文档库 最新最全的文档下载
当前位置:文档库 › 无线ECP制动系统在重载货物列车上的应用

无线ECP制动系统在重载货物列车上的应用

无线ECP制动系统在重载货物列车上的应用
无线ECP制动系统在重载货物列车上的应用

高速列车制动技术综述_彭辉水

高速列车制动技术综述 (1、株洲南车时代电气股份有限公司技术中心,高级工程师,彭辉水,湖南株洲,412001) (2、株洲南车时代电气股份有限公司技术中心,高级工程师,倪大成,湖南株洲,412001) 摘要:本文首先阐述了制动系统与高速列车安全性的关系,然后综述了高速列车的制动方式及其性能,并给出各自在国内外高速列车上的应用情况。同时介绍了高速列车制动力的控制模式,并就各种模式的优缺点进行对比,然后概述了高速列车的防滑再粘着控制技术并给出了其应用实例,最后论述了高速列车制动技术的发展趋势。 关键词:高速列车 制动 控制模式 防滑行再粘着控制 中图分类号:U260.35 文献标志码:A Braking Technology of the High-speed Trains Peng Hui-shui, Ni Da-cheng (Technology Center , Zhuzhou CSR Times Electric Co.,Ltd.,Zhuzhou,Hunan 412001,China) Abstract: This paper firstly presents the strong relationship between the braking system and the security of the high-speed trains, supplies the comparative analysis about the brake modes and the corresponding Braking performance, and reviews their applications in the high-speed trains. Then introduces the control mode of braking force in the high-speed trains and gives out the comparative analysis about their pros and cons. This paper reviews the technologies of Anti-skid re-adhesion control and supplies their application cases. Finally prospects the development trend of the braking technology of the high-speed trains. Keywords: High-speed Trains; Braking; Control Mode; Anti-skid Readhesion Control 高速铁路是新兴产业、战略性产业、带动性产业,是世界轨道交通发展的潮流。我国高速铁路异军突起,迅猛发展,打破了世界高速铁路技术的相对垄断格局,截止2011年1月底,我国高速铁路总里程达8358公里;规划到2012年底,总里程达到13000公里。高速铁路快速发展国人翘首以盼,但其安全性也备受瞩目!高速列车制动技术对于列车安全运行至关重要,在意外情况下,高速列车紧急制动距离越短,高速列车才能越安全,旅客安全系数越高,本文将对当前高速列车制动技术领域的关键技术及其进展进行综合论述。 作者简介:1、彭辉水,男,1979年生,2001年毕业于北方交通大学电气学院,高级工程师.现主要从事机车粘着控制理论研究及应用与高速列车牵引制动系统研究。2、倪大成,男,197年生,2001年毕业于湖南大学电气学院,高级工程师.现主要从事机车整流逆变控制理论研究及应用与高速列车牵引制动系统研究。

