文档库 最新最全的文档下载
当前位置:文档库 › 传热学圆柱圆球导热微分方程的推导

传热学圆柱圆球导热微分方程的推导

传热学圆柱圆球导热微分方程的推导
传热学圆柱圆球导热微分方程的推导

疑问

解答:面积是关于r的表达式,而我们要求的是某一特定面积内热量关于r的变化率,而不是单位面积圆柱:

r方向:

经r 表面导入热量:

r r q rd dzd φτ

Φ=

对于r 与r+dr 表面,有关系式:

()

()r d r r

r q r d d q r r

d rd d zd d rd d zd d r

r

r

r

λ

φτφτ+??-Φ-Φ??Φ?=

=

=

???

r 方向净热量

:

()

r r dr t

r r d d dr drd dzd r

r

λφτ

+???Φ?∴Φ-Φ=-

=

??

φ经方向:

φ经方向导入热量:

=q drdzd φφτ

Φ

1()((13)d d d t q drdzd P drdzd d r φφφ

φτλ

τ

φ

φ

φ

φ

φ

+Φ-Φ?Φ???=

=

=

-????

书上有公式)11=

()()d t t d d rdrdzd d drdzd d r r φφφφλφτλφτ

φφ

φ

φ

+∴????Φ-Φ=

????方向净热量:

经Z 方向:

经Z 方向导入热量:

z z d q rd drd φτ

Φ= ()

()()z dz z

z z z dz d d q rd drd dz

z

z

t t d d r d drdzd rd drdzd z z

z z

z φτλ

φτλφτ

++Φ-Φ?Φ

?=

=

??????Φ-Φ=

=

????∴

方向的净热量为:

对于整个微元:

2

1()+

()()11()+

()()

cm t t q t t c

rd drdzd r drd dzd drdzd d rd drdzd r

r r z

z

t q t t c

r r r

r

r z

z

τρφτλ

φτλ

φτλ

φτ

τ

φ

φ

ρλ

λ

λ

τ

φ

φ

?????????=

+

????????

???????=

+

???????()

圆柱导热微分方程:

圆球:

r 方向:

2

sin s r d d θ?θ=

沿r 方向导入的热量为:

2

sin r r d q r d d d θ?θτΦ=

2

2

(-(sin )()sin r dr r

r r dr r r r dr d d d r dr

r r t t d d dr r d d d dr r

drd d d r

r

r r r

λθθ?τ

λθθ?τ

Φ+ΦΦ+Φ+-?Φ=

?∴?Φ????Φ-=-

=-=

?????

为微元方向导出热量)

经方向导入与导出净热量为:

?在方向上:

S rd dr

θ=

d q rd drd ??θτΦ=

(13)

11=-=--))sin sin P d d d d q d t t

d d d rd drd d d drd d r ???

?????

?

??λ

θτ

θτ?

?

?

θ

?

?

θ?

+Φ+Φ-Φ?=

??Φ???

?Φ-Φ=

?????

沿方向的净导热量为:((

θ在方向:

sin d q r d drd θθθ?τΦ=

1(sin )

=-(sin )(sin )d d d d t r d drd d r

t t d d d drd d d d drd θθθ

θθθθλ

θ?τ

θ

θ

θ

θ

θλθ?τ

θλθ

θ?τ

θ

θθθ

++Φ-Φ?Φ??=

=

-???∴????Φ-Φ-=

????

沿方向的净热量为:

对于整个微元:

2

sin r dv S dr r d d dr

θ?θ==

2

2

2

2

2

22

1sin ()sin )(sin )sin 111())(sin )

sin

sin t t t

t c

r

d d d rd r

d rd d d d d rd d d d d rd r

r

t t t t c

r

r

r

r

r r

ρθ?θτλθθ?τλ

θτ?λθ

θ?τ

τ

?

θ?

θ

θ

ρλλ

λθ

τ

θ?

?

θθ

θ

????

???=

+

+

????????

????

