文档库 最新最全的文档下载
当前位置:文档库 › 平面点线集三角剖分的扫描算法

平面点线集三角剖分的扫描算法

平面点线集三角剖分的扫描算法
平面点线集三角剖分的扫描算法

第24卷 第2期2004年2月北京理工大学学报

T r ansactions of Beijing Instit ute o f T echnolog y V ol.24 N o.2F eb.2004

文章编号:1001-0645(2004)02-0129-04

平面点线集三角剖分的扫描算法

周培德

(北京理工大学信息科学技术学院计算机科学工程系,北京 100081)

摘 要:提出计算平面点线集三角剖分的一种算法.该算法是利用平面扫描的思想,当扫描线达到事件点时,处理事件点,即将事件点与已被扫描的某些点连接,这样便将已扫描的区域三角剖分.当扫描线达到最左边的事件点时,处理该事件点,就完成了平面点线集的三角剖分.证明了算法的时间复杂性为O (N lb N ),其中N 是点线集中点的数目与线段端点数之和.

关键词:散乱点线集;三角剖分;平面扫描;算法;时间复杂性中图分类号:T P 301.6 文献标识码:A

Sweeping Algorithm for Triangulation of Plane Point -Line Set

ZHOU Pei-de

(Depar tment of Co mputer Science and Engineer ing ,School o f Infor matio n Science and T echno lo gy ,Beijing Instit ut e of

T echno lo gy ,Beijing 100081,China)

Abstract :Sw eeping alg orithm is presented fo r the tr iangulation of plane point -line set .T he algor ithm m akes use of the idea of plane sw eeping .When the sw eep -line reaches it ,the event -po int w ill be dealt w ith,viz.,the event-point is connected w ith so me points sw ept and thus the sw ept regions are triang ulated.When the sw eep-line r eaches the leftmost event-point,the point w ill be dealt w ith ,and the triang ulation of the plane point -line set is accom plished .It is prov ed in detail that the time co mplex ities o f the alg orithm is O (N lb N ),w here N is the sum of the num ber of points and the num ber of line-seg ment endpoints w ithin the point-line set.

Key words :debunching point-line set;triang ulation;plane sw eep;alg orithm;tim e co mplex ity 收稿日期:20030321

作者简介:周培德(1941-),男,教授.

平面点集三角剖分问题是计算几何中的一个重要问题,它是从许多实际问题中提出来的,至今,人们已研究了求解该问题的许多算法,其中以Delaunay 算法最为著名.将平面点集中的某些点组成点对并满足某些特殊关系,比如它们为平面线段的两个端点,而另外一些点仍为孤立点,这样便构成点线集.平面点集三角剖分问题可以转换为平面点线集的三角剖分问题,并且它们具有相同的时间复杂性下界.平面点线集三角剖分问题要求三角形的三条边或为点线集中的线段,或为点线集中不同线段端点的连线,或为点线集中点与线段端点的连线,

或为点线集中点与点的连线.三角形的顶点为点线集中的点或线段端点.另外还要求连线与连线,连线与点线集中线段均不相交.给定的平面点线集中线段互不相交(线段端点处相交除外).不难看出,平面散乱点线集三角剖分问题是平面点集三角剖分问题的一个特殊情况.按照常规,求解平面点集三角剖分的算法(比如Delaunay 三角剖分算法)可以用于平面散乱点线集的三角剖分.但在平面点集三角剖分的算法中如何保证点线集中的线段必是三角形的一条边,以及连线与点线集中线段不相交.只要解决这个问题就可以实现点线集的三角剖分.目前解决这

个问题的算法就是先将点(端点)集三角剖分,然后逐条线段进行调整,即删去与线段相交的连线,再添

加某些新连线.Lo S.H.提出的方法适用于平面非凸封闭域[1].其思想是,在平面域内先生成内部结点,然后将内部结点与边界结点连接生成一组三角形,并不断向前推进,直至整个内域被三角剖分.近几年来,国内一些学者提出了求解有约束条件的Delaunay三角剖分算法[2,3],其思想与Lo S.H.提出的算法类似,也是解决平面非凸封闭域三角剖分问题.

作者提出的算法不是针对平面非凸封闭域,而是针对平面任意点线集.利用平面扫描技术设计求解该问题的一种新算法,可以用来解决平面任意点线集的三角剖分问题.此外,作者为求解平面散乱线段集三角剖分问题设计了两个算法[4],这些算法也可求解这里的问题.

与平面点集三角剖分问题类似,对平面散乱点线集三角剖分问题可以提出一些附加条件,比如要求三角形的最小内角最大化;三角剖分边长之和最小化,即最小权三角剖分.

1 概念与算法思想

用y轴自右向左移动的方法可以对平面上的散乱点线集建立全序关系集T[5,6].开始时T为空集, y轴左移遇到线段s1的右端点s1R或者p1时,将s1或p1加入T(也可以用二叉树表示y轴的移动过程[6]).y轴左移遇到线段s1的左端点s1L时,从T中删去s1.

T中s1的上、下相邻线段的概念.设s1,s2,s3是平面上的3条线段,s1上存在一点a,过点a作垂线l,l与s2,s3分别交于b,c,并且b y

断层折线的概念.图2中,s1,s2,…,s6是给定的线段,虚线是线段端点的连线,则连线f a,ab,bc,cd 与de构成扫描过程中的断层折线,用E表示.点a 是s1的右端点,并将E划分为两个子断层折线:其中1条折线由f a组成,另一条折线由ab,bc,cd与de 组成.点a是线段s1的端点,s1称为a的顶点线段.

线段s6的右端点g与第2条线折线中顶点连接时,要求连线与第2条折线中线段不相交,此条件

称为不相交条件,记为NI.点p与E中顶点连接时,也要求满足条件NI.

图1 相邻线段

Fig.1 Ad jacent segmen ts

图2 断层折线

Fig.2 Fault b roken line

算法的思想.首先将点线集中线段的端点及点线集中的点按其x,y坐标排序.然后设想有一条垂直x轴的直线l(即y轴)由右向左扫描,当l达到线段s右端点s R或点p(称为事件点)时,将该线段s 或点p插入数据结构T中,并判定T中与s或p相邻的线段s1(上相邻)、s2(下相邻),连接s的右端点s R或p与s1,s2的右端点,这些连线构成断层折线E.类似处理l达到线段s左端点s L(事件点)时的情况.随着l的左移,E不断被修改,扫过的区域被三角剖分.当l达到最左线段的左端点或最左的点p 时,连接该左端点或点p与E的某些顶点,便完成了点线集三角剖分的工作.这种方法的优点是只考虑当前事件点能与E中哪些点连接,减少了运算次数,从而降低了时间复杂性.