浅谈万吨重载货物列车智能驾驶

浅谈万吨重载货物列车智能驾驶 摘要:随着中国经济的不断发展,货物运输需求有了显著的增长,所以积极的 发展货物运输交通便有了突出的现实价值。对我国传统的货物运输进行分析会发现,虽然传统铁道运输的整体运量比较大,但是其在满足需要和成本控制方面依 然不够理想,所以还需要基于现有的技术发展更大规模的货物运输交通。现阶段,万吨重载货物列车已经完成研发并投入了使用,而且为了保障运输安全,列车运 行开发并实施了智能驾驶系统。文章对万吨重载货物列车智能驾驶进行具体的分 析与讨论。旨在为实践工作提供指导和帮助。 关键词:万吨重载货物列车;智能驾驶;策略 交通运输对经济的支持是显而易见的,所以要想加快区域发展,必须要重视 交通的建设。从目前的实践分析来看,随着各地经济的发展和产业规模的壮大, 货物运输的需求在持续性增长,而传统的运输方式,不管是公路还是铁路都存在 着运量小、运费高等问题,该问题的存在影响了区域货物运输,也影响了地区经 济发展。为了满足不断增长的货物运输需要,我国积极的研究万吨重载货物列车 并取得了成功,现阶段,万吨重载货物列车已经开始投入使用并发挥出了突出的 效果。基于实践进行分析会发现,为了使货物运输的安全性等有显著的提升,万 吨重载货物列车开发了智能驾驶系统,该系统的使用进一步提升了火车运输的安 全性和稳定性。 一、万吨重载货物列车和智能驾驶概述 要讨论万吨重载货物列车和列车的智能驾驶,首先需要明确万吨重载货物列 车和智能驾驶两个基本的概念。就万吨重载货物列车而言,其指的是万吨级别的 重载列车。就重载列车而言,其指的是货运量到发集中的运输线路上采用大型专 用货车编组,采用双机或多机牵引开行的一种超长、超重的货物列车,重载列车 车辆载重力大;列车编挂辆数多[1]。我国对万吨重载货物列车的研究从未停歇, 从开始的万吨计划到2014年3万吨重载货物列车的试运行成功,我国在万吨重 载货物列车研究方面的成果显著,而且万吨重载货物列车的成功使用,有效的缓 解了资源运输方面的压力,这于经济发展是重要的支持。 智能驾驶是现阶段驾驶研究中的重要方向,其对于车辆智能化和驾驶简单化 有重要的意义。对智能驾驶的本质进行分析会发现其主要涉及的是注意力吸引和 注意力分散的认知工程学,具体为三部分内容,分别是网络导航、自主驾驶和人 工干预[2]。对智能驾驶进行具体的分析会发现车辆要实现智能驾驶,必须要满足 基本的条件,即满足行车的动力学要求,而且车上的传感器获得相关视听觉信号 和信息的能力必须要突出,同时,车辆需要具备和认知计算控制相应的随动系统。对智能驾驶中的三个环节进行具体分析会发现网络导航主要解决的问题是目的地 导航和车道引导,而自主驾驶强调的是智能控制系统下的车道运行稳定以及交互 驾驶行为,人工干预具体指的是驾驶员在智能系统的提示下做出的对实际道路的 相应反应。 二、影响智能驾驶的因素分析 对万吨重载货物列车的智能驾驶进行具体的分析会发现影响智能驾驶的主要 因素如下。 首先是智能控制系统的建设[3]。在智能驾驶实践中,控制系统是驾驶稳定和 安全的重要依靠,该控制系统能够基于获取的信息进行命令的发布,从而对列车 的运行速度、运行车道调整等进行命令发布,可以说,如果智能控制系统出现了

列车驾驶仿真器及其关键技术_苏虎

0引言 轨道交通在我国国民生活中发挥着至关重要的作用。列车司机作为轨道交通行业的一线岗位,对安全运营起着非常重要的作用。列车司机不但需要精通基本的驾驶技能,还需要懂得如何处理各类突发事件,掌握列车在非正常情况下的处理等高级驾驶技能。2001年,在日本举办的国际铁路列车司机培训研讨会上,国际铁路联盟(UIC)成员一致认为:列车司机及指导员、铁路员工的知识、技能和素质培训教育在轨道交通发展中必须具有最高的优先性。 列车驾驶仿真器通过仿真列车运行性能、列车驾驶环境来建构一个具有高度真实感的虚拟驾驶环境。在这样的环境中,既能够进行驾驶技能的培训,也可对司机进行心理素质的训练。列车驾驶仿真器具有安全、经济、节能、高效等特点。国外经验表明,采用列车驾驶仿真器对司机进行培训可提高培训效率30%~50%[1],可为列车动力学、优化操纵、舒适度评价、安全驾驶行为等领域的研究工作提供实验平台。 20世纪80年代,美、中、澳等国的铁路科研机构开始研制机车模拟装置,这些早期的列车驾驶仿真器主要用于动力学分析等领域。西南交通大学孙翔教授领导的“重载列车动力学”国家“七五”攻关课题组研制了我国第一台列车驾驶仿真器。在大秦线万吨重载列车开行前,利用该仿真器分析了万吨列车的操纵技术,提出了合理的操纵方案,确保了大秦线万吨重载列车的安全开行[2]。随着计算机技术的发展,列车驾驶仿真器中驾驶环境仿真的逼真度得到了很大的提高,其应用也扩展到以列车驾驶培训为主的相关领域。目前,列车驾驶仿真器已成为各国铁路、城市轨道交通部门进行列车司机培训考核和进行各类相关研究的重要工具。 列车驾驶仿真器及其关键技术 苏虎,金炜东 西南交通大学电气工程学院,成都610031 [摘要]列车驾驶仿真器通过列车运行性能仿真、驾驶环境仿真来建构一个具有高度真实感的虚拟驾驶环境。以列车驾驶仿真器为平台,可进行驾驶培训和列车动力学仿真、优化操纵等研究工作。介绍了列车驾驶仿真器的不同构成形式,给出了全功能分布式列车驾驶仿真器的典型结构,并在此基础上进一步讨论了列车驾驶仿真器的关键技术。 [关键字]列车驾驶仿真器;列车动力学;视景仿真;运动系统 [中图分类号]TP391.9[文献标识码]A[文章编号]1000-7857(2007)12-0012-06 TrainDrivingSimulatorandItsKeyTechniques SUHu,JINWeidong SchoolofElectricalEngineering,SouthwestJiaotongUniversity,Chengdu610031,China Abstract:Inatraindrivingsimulator,theperformancesimulationandtheenvironmentsimulationareusedtocreateahighfidelityvirtualdrivingenvironment.Drivingtraining,optimizedoperatingandrelatedresearches(suchasvehicledynamicssimulation)canbecarriedoutonthetraindrivingsimulator.Assortmentoftraindrivingsimulatorsisdiscussed.Atypicalarchitectureofafullmissionsimulatorisintroduced,basedonwhich,keytechniquesofatraindrivingsimulatorarediscussed. KeyWords:traindrivingsimulator;vehicledynamics;scenesimulation;motionsystem CLCNumber:TP391.9DocumentCode:AArticleID:1000-7857(2007)12-0012-06 收稿日期:2007-05-25 作者简介:苏虎,成都市二环路北一段111号3号楼西南交通大学电气工程学院,副研究员,主要从事计算机仿真技术、虚拟现实、列车驾驶仿真器等领域的研究;E-mail:suhu@home.swjtu.edu.cn 金炜东(通讯作者),成都市二环路北一段111号3号楼西南交通大学电气工程学院,教授,主要从事优化与系统仿真、智能信息处理、控制与检测技术等领域的研究;E-mail:wdjin@home.swjtu.edu.cn