???=

+

+

???????((

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

导热微分方程的推导_by Jacob

导热微分方程的推导 Jacob 〇.傅立叶定律 ??? ? ????+??+??-=?-=k j i z T y T x T gradT q λλ 其中,i ,j ,k 分别为x ,y ,z 坐标轴上的单位矢量。λ为导热率(单位 K m W ?)。 其含义表示,单位时间内,通过某单位截面上的热流q (单位2m W ),与该处的温度梯度gradT 成正比,但方向相反。 一.导热微分方程的推导依据 1.依据 根据能量守恒定律与傅立叶定律,建立导热物体中的温度场应满足的数学表达式,即导热微分方程; A E Q +?= Q ,物体在单位时间内获得的热量; E ?,物体在单位时间内内能的增加; A ,物体对外界所做的功。 对于固体来说,温度改变导致体积变化对环境所做的功A 可忽略不计,上式变 为: E Q ?= 2.一般性假设 (1) 所研究的物体是各向同性的连续介质; (2) 热导率、比热容和密度均为已知; (3) 物体内具有内热源,强度V q (单位3 m W ),表示单位体积、单位时间内放出的热量

二.直角坐标系下导热微分方程的推导 考察dt 时间内微元体中: [导入与导出净热量] + [内热源发热量] = [热力学能的增加] 1. 导入与导出微元体的净热量 (1)dt 时间内、沿x 轴方向、经垂直于x 轴 的热量导入表面导入的热量: dydzdt q dQ x x ?= (单位J ) 同理,dt 时间内、沿x 轴方向、经垂直于x 轴 的热量导出表面导出的热量: dydzdt q dQ dx x dx x ++= (单位J ) x q ,dx x q +分别为热量导入面和导出面上的热流密度,单位 2 m W 。 请注意,事实上这里有: dx x q q q x dx x x ??- =-+,所以导入与导出的热量差为: dydzdt dx x q dQ dQ x dx x x ???- =-+ (单位J ) 同理: (2)dt 时间内、沿y 轴方向、经垂直于y 轴 的两表面导入导出的热量差: dxdzdt dy y q dQ dQ y dy y y ???- =-+ (单位J )

高等传热学知识重点(含答案)2019

高等传热学知识重点 1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。 Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度) 2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布: 电子的统计分布:Fermi-Dirac(费米-狄拉克)分布: 声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布; 高温下,FD,BE均化为MB;

4.什么是光学声子和声学声子,其波矢或频谱分布各有特性? 答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量; 光学声子:与光子相互振动,发生散射,故称光学声子; 声学声子:类似机械波传动,故称声学声子; 5.影响声子和电子导热的散射效应有哪些? 答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因): ①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的; ②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散 射、Mie散射,这与光子非常相似; ③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、 吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型: Einstein(爱因斯坦)模型: 7.分子动力学理论中,L-J势能函数的表达式及其意义。 答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

高等传热学部分答案.

7-4,常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 12121 Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程

22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t 引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量1Re ()y y x x ηδ= == 有 11()(()22x x x ηη ηηη?Θ?Θ?''==Θ-=-Θ??? ()y y ηηη?Θ?Θ?'==???;22()U y x ηυ∞ ?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内 速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2d f d η''Θ'=-'Θ,求解可得 12 12 ()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

高等传热学作业要点

1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: →→→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθd r rd t T k q r r sin ???-= ?θθ θθd r dr T r k q sin ???-= (1-3) θ? θ? ?rd dr T r k q ???- =sin 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6)

2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组 ????? ??? ?? ?=+??==??======??+??00 000212222θθ λθθθδθθθ θh y L y y y x x y x (2-1) 解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:

高等传热学作业修订版

高等传热学作业修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ? θ? θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各 向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2222222sin )(sin sin )( (1-6)

10高等传热学标准答案

2010高等传热学标准答案 合肥工业大学机械与汽车工程学院研究生考试试卷课程名称高等传热学考试日期2011-12-30姓名年级班级学号得分--------------------------------------------------------------------------------------------------------------------------------------------------------共 4 页第 1 页本试卷共5题,每题20分一、厚度为50mm的无限大平壁在稳态时壁内温度分布为t=100-10000x2,平壁材料的导热系数为40W/(),试计算:壁内单位体积内热源生成热;平壁中心面、两外表面的热流密度及这三个热流密度与内热源生成热之间的关系。2?d2t?d????t??40??2?104?8?105W/m3 ?0求得?解:根据2??dxdx2??(2)q???dt??40??2?104x?8?105

x dx??装订线平壁中心面:x=0,q=0;中心面是对称面;左外表面:x=-25mm,q=-2×104W/m2 右外表面:x=25mm, q=2×104W/m2 2d????t,所以q???dt???dx???x 因为:?2?dxdx0x二、用热电偶测量气流的温度,热电偶结点看成圆球,若气流和热电偶结点间的对流表面换热系数h=400W/m2K,定压比热容cp=400J/(),密度ρ=8500kg/m3 (1) 若时间常数为1s,求热电偶结点的直径; (2) 若将初始温度为25℃,时间常数为1s的热电偶放入200℃的气流中,热电偶结点温度达到199℃需要多少时间? (3) 若环境温度为25℃的大空间,热电偶结点的发射率为,忽略热电偶的导热损失,热电偶测得的气流温度为195℃,求气流的实际温度。解:时间常数:4?cpV?cpR3?c????1hA3hh?4?R23h?c3?4 00?1R???? ?cp8500?400?cp?R3D?2 R???hA???exp???可得???0?cVp??????cpVhAln?8500?400?? 200??ln? ?03?40025?200 考虑到辐射影