2 算法描述

算法(平面点线集三角剖分的扫描算法).

输入 平面上点线集S={s1,s2,…,s n,p1,p2,…,p m},线段s i的左、右端点s i L,s i R的x,y坐标,i= l,n.点p i的x,y坐标,i=l,m.

输出 平面三角形集合T1={t1,t2,…,t k},各三角形的顶点为线段s i的端点(i=l,n)或点p i(i=

130北京理工大学学报第24卷 

l,m).边为s i或者s j(i,j=l,n,i≠j)端点的连线,端点与点p j(j=l,m)的连线,点p j与p k(j,k=l,m, j≠k)的连线.边与边之间不相交(顶点处相交除外).

步1 将m个点p j及n条线段端点按其x,y 坐标排序.

步2 断层折线E←§,F←§.F为存储扫描过程中已产生的连线.

步3 垂直扫描线l由右向左移动,遇到线段s 的右端点同时又是另一条线段s″左端点时,s插入T,并从T中删去s″.转步3.

垂直扫描线l由右向左移动,当遇到线段s的右端点s R或点p时,E←s R∨p,s或p插入数据结构T.在T中寻找s或p的上、下相邻线段.从T中删去p.

如果s或p在T中没有上、下相邻线段∧E= s R∨p,则转步3或步4.

如果s或p在T中没有上、下相邻线段∧E=1个s R1个点p∨两个s R∨两个点p,则连接E中点,修改E和F.转步3或步4.

如果s或p在T中没有上、下相邻线段∧E中至少有一条边,则将s R或p与E的顶点连接(满足NI条件),修改E和F.转步3或步4.

如果(s1,s2是s或p的上、下相邻线段∨E=s′)∧(s R x

步4 当遇到s的左端点s L或点p时,E←s L∨p,s′←s,E←s′,F←s′.在T中寻找s的上、下相邻线段.从T中删去s或p.

如果s或p在T中没有上、下相邻线段∧E= s′,则转步3或步4.

如果s或p在T中没有上、下相邻线段∧E中至少有一条边,则将s L或p与E的顶点连接(NI成立).修改E和F.转步3、步4或步6.

如果(上、下相邻线段是s′

1,s′2)∧(s L x

i R x∨

p x

i R(NI成立),修改E和F.连接s L或p与E的顶点(NI成立),修改E 和F.转步4或步5.

如果(上、下相邻线段是s′

1,s′

2)∧(s L x

i L x∨

p x

i L x),则连接s L与s′i L或p与s′

i L(NI成立),修改

E和F.连接s L或p与E的顶点(NI成立),修改E 和F.转步4或步5.

步5 遇到线段s的右端点s R或点p时,将s 或p插入T,在T中寻找s或p的上、下相邻线段,设为s1,s2.连接s R或p与E的顶点(NI成立).修改E和F.转步4或步5.

步6 当l移出点线集时,输出F′,F′=F∪{s1,s2,…,s n}.终止.

说明:“转步3或步4”意为:满足步3条件则转步3,满足步4条件则转步4.其它类似情况含义相同.

算法中,修改E和F时采用四边形取较短对角线的方法,可以使三角剖分的各三角形边长之和(1条边的长度只计数1次)优化.

3 正确性与复杂性

平面扫描算法将m个点和n条线段端点按其x,y坐标排序.扫描线l采用由右向左的方向进行移动,遇到事件点(点或线段端点)便停止移动.在事件点s R或p处,算法在找到线段或点p的上、下相邻线段s1,s2,并且判断s R x

2所界定的区域均被三角剖分.由于事件点是由点p i和线段端点(i=l,m)构成的,所以算法无一遗漏地划分相关区域,即点线集凸壳所围区域.并且由算法的执行过程,可知每个三角形的顶点都是点线集中的点或线段端点,而三角形的边不是点线集中线段就是点线集中线段端点的连线,或者端点与点、点与点的连线.因此算法正确地产生了所需要的三角剖分.

定理 设点线集中点与线段端点数之和为N,则算法的时间复杂性是O(N lb N).

证明 算法的步1耗费O(N lb N)时间进行排序;步2用常数时间;步3中扫描线停于右端点或点p i时,利用线段端点及点的x,y坐标已排序的结果和二叉树搜索技术,至多在O(lb N)时间内可以找到上、下相邻线段s1与s2.为了分析算法其它步骤的

131

 第2期周培德:平面点线集三角剖分的扫描算法

时间耗费,假设点和线段分布在k 层上(k

且∑k

i =1

m i =N ,1≤m i ≤n -1.如图3所示

.

图3 复杂性证明示意图

Fig .3 Illu strative diagram for a proof of complexity

算法处理第k 层的时间耗费为(m k -1)+m k lb N .

算法处理第k -1层的时间耗费至多为m k +m k -1lb N +2(m k -1-1).

算法处理第k -2层的时间耗费至多为m k -1+m k -2lb N +2(m k -2-1).

算法处理第1层的时间耗费至多为m 2+m 1lb N +2(m 1-1).

上述表达式求和得到

2m k +m k -1+…+m 2+(m k +m k -1+…+m 1)lb N +

2[(m k -1+m k -2+…+m 1)-k ]=N -m 1+N lb N +2[N -m k -k ]≤

3N +N lb N =O (N lb N ).

算法的时间复杂性为O (N lb N )+O (N lb N )=O (N lb N ).

图4 例1Fig.4 Example 1

 

4 应用举例

图4中,n =6,m =4,即点线集由6条线段和4个点组成.应用作者给出的算法得到点线集的三角剖分,其中粗线是给定的线段,细线为增加的连线.

图5中,n =6,m =32,即点线集由6条线段和32个点组成,并且6条线段构成一条折线.应用本文中算法得到该点线集的三角剖分,图中粗线是给定的线段,细线为增加的连线.

图5 例2Fig.5 Ex amp le 2

作者利用平面扫描思想设计求解平面散乱点线集三角剖分问题的算法,其优点是时间复杂性低,易于编程,且对大输入数据N 不易出错.本文中提出的算法为平面散乱点线集三角剖分问题的解决提供了一条新的途径.

