载损耗和负载损耗两部分。空载损耗又称铁损,它是变压器主磁通在铁芯中产生的有功功率损耗,因为主磁通只与外加电压和频率有关,当外加电压U和频率f为恒定时,铁损也为常数,与负荷大小无关。负载损耗又称铜损,它是变压器负荷电流在一次、二次绕组的电阻中产生的有功功率损耗,其值与负载电流平方成正比。同样无功功率损耗也由两部分组成,一部分是变压器空载时,由产生主磁通的励磁电流所造成的无功功率损耗,另一部分是由变压器负载电流在一、二次绕组电抗上产生的无功功率损耗。 ΔPs、ΔQs是通过短路试验测得,ΔP0、ΔQ0是由空载试验测得,由制造厂提供。 (4-9) 式中ΔPT、ΔQT——变压器的有功功率损耗(kW)、无功功率损耗(kvar);ΔP0、ΔQ0——变压器的空载有功功率损耗(kW)、空载无功功率损耗(kvar); ΔPs、ΔQs——变压器负载有功功率(kW)、负载无功功率(kvar),即变压器的短路有功功率损耗和无功功率损耗。 Sca ——计算视在功率(KVA); SN·T ——变压器的额定容量(KVA)。

变压器的功率损耗可用下式概略计算。 (4-10) 式中I0%——变压器空载电流占额定电流的百分数; Uz%——变压器阻抗电压占额定电压的百分数。 ΔPT——变压器的有功功率损耗(kW); ΔQT——变压器的无功功率损耗(kvar)。 2.供电线路功率损耗的计算 供电线路的有功功率损耗、无功功率损耗可安下式计算: (4-11) 式中△Pl、△Ql——线路的有功功率损耗(kW),无功功率损耗(kvar);R、X——每组线路电阻、电抗。 R、X可按下式计算: (4-12) 式中 r0、x0——线路单位长度的交流电阻和电抗;(Ω/km); l——线路计算长度(km)。 变压器容量和台数的选择 变压器的容量和台数,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。

变压器损耗计算公式规范样本

工作行为规范系列 变压器损耗计算公式规范(标准、完整、实用、可修改)

编号:FS-QG-50169变压器损耗计算公式规范 Transformer loss calculation formula specification 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 变压器损耗计算公式 变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0――空载无功损耗(kvar) P0――空载损耗(kW) PK――额定负载损耗(kW) SN――变压器额定容量(kVA)

I0%――变压器空载电流百分比。 UK%――短路电压百分比 β――平均负载系数 KT――负载波动损耗系数 QK――额定负载漏磁功率(kvar) KQ――无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0――空载损耗,主要是铁损,包括磁滞损耗和涡流损

变压器电能损耗计算方法

变压器电能损耗计算方法 B1 双绕组变压器损耗电量分两部分计算 B1.1 铁心损耗电量 ΔAT=ΔP0(Un /Uf)2t (kW·h) (B1.1) 式中ΔAT——变压器铁心损耗电量,kW·h; ΔP0——变压器空载损耗功率,kW; Un——变压器额定电压,kV; Uf ——变压器分接头电压,kV; t——接人系统时间或计算时段,h。 B1.2 绕组损耗电量。 B1.2.1 当采用变压器计算期均方根电流计算时有: ΔAR=ΔPK(Ijf / Ie )2t =ΔPK(Sjf / Se )2t (kW·h) (B1.2.1) 式中ΔAR——变压器绕组损耗电量,kW·h; ΔPK——变压器短路损耗功率,kW; Ie——变压器额定电流,应取与负荷电流同一电压侧的数值,A; Sjf——变压器代表日(计算期),以视在功率表示的均方根值,kVA; Se——变压器额定容量,kVA。 请登陆:输配电设备网 浏览更多信息 B1.2.2 当只具有变压器计算期平均电流时,有: ΔAR=ΔPK(Ipj / Ie )2K2t =ΔPK(Spj / Se )2 K2 t (kW·h) (B1.2.2) 式中Ipj——变压器计算期平均电流,A; K——负荷曲线外形系数; Spj——变压器代表日(计算期)以视在功率表示的平均负荷值,kVA。 B1.2.3 当只具有变压器计算期的最大电流值时有: ΔAR=ΔPK(Imax / Ie )2K2t =ΔPK(Smax / Se )2F t (kW·h) (B1.2.3) 式中Imax——变压器计算期最大电流,A; Smax——变压器计算期以视在功率表示的最大负荷值,kVA; F——计算期负荷曲线的损失因数。 B1.3 双绕组变压器的损耗电量 ΔA=ΔAT +ΔAR (kW·h) (BI.3) B2 三绕组变压器的损耗电量亦分为两部分计算 B2.1 三绕组变压器的铁心损耗电量计算同双绕组变压器。 B2.2 绕组损耗电量计算。 来源:输配电设备网 三绕组变压器的绕组损耗电量计算,应根据各绕组的短路损耗功率及其通过的负荷,分别计算每个绕组的损耗电量,其总和即为三绕组变压器绕组损耗电量。 B2.2.1 当采用变压器计算期均方根电流计算时有:

相关文档