高等传热学考试范围(答案)

1.强迫流动换热如何受热物性影响? 答:强迫对流换热与Re和Pr有关;加热与对流的粘性系数发生变化。 2.强化传热是否意味着增加换热量?工程上强化传热的收益和代价通常是指什么? 答:不一定,强化传热是指在一定条件(如一定的温差、体积、重量或泵功等)下增加所传递的热量。工程上的收益是减小换热器的体积节省材料和重量;提高现有换热器的换热量;减少换热器的阻力,以降低换热器的动力消耗等。代价是耗电,并因增大流速而耗功。 3.传热学和热力学中的热平衡概念有何区别? 答:工程热力学是温度相同时,达到热平衡,而传热学微元体获得的能量等于内热源和进出微元体热量之和,内热源散热是有温差的。 4.表面辐射和气体辐射各有什么特点? 为什么对辐射板供冷房间,无需考虑气体辐射的影响,而发动机缸内传 热气体辐射却成了主角? 答:表面辐射具有方向性和选择性。气体辐射的特点:1.气体的辐射和吸收具有明显的选择性。2. 气体的辐射和吸收在整个气体容器中进行,强度逐渐减弱。空气,氢,氧,氮等分子结构称的双原子分子,并无发射和吸收辐射能的能力,可认为是热辐射的透明体。但是二氧化碳,水蒸气,二氧化硫,氯氟烃和含氯氟烃的三原子、多原子以及不对称的双原子气体(一氧化碳)却具有相当大的辐射本领。房间是自然对流,气体主要是空气。由于燃油,燃煤及然气的燃烧产物中通常包含有一定浓度的二氧化碳和水蒸气,所以发动机缸内要考虑。 5.有人在学完传热学后认为,换热量和热流密度两个概念实质内容并无差别,你的观点是? 答:有差别。热流密度是指通过单位面积的热流量。而换热量跟面积有关。 6.管内层流换热强化和湍流换热强化有何实质性差异?为什么? 答:层流边界层是强化管内中间近90%的部分,层流入口段的热边界层比较薄,局部表面传热系数比充分发展段高,且沿着主流方向逐渐降低。如果边界层出现湍流,则因湍流的扰动与混合作用又会使局部表面传热系数有所提高,再逐渐向于一个定值。而湍流是因为其推动力与梯度变化和温差有关,减薄粘性底层,所以强化壁面。 7.以强迫对流换热和自然对流换热为例,试谈谈你对传热、流动形态、结构三者之间的关联 答:对流换热按流体流动原因分为强制对流换热和自然对流换热。一般地说,强制对流的流速较自然对流高,因而对流换热系数也高。例如空气自然对流换热系数约为5~25 W/(m2?℃),强制对流换热的结构影响了流体的流态、流速分布和温度分布,从而影响了对流换热的效果。流体在管内强制流动与管外强制流动,由于换热表面不同,流体流动产生的边界层也不同,其换热规律和对流换热系数也不相同。在自然对流中,流体的流动与换热表面之间的相对位置,对对流换热的影响较大,平板表面加热空气自然对流时,热面朝上气流扰动比较激烈,换热强度大;热面朝下时流动比较平静,换热强度较小。 8.我们经常用Q=hA·Δt.计算强迫对流换热、自然对流换热、沸腾和凝结换热,试问在各种情况下换热系数与 温差的关联? 答:强迫对流的换热系数与Re,Pr有关但与温差无关,自然对流与Gr的0.25次方有关联,即与温差有关,凝结换热换热系数是温差的-0.25次方。 9.试简述基尔霍夫定理的基本思想 答:一、基尔霍夫第一定律:汇于节点的各支路电流的代数和等于零,用公式表示为: ∑I=0 又被称作基尔霍夫电流定律(KCL)。 二、基尔霍夫第二定律:沿任意回路环绕一周回到出发点,电动势的代数和等于回路各支路电阻(包括电 源的内阻在内)和支路电流的乘积(即电压的代数和)。用公式表示为: ∑E=∑RI 又被称作基尔霍夫电压定律(KVL)。 10.简述沸腾换热与汽泡动力学、汽化核心、过热度这些概念的关联 答:沸腾是指在液体内部以产生气泡的形式进行的气化过程,就流体运动的动力而言,沸腾过程又有大容器沸