参考文献:

[1] L o S H.Delaunay t riang ulat ion o f non-co nvex pla nar

do mains [J ].Inter nat ional Jo urnal for N umerical M etho ds in Engineer ing ,1989,28:2695-2707.[2] 闵卫东,唐泽圣.二维任意域内点集的Delaunay 三角

剖分的研究[J].计算机学报,1995,18(5):357-364.M in

W eido ng ,

T ang

Zesheng .

T he

D elav na y

tr iang ulatio n of a po int set w ithin an arbit rar y 2D domain [J].Chinese Jo ur nal of Computers,1995,18(5):357-364.(in Chinese)

[3] 周晓云,刘慎权.实现约束D elaunay 三角剖分的健壮

算法[J].计算机学报,1996,19(8):615-624.Zho u Xiao yun,L iu Shenquan.A r obust alg or ithm for constr ained D elaunay t ria ng ulation [J ].Chinese

Journal o f Co mputer s ,1996,19(8):615-624.(in

Chinese)

[4] 周培德.平面线段集三角剖分的算法[J].计算机工程

与科学,2003,25(1):20-22.

Zhou P eide .A lg or ithms for the tr iangulatio n of plane line-segment stes [J ].

Computer Eng ineer ing &

Science ,2003,25(1):20-22.(in Chinese )

[5] 周培德.计算几何[M ].北京:清华大学出版社,2000.

Zhou P eide .Computatio nal geo metr y [M ].Beijing :T sing hua U niver sity P ress,2000.(in Chinese)[6] 周培德.算法设计与分析[M ].北京:机械工业出版

社,1992.

Zhou Peide .T he desig n and analysis o f alg or ithms

[M ].Beijing :China M achine Pr ess,1992.(in

Chinese )

132

北京理工大学学报第24卷 

扫描线填充算法讲解

扫描线算法(S c a n-L i n e F i l l i n g) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指 定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏和三维CAD软件的渲染等等。 对矢量多边形区域填充,算法核心还是求交。《计算几何与图形学有关的几种常用算法》 一文给出了判断点与多边形关系的算法――扫描交点的奇偶数判断算法,利用此算法可以 判断一个点是否在多边形内,也就是是否需要填充,但是实际工程中使用的填充算法都是 只使用求交的思想,并不直接使用这种求交算法。究其原因,除了算法效率问题之外,还 存在一个光栅图形设备和矢量之间的转换问题。比如某个点位于非常靠近边界的临界位置,用矢量算法判断这个点应该是在多边形内,但是光栅化后,这个点在光栅图形设备上看就 有可能是在多边形外边(矢量点没有大小概念,光栅图形设备的点有大小概念),因此, 适用于矢量图形的填充算法必须适应光栅图形设备。 2.1扫描线算法的基本思想 扫描线填充算法的基本思想是:用水平扫描线从上到下(或从下到上)扫描由多条首尾相 连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列交点。将这些交点按照 x坐标排序,将排序后的点两两成对,作为线段的两个端点,以所填的颜色画水平直线。 多边形被扫描完毕后,颜色填充也就完成了。扫描线填充算法也可以归纳为以下4个步骤:(1)求交,计算扫描线与多边形的交点 (2)交点排序,对第2步得到的交点按照x值从小到大进行排序; (3)颜色填充,对排序后的交点两两组成一个水平线段,以画线段的方式进行颜色填充; (4)是否完成多边形扫描?如果是就结束算法,如果不是就改变扫描线,然后转第1步 继续处理; 整个算法的关键是第1步,需要用尽量少的计算量求出交点,还要考虑交点是线段端点的 特殊情况,最后,交点的步进计算最好是整数,便于光栅设备输出显示。 对于每一条扫描线,如果每次都按照正常的线段求交算法进行计算,则计算量大,而且效 率底下,如图(6)所示: 图(6)多边形与扫描线示意图

不规则三角网的算法设计与实现10页word文档

1 引言 地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已经被普遍广泛采用。数字高程模型即DEM (Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。 由于地理信息系统的普及,DEM作为数字地形模拟的重要成果已经成为国家空间数据基础设施(NSDI)的基本内容之一,并被纳入数字化空间框架(DGDF)进行规模化生产,已经成为独立的标准基础产品[5]。DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。

基于三角形的表面建模可适合所有的数据结构,且三角形在形状和大小方面有很大灵活性,能很容易地融合断裂线,生成线或其他任何数据,因此基于三角形的方法在地形表面建模中得到了越来越多的注意,已经成为表面建模的主要方法之一。VB语言简洁易学,对于学习GIS的学生来说无疑是接受很容易而且较快的一门计算机编程和开发语言,也是大多数学生最熟悉和了解的语言。正是基于对生成不规则三角网算法的研究和满足学GIS的学生对VB语言的喜爱和熟悉的情况下,本文就主要介绍用三角网生长算法生成不规则三角网及其在VB6.0环境下的实现。 2 TIN的算法种类及各算法特点 在介绍构成TIN各种算法之前我们要来了解认识一下一个重要法则——Delaunay三角网法则。通常构建三角网并不考虑地性线(山脊线,山谷线)的骨架作用,但是,由于用等高线数据构建三角网时,由于地形的复杂多样,有的地区存在因地形突变而形成的断裂线等特殊地貌。另外一些地区存在大面积水域等内部不需要构网的区域,因此,在精度要求较高的TIN中,必须考虑以上问题。因此此时应顾及地性线,断裂线,水域线等特殊情况,也就是应构建约束—Delaunay三角网。约束法是基于约束图计算约束D—三角剖分[1,9](简称CDT,即Constrained Delaunay Triangulation)构造算法[8],这种Delaunay三角网满足这样的法则:Delaunay三角网为相互邻接且互不重叠的三角形的集合,每一个三角形的外接圆内不包含其他点。Delaunay三角网由对应Voronoi多边形的点连接而成。Delaunay三角形有三个相邻点连接而成,这三个相邻顶点对应的

Delaunay三角形构网的分治扫描线算法

第36卷 第3期测 绘 学 报 Vol.36,No.3  2007年8月 ACTA GEODAETICA et CARTO GRAPHICA SINICA Aug ,2007 文章编号:100121595(2007)0320358205中图分类号:P208 文献标识码:A Delaunay 三角形构网的分治扫描线算法 芮一康,王结臣 (南京大学地理信息科学系,江苏南京210093) A N e w Study of Compound Algorithm B ased on Sw eepline and Divide 2and 2conquer Algorithms for Constructing Delaunay T riangulation RU I Y i 2kang ,WAN G Jie 2chen (Depart ment of Geographic Inf ormation Science ,N anji ng U niversity ,N anji ng 210093,Chi na ) Abstract :As one of the most important DTM model ,Delaunay triangulation is widely applied in manifold fields.A wide variety of algorithms have been proposed to construct Delaunay triangulation ,such as divide 2and 2conquer ,in 2cremental insertion ,trangulation growth ,and so on.The compound algorithm is also researched to construct Delau 2nay triangulation ,and prevalently it is mainly based on divide 2and 2conquer and incremental insertion algorithms.This paper simply reviews and assesses sweepline and divide 2and 2conquer algorithms ,based on which a new com 2pound algorithm is provided after studying the sweepline algorithm seriously.To start with ,this new compound al 2gorithm divides a set of points into several grid tiles with different dividing methods by divide 2and 2conquer algo 2rithm ,and then constructs subnet in each grid tile by sweepline algorithm.Finally these subnets are recursively merged into a whole Delaunay triangulation with a simplified efficient LOP algorithm.For topological structure is im 2portant to temporal and spatial efficiency of this algorithm ,we only store data about vertex and triangle ,thus edge is impliedly expressed by two adjacent triangles.In order to fit two subnets merging better ,we optimize some data structure of sweepline algorithm.For instance ,frontline and baseline of triangulation are combined to one line ,and four pointers point to where maximum and minimum of x axis and y axis are in this outline.The test shows that this new compound algorithm has better efficiency ,stability and robustness than divide 2and 2conquer and sweepline algo 2rithms.Especially if we find the right dividing method reply to different circumstance ,its superiority is remarkable.K ey w ords :Delaunay triangulation ;compound algorithm ;sweepline algorithm ;divide 2and 2conquer algorithm 摘 要:Delaunay 三角网作为一种主要的DTM 表示法,具有极其广泛的用途。基于分治算法和逐点插入法的合成算法是目前研究较多的用于生成Delaunay 三角网的合成算法。简要介绍和评价扫描线算法和分治算法后,提出一种新的基于这两种算法的合成算法。该方法兼顾空间与时间性能,稳定性较高,分别较扫描线算法和分治算法,运行效率和鲁棒性更优。 收稿日期:2006206221;修回日期:2007202206 基金项目:国家自然科学基金(40401046) 作者简介:芮一康(19832),男,江苏溧阳人,研究生,主要从事地理信息系统理论与应用研究。 关键词:Delaunay 三角网;合成算法;扫描线算法;分治算法 1 引 言 2维平面域内任意离散点集的不规则三角网(TIN 2Triangular Irregular Network )的构建是GIS 数据表达、管理、集成和可视化的一项重要内 容,也是地学分析、计算机视觉、表面目标重构、有限元分析、道路CAD 等领域的一项重要的应用技 术。在所有生成TIN 的方法中,Delaunay 三角网 最优,它尽可能避免了病态三角形的出现,常常被用来生成TIN 。Delaunay 三角网是Voronoi 图的直线对偶图,即是连接所有相邻的Voronoi 多边形的生长中心所形成的三角网。它有以下两条重要性质[1]:空外接圆性质,即由点集所形成的三角网中,每个三角形的外接圆均不包含点集中的

扫描线填充算法

任意封闭多边形的扫描线填充算法类收藏 这个代码不是我写的,但是我肯定这代码是一个牛人写的,放在这里供大家学习和使用啦!感谢原作者! 我在这里做了些改进: 1 去除了绘制多边形的函数,使其成为了一个纯的填充算法模块 2 改进了其成员变量,使其更容易让大多数人所使用 3 改进了填充,使其“看”(代码上)起来更像用扫描线在填充 改进后的扫描线算法类如下: //扫描线填充算法类 class CPFill { public: CPoint *Point; //指向点坐标的指针 int Count; //多边形点的个数 public: CPFill(int,int[],int[]);//构造函数 bool FillPolygon(CDC*);//填充多边形 bool CrossJudge(CPoint,CPoint,CPoint,CPoint,CPoint&);//判断两条线段是否相交 int GetAi(int);//获取下一个点的索引号 int GetBi(int);//获取前一个点的索引号 bool Sort(int*,int);//冒泡排序 ~CPFill();//析构函数 }; //构造函数(模块入口,koradji 注,合理的设计这个地方,就可以完全不用改动其他的地方就可以使用这个类) CPFill::CPFill(){ } //获取前一个点的索引号 int CPFill::GetBi(int i) { return (i==0)? Count-1:i-1; } //获取下一个点的索引号

int CPFill::GetAi(int i) { return (i==Count-1)?0:i+1; } //在指定的pDC设备中,填充多边形 bool CPFill::FillPolygon(CDC* pDC) { //获取多边形中所有坐标点的最大值和最小值,作为扫描线循环的范围 int minX=Point[0].x , minY=Point[0].y; int maxX=Point[0].x , maxY=Point[0].y; for(int i=1;iPoint[i].x) minX=Point[i].x; if(minY>Point[i].y) minY=Point[i].y; if(maxXPointCross.y)&&(Point[Ai].y>PointCross.y)) { //边顶点的y值大于交点的y值,x坐标取两次 xArray.Add(PointCross.x); xArray.Add(PointCross.x); } else { //边顶点的y值在交点的y值之间,即一个顶点的y值大于交点的y值,而另一个小于,相应的x坐标取一次 if((Point[Bi].y-PointCross.y)*(Point[Ai].y-PointCross.y)<0) xArray.Add(PointCross.x);