2011年《高等传热学》结课作业

2011年《高等传热学》结课作业 ———放假前提交作业 一、【15分】无内热源物体内的稳态导热,材料为常物性。请选择合适的坐标系,写出其导 热微分方程及边界条件。 (1) 巨型薄板(0≤x≤L1,0≤y≤L2,0≤z≤L3),L3< 0时,x = 0处的边界维持0℃,试求温度场的表达式。 四、【15分】转速为500r/min的二冲程柴油机,气缸壁为铸铁,热扩散率为1.65×10-5m2/s, 导热系数为33W/(m.℃),气缸壁内侧的综合表面传热系数为100 W/(m2.℃),气缸内燃气温度在20℃至2000℃间波动,假定这种波动按简谐规律进行。气缸套壁厚5mm,缸套由水冷却,水温70℃,表面传热系数为4000 W/(m2.℃)。试求气缸套壁内的温度分布及单位面积散热量。 五、【10分】两块相同材料的半无限大物体,温度分别为t i1和t i2,τ= 0时,两物体界面紧 密接触,试求τ> 0时,两物体内的温度场t(x,τ)。 六、【10分】水在一内径为0.2m的圆管内流动,平均流速为3m/s。假定流动已充分发展, 水的密度为998.2kg/m3,运动粘度为1.006×10-6m2/s。试确定平均阻力系数C f、每米管长的压降及摩擦系数f。 七、【10分】飞机的油冷器装在机翼的夹层中,利用空气掠过进行冷却。机翼表面可理性化 为一平壁。71kPa、-4℃的空气以61m/s的速度掠过。油冷器位于离导边0.9m处,假定其壁面为定壁温,温度为54℃。油冷器的壁面尺寸为60×60cm,问散热量是多少?八、【20分】一无限长的正方柱体,两相邻面维持200℃,另两相邻面维持100℃,试用蒙 特卡洛法编程计算正方柱体中心线的温度。给出源程序,并测试随机试验次数、网格剖分粗细对计算结果的影响。

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

高等传热学课件对流换热-第6章-1

第六章 高速流动对流换热
在前面几章介绍的强制对流换热中, 我们假设速度和速度梯度充 分小,以致动能和粘性耗散的影响可以忽略不计。现在考虑高速和粘 性耗散的影响。我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念
高速对流主要涉及以下两类现象: z 从机械能向热能的转换,导致流体中的温度发生变化; z 由于温度变化使流体的物性发生变化。 空气一类气体若具有极高的速度,将会导致超高温离解、质量浓 度梯度,并因此发生质量扩散,使问题变得更加复杂。这里仅限于关 注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温

度超过 2000K 或者马赫数高于 5 的情况。对液体,如果普朗特数足 够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。 我们的讨论仅限于普朗特数接近于 1 的气体。 有关高速对流的研究大都涉及对机械能转换和流体物性随温度 变化两个因素的总体考虑,很难看到它们单独的影响。这里,我们暂 不考虑变物性的影响,首先讨论能量转换问题。 能量转换过程能可逆地发生,也能不可逆地发生。比如,在边界 层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增 大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速) 则产生可逆的,或者非常接近可逆的能量转换。高速边界层滞止点的 比较能很好地说明这两种情况的明显区别。 z 在滞止点(图 6-1)处速度降低,边界层以外的压力和温度提高。 对于亚音速流动, 该过程几乎是等熵的, 流体粘度不起什么作用。 无论减速可逆还是不可

逆,滞止区边界层以外的流体 温度等于滞止温度, 也就是说, 流体温升来自于绝热减速:
? T∞
V2 = T∞ + 2c
(6.1.1)
V
若不考虑变物性影响,并
* 用 T∞ 代替 T∞ , 低速滞止点的解
也能适用于高速滞止点问题:
? qw = h (Tw ? T∞ )
图 6-1 滞止点的流动
(6.1.2)
z 但高速边界层问题有所不同。 如果自由速度很高, 边界层以内速 度梯度很大, 边界层内因粘性切应力产生粘性耗散。 如果物体是 绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理, 从靠近表面的向边界层外传递出去, 如图 6-2 所示。 稳态条件下, 在粘性耗散和热传导之间存在一种平衡状态, 导致图 6-2 所示的 温度分布。此条件下的表面温度就等于绝热壁面温度 Taw 。