三角网算法

三角网算法 (2010-11-15 10:54:01) 原作:Paul Bourke / 1989.1 翻译:robter_x 原文出处: https://www.wendangku.net/doc/fb13498425.html,.au/~pbourke/terrain/triangulate/ 这是一个适用于地形模型的三角网算法。 摘要(略) 介绍 有很多技术能够应用于表面插值,也就是说,已知一些采样点高度,求与这些采样点接近的某点的高度。一些常用的方法是邻接插值,表面补丁,二次曲面,多边形插值,样条插值和下面将要描述的丹尼三角网(Delauney Triangulation)。一些插值方法经常应用于经验数据的显示,例如,地形模型中的原始数据来源于调查,气象中心的气象分析数据,或有限元分析筛选出的数据等。 这篇文章讨论的技术不仅适用于地形模型,而且适用于其它方面,这个技术具有下列特点 有一些地方的采样点密度高,而另一些地方的采样点密度低。例如,在地形模型中,一般水边界的内部的采样点呈低密度分布,而在一些较复杂的地方,采样点呈高密度分布。 由于地形表面的不连续,导致采样平面上的采样点较密集。这些可能是自然情况,如,悬岩和河岸,也可能是人工制造的不连续,如围墙。很多平滑方法不能很好的处理这种情况,特别是那些基于多边形的函数将导致表面尖突,摆动和不稳定。 采样点经常沿着等值线分布,这是由于采样点的来源可能是等值线图或者地质调查组的实际勘探。这是导致采样点密度不一致的另一个原因。沿着采样点曲线有较高的采样点密度,而与采样点曲线垂直的路径,除非遇到另一条采样点曲线,否则,没有采样点。 经常需有处理大量的采样点。对一个适用的技术来说,随着采样点数量的增加,处理采样所需的时间应该适度的增加。典型的采样点数量一般是100~100000,对于一个自动化的取样方法来说,通常会有这么大数量的采样点。 获得的采样点一般是逐步增多的。最初获得的采样点被分析,对于感兴趣的地方可能会增加采样密度。很显然,在分析结果上增加一些新的采样点来进一步分析比对所有的采样点重新分析要有利。

三角剖分

Delaunay三角剖分算法 默认分类2009-12-16 11:41:23 阅读33 评论0 字号:大中小订阅 转载:https://www.wendangku.net/doc/fb13498425.html,/renliqq/archive/2008/02/06/1065399.html 1. 三角剖分与Delaunay剖分的定义 如何把一个散点集合剖分成不均匀的三角形网格,这就是散点集的三角剖分问题,散点集的三角剖分,对数值分析以及图形学来说,都是极为重要的一项预处理技术。该问题图示如下: 1.1.三角剖分定义 【定义】三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件: 1.除了端点,平面图中的边不包含点集中的任何点。 2.没有相交边。 3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。 1.2. Delaunay三角剖分的定义 在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。先从Delaunay边说起: 【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。 【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。 1.3.Delaunay三角剖分的准则 要满足Delaunay三角剖分的定义,必须符合两个重要的准则:

delaunay三角网生长准则及算法

Delaunay 三角网是Voronoi(或称thiessen多边形,V 图)图的伴生图形 ◆Delaunay 三角网的定义: 由一系列相连的但不重叠的三角形的集合, 而且这些 三角形的外接圆不包含这个面域的其他任何点。 ◆Voronoi图的定义: Voronoi图把平面分成N 个区,每一个区包括一个点, 该点所在的区域是距离该点最近的点的集合。 ◆Delaunay三角网的特性: ◆不存在四点共圆; ◆每个三角形对应于一个Voronoi图顶点; ◆每个三角形边对应于一个Voronoi图边; ◆每个结点对应于一个Voronoi图区域; ◆Delaunay图的边界是一个凸壳; ◆三角网中三角形的最小角最大。 空外接圆准则最大最小角准则最短距离和准则 在TIN中,过每个三角形的外接圆均不包含点集的其余任何点在TIN中的两相邻三角形形成 的凸四边形中,这两三角形 中的最小内角一定大于交换 凸四边形对角线后所形成的 两三角形的最小内角 一点到基边的两端的距离 和为最小 Delaunay三角剖分的重要的准则

张角最大准则面积比准则对角线准则 一点到基边的张角为最大三角形内切圆面积与三角形 面积或三角形面积与周长平 方之比最小 两三角形组成的凸四边形 的两条对角线之比。这一 准则的比值限定值,须给 定,即当计算值超过限定 值才进行优化 Delaunay三角剖分的重要的准则 不规则三角网(TIN)的建立 ●三角网生长算法就是从一个“源”开始,逐步形成覆盖整个数据区域的三角网。 ●从生长过程角度,三角网生长算法分为收缩生长算法和扩张生长算法两类。 方法说明方法实例 收缩生长算法先形成整个数据域的数据边界(凸壳), 并以此作为源头,逐步缩小以形成整个三 角网 分割合并算法 逐点插入算法 扩张生长算法从一个三角形开始向外层层扩展,形成覆 盖整个区域的三角网 递归生长算法

扫描线填充算法讲解

扫描线算法(Scan-Line F illing) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏 和三维CAD软件的渲染等等。 对矢量多边形区域填充,算法核心还是求交。《计算几何与图形学有关的几种 常用算法》一文给出了判断点与多边形关系的算法――扫描交点的奇偶数判断 算法,利用此算法可以判断一个点是否在多边形内,也就是是否需要填充,但 是实际工程中使用的填充算法都是只使用求交的思想,并不直接使用这种求交 算法。究其原因,除了算法效率问题之外,还存在一个光栅图形设备和矢量之 间的转换问题。比如某个点位于非常靠近边界的临界位置,用矢量算法判断这 个点应该是在多边形内,但是光栅化后,这个点在光栅图形设备上看就有可能 是在多边形外边(矢量点没有大小概念,光栅图形设备的点有大小概念),因此,适用于矢量图形的填充算法必须适应光栅图形设备。 2.1扫描线算法的基本思想 扫描线填充算法的基本思想是:用水平扫描线从上到下(或从下到上)扫描由 多条首尾相连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列 交点。将这些交点按照x坐标排序,将排序后的点两两成对,作为线段的两个 端点,以所填的颜色画水平直线。多边形被扫描完毕后,颜色填充也就完成了。扫描线填充算法也可以归纳为以下4个步骤: (1)求交,计算扫描线与多边形的交点 (2)交点排序,对第2步得到的交点按照x值从小到大进行排序; (3)颜色填充,对排序后的交点两两组成一个水平线段,以画线段的方式进 行颜色填充; (4)是否完成多边形扫描?如果是就结束算法,如果不是就改变扫描线,然 后转第1步继续处理; 整个算法的关键是第1步,需要用尽量少的计算量求出交点,还要考虑交点是 线段端点的特殊情况,最后,交点的步进计算最好是整数,便于光栅设备输出 显示。

delaunay算法简介

三角剖分原理: 很多时候我们获取的信息信号都是很离散的信号,比如大地高程测量时的成果测网,纸质各种参数曲线的数字化数据等等,靠大量增加采样点的方法不现实而且会超乎想象的增加处理的计算量,通过趋势分析插值的方法可以使得数字化的模型更逼近原始模型,但是终归于这些离散数据是要通过一种方式在电脑中成为一种整体数据,不管是2d还是3d。 三角剖分最终是要将离散的数据通过连接成很多三角形来达到面化或体化的目的(四面体其实就是四个三角形)。那么我们是不是可以随便来连三角形呢?当然不行了,咱们连成的面或体要与离散化前的原始模型越接近越好。 怎么样才能使咱们连成的面或体要与离散化前的原始模型越接近越好呢?一般来说每个离散点都有一定的作用范围,那么我们在连三角形是不是就要想到,尽量让每个三角形内的三个点相对来说隔得近一点。 首先有两个原则: 1 产生的三角形不相重叠。(如果重叠,那么其中的一个三角形岂不是多余了) 2 不产生新的顶点。(如果产生新的顶点了,那么这个顶点的值我们可以确认它符合于原始模型吗?),不过这条原则很难完全保证不产生。 然后有两个问题要解决:

1 面化或体化时是否要考虑到边界的问题?也就是是否考虑边界离散点的凹凸判断,如果要考虑的话,所有边界点依次相连就行,如果不用考虑的话,所有凸点边界点依次相连就行。一般来说是要考虑的。 2 面化或体化时是否要考虑到面内或体内空洞的问题?也就是是否考虑内部空白区的判断,如果要考虑的话,内部空白区的边界点要跟问题1同等考虑。 再次我们看一下经典的三角剖分方法: 谈到三角剖分,这个名字你不得不熟悉,这就是经典---Delaunay 三角剖分。 Delaunay三角剖分具有四个特有的性质: (1)保证最邻近的点构成三角形,即三角形的边长之和尽量最小,且每个Delaunay三角形的外接圆不包含面内的其他任何点,称之为Delaunay三角网的空外圆性质。这个特征已经作为创建Delaunay三角网的一项判别标准; (2)它的另一个性质最大最小角性质:在由点集中所能形成的三角网中,Delaunay三角网中三角形的最小内角尽量最大,即三角形尽量接近等边三角形,从这个意义上讲,Delaunay三角网是“最接近于规则化的”的三角网。 (3)Delaunay三角网是唯一的。 (4)三角网的外边界构成了点集的凸多边形“外壳”; 大概的道理我们是懂了,但是给你任意一些点,你采用什么思路

基于delaunay三角剖分的三维地形生成

基于delaunay三角剖分的三维地形生成 1、问题背景 地图是几个世纪以来最重要的空间信息表达的载体“近年来随着高技术 的发展特别是基于计算机平台GIS的发展,地理信息系统得到日益广泛的应用。 地形与人类的生产生活息息相关,在城市规划、路径选取、资源调查与分配、工程勘查与设计、项目选址、环境监测、灾害预测与预报、军事、游戏娱乐等领域有广泛的应用,因此人们一直关心如何真实地表达自然界的地形,以满足人们生活的需要。目前,随着计算机技术的进一步发展,计算能力的不断提高,使用计算机进行地的三维表达成为目前研究的热点,这种地形的表达方式,不但感觉直观、真实性好、而且具有二维电子地图的其它优点,例如分层显示!位置顶点查找等。二维地形生成技术是当今社会的热门技术,正在被越来越多的人所重视和研究。 2、算法描述 Lawson提出了用逐点插入法建立D-三角网的算法思想[11]。Lee和Schachter,Bowyer,Watson,Sloan,Macedonio和Pareschi,Floriani和Puppo,Tsai先后进行了发展和完善。 本次实验算法为delaunay三角剖分的逐点插入法,算法步骤如下: 1、创建一个最大的三角形包含所有离散的数据点,构成初始的三角网。 2、遍历各点(p) (1)、在三角网查找包含p的三角形t。 (2)、若p在三角形内:p与三角形t的三个顶点相连构成三个三角形。加 入三角网中。如下图:

若p 在三角形边上:找出边所对应的另一个三角形的顶点,并与当前的三角形的顶点构成四个顶点,加入三角形网中。如下图: (3)、移除三角形t 。 (4)、用LOP 算法对各个三角形进行优化处理。 3、移除外围三角形。 LOP 算法 在相邻的两个三角形( abd 和bcd) 所组成的四边形中,如果对角线交换所得的两个新三角形ABC 和ABD( 如下图) 比原来的两个三角形更优,则用新的两个三角形替代原来的两个三角形。更优的标准之一是最小角度最大原则: 调整前的二个三角形共六个内角中的最小角和调整后的六个角中的最小角相比较,若前者小于后者则调整,否则不调整; 标准之二是空外接圆性质: 在由点集V 所形成。D-三角网中,其每个三角形的外接圆均不包含点集V 中的其他任意点。结合本文定义的数据结构,本文采取了以相邻三角形作为优化着眼点的处理算法。根据Delaunay 三角网空外接圆性质有以下判断: 当sin( ∠C + ∠D) ≤0, 不进行优化,p

word版本hslogic_Delaunay三角剖分算法应用

本课题的研究方法 三角网格化主要有两种准则:一种称为Delaunay三角剖分,即在生成的三角形网格中,各三角形的最小内角和为最大;另一种是在生成的三角网格中,所有三角形的边长和最小.其中, Delaunay三角剖分是目前研究应用最广的一种剖分方法.本课题的研究方法主要是以Delaunay三角网的两个重要性质(空外接圆性质和最大最小角度性质)以及Delaunay三角网的基本原理为基础,参照传统算法思路,在构建三角网的过程中,改进算法的实现方法,数据结构,以达到提高效率的目的。 Delaunay的重要性质 空外接圆性质:在由点集V生成的Delaunay三角网中,每个三角形的外接圆均不包含该点集的其他任意点。λ 最大最小角度性质:在由点集V生成的Delaunay三角网中,所有三角形中的最小角度是最大的,即在生成的三角形网格中,各三角形的最小内角和为最大。λ唯一性:不论从区域何处开始构网,最终都将得到一致的结果。λ 由于以上特性,决定了Delaunay三角网具有极大的应用价值。Miles证明了Delaunay三角网是“好的”三角网;Lingas进一步论证了“在一般情况下,Delauany三角网是最优的。”同时以上特性也成为建立Delaunay三角网的重要算法依据。 3.3 详细算法描述 算法基于上述的传统构建算法,但仅有两步: 第一步: (1)在离散点集中寻找一纵坐标最小的点A。 (2)以点A为起点,寻找两个点B、D,使得向量AB与横坐标轴夹角最小,向量AD与横坐标轴夹角最大。若点A、B、D共线,将原B点标记为A,寻找点D,使得向量AD与直线AB夹角最大;寻找点C使得向量BC与线段AB夹角最小。否则,若A、B、D不共线,则寻找点C使得向量BC与线段AB夹角最小。这样,所有点都在逆时针旋转的折线DABC的左侧。 (3)上面一步生成的点C、D如果为同一点,则△ABC(或△ABD)即为包含所有不规则点的Delaunay三角形,生成凸包的过程结束跳过一下各步;否