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。

在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系: 圆柱坐标系: 球坐标系: 其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维)

高等传热学作业

高等传热学作业Revised on November 25, 2020

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6) 第二章 2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组

第一章 热理论和导热微分方程

第一章 导热理论和导热微分方程 相互接触的物体各部分之间依靠分子、原子和自由电子等微观粒子的热运动而传递热量的过程称为导热。在纯导热过程中物体各部分之间没有宏观运动。 与固体物理的理论研究方法不同,传热学研究导热问题时不是对导热过程的微观机理作深入的分析,而是从宏观的、现象的角度出发,以实验中总结出来的基本定律为基础进行数学的推导,以得到如温度分布、温度-时间响应和热流密度等有用的结果。这种处理方法的物理概念简单明了,但所要求的数学知识和技能仍是复杂和困难的。本书在材料的选取上,注意在介绍有重要应用价值的结果的同时,也给予求解导热问题的典型数学方法以足够的重视,以培养和发展读者独立解决问题的能力。 1-1 导热基本定律 1-1-1 温度场 由于传热学以宏观的、现象的方式来研究导热问题,团此必须引入连续介质假定,以便用连续函数来描述温度分布。温度场就是在一定的时间和空间域上的温度分布。它可以表示为空间坐标和时间的函数。由于温度是标量,温度场是标量场。常用的空间坐标系有三种:直角坐标系、柱坐标系和球坐标系。在直角坐标系中,温度场可以表示为 (,,,)t f x y z τ= (1-1-1) 式中:t 表示温度;x 、y 、z 为三个空间坐标;τ表示时间。 若温度场各点的温度均不随时间变化,即0t τ??=,则称该温度场为稳态温度场,否则为非稳态温度场。若温度场只是一个空间坐标的函数,则称为一维温度场;若温度场是两个或三个空间坐标的函数,则称为二维或三维温度场。 1-1-2 等温面与温度梯度 物体内温度相同的点的集合所构成的面叫做等温面。对应不同温度值的等温面构成等温面族。等温面与任一截面的交线形成等温线。由于等温线具有形象直观的优点,二维温度场常用等温线来表示温度分布。 由于在同一时刻物体的一个点上只能有一个温度值,所以不同的等温面不可能相交。它们或者在域内形成封闭曲线,或者终止于物体的边界。 如图1-l 所示,在物体内某一点P 处,沿空间某一方向l 的温度的变化率 图1-l 等温线和温度梯度

高等传热学答案参考

7.4 常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 1212Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程 22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t

引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量1Re ()y y x x ηδ= == 有 11()(()22x x x ηηηηη?Θ?Θ?''==Θ-=-Θ??? ()y y ηηη?Θ?Θ?'==???;22()U y x ηυ∞ ?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2d f d η''Θ'=-'Θ,求解可得 12 12 ()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努赛尔特数满足1 0.422 0.57Re Pr x Nu =? 证明:对于题中所给情况,能量方程可表示为 22u v x y y θθθα???+=??? 其中,,,()u v y x ψψψθθηθ??==-===??

高等传热学

高等传热学问题及答案 1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类? 2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么? 3. 什么是形函数?形函数的两个最基本特征是什么? 4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。 5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么? 第一题: (1)热传导 传热传导模式是因为从一个分子到另一个分子的能量交换,没有分子的实际运动,如果自由电子存在,也可能因为自由电子的运动。因此,这种形式的热输送在很大程度上取决于介质的性质,如果存在温度差,热传导发生在固体,液体和气体。 书上补充: 当两个物体有温差,或者物体内部有温度差时,在物体各部分之间不发生相对位移的情况下,物体微粒(分子,原子或自由电子)的热运动传递了热量。 (2)热对流 ()a w T T h q -=(牛顿冷却定律) 存在于液体和气体中的分子具有运动的自由,它们随身携带的能量(热量),从热区域移动到冷区域。由于在液体或气体的宏观运动,热量传递从一个地区到另一个地方 ,加上流体内的热传导能量传递,称为对流换热。对流可能是自然对流、强制对流,或混合对流。 百度补充: 对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程。由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。 (3)辐射 4w T q εσ=(斯蒂藩-玻耳兹曼定律)

相关文档
相关文档 最新文档