有限元分析中的二维Delaunay三角网格剖分代码实现

有限元分析中的二维Delaunay三角网格剖分代码实现 //二维平面点集的Delaunay三角剖分 #include "stdafx.h" #include #include #include #include using namespace std; #define point_size 600 #define pi 3.1415926 struct point { float x,y; }; struct triangle { point* Pv[3]; float r_of_sqrt; point o_of_tr; }; struct d_t_node { triangle Tnode; d_t_node*Pt_l[3]; int position_in_dt; int zhuangtai_when_new; }; point p1,p2,p3,p4; int n; point p[point_size]; int dt_last=0; point p_in_dtriangle1[point_size+1]; d_t_node Dtriangle[point_size]; point p_in_dtriangle2[point_size+1]; d_t_node *queue_t[point_size]; point p_in_dtriangle3[point_size+1]; int ps_last=0; int queue_t_last=0; point get_spoint_cin(point*p,int n); point get_spoint_rank(point*p,int n);

《计算机图形学》有序边表填充算法

实验报告 一、实验目的 1、掌握有序边表算法填充多边形区域; 2、理解多边形填充算法的意义; 3、增强C语言编程能力。 二、算法原理介绍 根据多边形内部点的连续性知:一条扫描线与多边形的交点中,入点和出点之间所有点都是多边形的内部点。所以,对所有的扫描线填充入点到出点之间所有的点就可填充多边形。 判断扫描线上的点是否在多边形之内,对于一条扫描线,多边形的扫描转换过程可以分为四个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把所有交点按x值递增顺序排序; (3)配对:第一个与第二个,第三个与第四个等等;每对交点代表扫描线与多边形的一个相交区间; (4)着色:把相交区间内的象素置成多边形颜色,把相交区间外的象素置成背景色。 p1,p3,p4,p5属于局部极值点,要把他们两次存入交点表中。如扫描线y=7上的交点中,有交点(2,7,13),按常规方法填充不正确,而要把顶点(7,7)两次存入交点表中(2,7,7,13)。p2,p6为非极值点,则不用如上处理。

为了提高效率,在处理一条扫描线时,仅对与它相交的多边形的边进行求交运算。把与当前扫描线相交的边称为活性边,并把它们按与扫描线交点x坐标递增的顺序存放在一个链表中,称此链表为活性边表(AET)。 对每一条扫描线都建立一个与它相交的多边形的活性边表(AET)。每个AET的一个节点代表一条活性边,它包含三项内容 1.x -当前扫描线与这条边交点的x坐标; 2.Δx -该边与当前扫描线交点到下一条扫描线交点的x增量; 3.ymax -该边最高顶点相交的扫描线号。 每条扫描线的活性边表中的活性边节点按照各活性边与扫描线交点的x值递增排序连接在一起。 当扫描线y移动到下一条扫描线y = y+1时,活性边表需要更新,即删去不与新扫描线相交的多边形边,同时增加与新扫描线相交的多边形边,并根据增量法重新计算扫描线与各边的交点x。 当多边形新边表ET构成后,按下列步骤进行: ①对每一条扫描线i,初始化ET表的表头指针ET[i]; ②将ymax = i的边放入ET[i]中; ③使y =多边形最低的扫描线号; ④初始化活性边表AET为空; ⑤循环,直到AET和ET为空。 ●将新边表ET中对应y值的新边节点插入到AET表。 ●遍历AET表,将两两配对的交点之间填充给定颜色值。 ●遍历AET表,将 ymax= y的边节点从AET表中删除,并将ymax> y的各边节点 的x值递增Δx;并重新排序。 ●y增加1。 三、程序源代码 #include "graphics.h" #define WINDOW_HEIGHT 480 #define NULL 0 #include "alloc.h" #include "stdio.h" #include "dos.h" #include "conio.h" typedef struct tEdge /*typedef是将结构定义成数据类型*/ { int ymax; /* 边所交的最高扫描线号 */

delaunay算法简介.(优选.)

最新文件---- 仅供参考------已改成word文本------ 方便更改 三角剖分原理: 很多时候我们获取的信息信号都是很离散的信号,比如大地高程测量时的成果测网,纸质各种参数曲线的数字化数据等等,靠大量增加采样点的方法不现实而且会超乎想象的增加处理的计算量,通过趋势分析插值的方法可以使得数字化的模型更逼近原始模型,但是终归于这些离散数据是要通过一种方式在电脑中成为一种整体数据,不管是2d还是3d。 三角剖分最终是要将离散的数据通过连接成很多三角形来达到面化或体化的目的(四面体其实就是四个三角形)。那么我们是不是可以随便来连三角形呢?当然不行了,咱们连成的面或体要与离散化前的原始模型越接近越好。 怎么样才能使咱们连成的面或体要与离散化前的原始模型越接近越好呢?一般来说每个离散点都有一定的作用范围,那么我们在连三角形是不是就要想到,尽量让每个三角形内的三个点相对来说隔得近一点。 首先有两个原则: 1 产生的三角形不相重叠。(如果重叠,那么其中的一个三角形岂不是多余了) 2 不产生新的顶点。(如果产生新的顶点了,那么这个顶点的值我们可以确认它符合于原始模型吗?),不过这条原则很难完全保证不产生。

然后有两个问题要解决: 1 面化或体化时是否要考虑到边界的问题?也就是是否考虑边界离散点的凹凸判断,如果要考虑的话,所有边界点依次相连就行,如果不用考虑的话,所有凸点边界点依次相连就行。一般来说是要考虑的。 2 面化或体化时是否要考虑到面内或体内空洞的问题?也就是是否考虑内部空白区的判断,如果要考虑的话,内部空白区的边界点要跟问题1同等考虑。 再次我们看一下经典的三角剖分方法: 谈到三角剖分,这个名字你不得不熟悉,这就是经典---Delaunay 三角剖分。 Delaunay三角剖分具有四个特有的性质: (1)保证最邻近的点构成三角形,即三角形的边长之和尽量最小,且每个Delaunay三角形的外接圆不包含面内的其他任何点,称之为Delaunay三角网的空外圆性质。这个特征已经作为创建Delaunay三角网的一项判别标准; (2)它的另一个性质最大最小角性质:在由点集中所能形成的三角网中,Delaunay三角网中三角形的最小内角尽量最大,即三角形尽量接近等边三角形,从这个意义上讲,Delaunay三角网是“最接近于规则化的”的三角网。 (3)Delaunay三角网是唯一的。 (4)三角网的外边界构成了点集的凸多边形“外壳”;

基于MATLAB实现二维delaunay三角剖分

34 基于MATLAB 实现二维delaunay 三角剖分 刘锋涛 凡友华 (哈尔滨工业大学深圳研究生院 深圳 518055) 【摘要】在已知凸多边形的顶点坐标的前提情况下,利用MATLAB 中的meshgrid 函数产生多边 形附近矩形区域内的网格点的坐标,然后再利用inpolygon 函数判断哪些点位于多边形内和哪 些点位于多边形的边界上。在此基础上利用delaunay 函数来完成delaunay 三角剖分。 【关键词】delaunay 三角剖分;MATLAB 网格划分是有限元分析前处理中的关键步骤,网格划分的密度以及质量对有限元计算的精度、效率以及收敛性有着重要的影响作用。自20世纪70年代开始,关于有限元网格生成方法的研究已经取得了许多重要成果,提出许多有效的算法。Ho-Le 对网格生成方法进行了系统的分类[1]。许多学者也对网格生成的方法进行了综述,如我国的学者胡恩球等[2]、关振群等[3]。 Delaunay 三角剖分(简称DT)是目前最流行的通用的全自动网格生成方法之一。DT 有两个重要特性:最大-最小角特性和空外接圆特性。DT 的最大-最小角特性使它在二维情况下自动地避免了生成小内角的长薄单元。因此特别适用于有限元网格生成。大体上可将DT 算法分为三大类:分治算法,逐点插入法和三角网生长法。经典DT 技术已经相当成熟,近年来的研究重点是约束DT 的边界恢复算法,以及如何克服算法退化现象所产生的薄元(sliver element)问题[3]。 然而,实现DT 有限元网格生成,对于非计算机图形学专业的工程师来说还是很复杂的。在处理一些对有限元网格划分质量不过的问题时,如极限分析的有限元方法,可以采用一些更为简单的方法来实现。在Matlab 计算软件中,已有一个成熟的函数delaunay 可以实现对一系列点的DT 划分。因此,本文基于Matlab 的delaunay 等一些函数来完成一个凸多边形的DT 网格划分。 1 MATLAB 中的函数 1.1 delaunay 函数 delaunay 函数可以按照DT 网格划分的要求将一个点集中的点划归某一个有限网格所有。它在Matlab 中的用法如下: =delaunay(,) or, =delaunay(,,)TRI x y TRI x y options 其输入为点集中所有点的横、纵坐标向量x 和y ,返回值为一个3m ×的矩阵,矩阵中每一行表示DT 网格中一个三角形网格的三个顶点。 1.2 meshgird 函数 为了在任意凸多边形内产生一个点集,可以利用Matlab 中的meshgrid 命令。其用法如下: [,] = meshgrid(,)X Y x y

实验六 扫描线填充算法

实验六扫描线填充算法 一、实验目的 编写多边形的扫描线填充算法程序,加深对扫描线算法的理解,验证算法的正确性。 二、实验任务(2学时) 编写多边形的扫描线填充算法程序,利用数组实现AET,考虑与链表实现程序的不同。 三、实验内容 1、算法 对一条扫描线的填充一般分为以下4个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把扫描线上所有交点按递增顺序进行排序; (3)配对:将第一个交点与第二个交点,第三个交点与第四个交点等等进行配对,每对交点代表扫描线与多边形的一个相交区间。 (4)着色:把区间内的像素置为填充色。 2、成员函数的关系 主程序名为fill_area(count, x, y),其中参数x, y是两个一维数组,存放多边形顶点(共c ount个)的x和y坐标。它调用8个子程序,彼此之间的调用关系图1所示为: 图1 fill_area的程序结构 3、算法的程序设计

步骤1:创建“S_L_Fill”工程文件; 步骤2:创建类class:“EACH_ENTRY”。 在工作区“S_L_Fill classes”单击右键-→“new class”-→选择类型“Generic Class”名称为“EACH_ENTRY”,添加成员变量(添加至“class EACH_ENTRY { public:”之内):int y_top; float x_int; int delta_y; float x_change_per_scan; 步骤3:包含头文件,同时初始化定义多边形顶点数目。在“class CS_L_FillView : public Cview……”之前添加代码“#include EACH_ENTRY.h”及“#define MAX_POINT 9”。 #define MAX_POINT 9 #include "EACH_ENTRY.h" 步骤4:在类“class CS_L_FillView”中添加成员变量(鼠标双击工作区“CS_L_FillView”,代码添加至“class CS_L_FillView : public Cview {protected: ……public:之后”):EACH_ENTRY sides[MAX_POINT]; int x[MAX_POINT],y[MAX_POINT]; int side_count,first_s,last_s,scan,bottomscan,x_int_count; 步骤5:利用构造函数“CS_L_FillView::CS_L_FillView()”初始化顶点坐标(鼠标双击工作区“CS_L_FillView”,代码添加至“CS_L_FillView()之内”): x[0]=200;y[0]=100; x[1]=240;y[1]=160; x[2]=220;y[2]=340; x[3]=330;y[3]=100; x[4]=400;y[4]=180; x[5]=300;y[5]=400; x[6]=170;y[6]=380; x[7]=120;y[7]=440; x[8]=100;y[8]=220; 步骤6:在“class CS_L_FillView”下添加实现不同功能的成员函数。在工作区“CS_L_FillView”上单击鼠标右键,选择“Add Member Function”,分别完成以下成员函数的添加: (1)void put_in_sides_list(int entry,int x1,int y1,int x2,int y2,int next_y) 函数说明:put_in_sides_list子程序的主要功能是将一条边存入活性边表之内。操作步骤是:对该边判别是否左顶点或右顶点,如果将入边之终点删去,按照y_top的大小在活性边表中找到该点的合适位置,y值较大者,排在活性边表的靠前位置。 void put_in_sides_list(int entry,int x1,int y1,int x2,int y2,int next_y)// entry为剔除水平边之后的第entry条边,x1, y1,为起点,x2, y2为终点,next_y为终点相邻的下一个顶点y坐标{ int maxy; float x2_temp,x_change_temp; x_change_temp=(float)(x2-x1)/(float)(y2-y1);//计算1/k x2_temp=float(x2); if((y2>y1)&&(y2