重载列车制动中存在的问题及解决措施

毕业论文 论文题目:重载列车制动中存在的问题及解决措施学生姓名: 专业:铁道机车 班级:机车****班 学号: 指导老师: 包头铁道职业技术学院

目录 摘要------------------------------------------------------------------------------------------- (4)关键词-----------------------------------------------------------------------------------------(4)引言--------------------------------------------------------------------------------------------(6)1重载列车制动的现状---------------------------------------------------------------(7)1.1重载列车的发展------------------------------------------------------------------------(7)1.2重载列车制动技术的运用------------------------------------------------------------(7)2初步了解重载列车------------------------------------------------------------------------(7)2.1重载列车的概论-------------------------------------------------------------------------(7)2.2重载列车对生产生活的影响----------------------------------------------------------(7)2.3重载列车存在的不足-------------------------------------------------------------------(8)3初步了解铁路制动技术-------------------------------------------------------------------(8)3.1制动的概论--------------------------------------------------------------------------------(8)3.2制动对铁路的重要性--------------------------------------------------------------------(8)4重载列车制动技术中存在的问题-------------------------------------------------------(8)5重载列车制动技术的改良----------------------------------------------------------------(9)5.1整列式重载列车制动问题的解决方案-----------------------------------------------(9)5.2单元式重载列车制动问题的解决方案-----------------------------------------------(9)5.3组合式重载列车制动问题的解决方案-----------------------------------------------(9)结束语-------------------------------------------------------------------------------------------(10)参考文献----------------------------------------------------------------------------------------(10)

列车制动系统

自动式空气制动系统的组成及其作用 自动式空气制动系统如下图所示: 各部分作用如下: 1.空气压缩机(1)、总风缸(2):原动力系统。空气压缩机:制 造压缩空气;总风缸: 储存压缩空气,供全列车系统使用。 2.给风阀(4):将总风缸的压缩空气调至规定压力,经自动制动阀 (5)充入制动管。 3.自动制动阀(5):操纵部件。通过它向制动管充入压缩空气/将 制动管压缩空气排向大气。 4.制动管(14):贯通全列车的压缩空气导管。向列车中各车辆的制

动装置输送压缩空气。通过自动制动阀(5)控制管内压缩空气压力变化实现操纵各列车制动机。 5.三通阀(8):车辆空气制动装置的主要部件,控制制动机产生不 同作用。和制动管联通,由制动管压力的变化产生作用位置。制动机缓解:制动管连通副风缸,制动缸连通大气。向副风缸充入压缩空气,把制动缸内压缩空气排向大气。制动机制动:制动管通大气,副风缸通制动缸。副风缸内压缩空气充入制动缸,产生制动作用。 6.副风缸(11):缓解储存的压缩空气,为制动时制动缸的动力源。 7.制动缸(10):制动时,把从副风缸送来的压缩空气转变为机械推 力。 8.基础制动装置(17):制动时,将制动缸推力放大若干倍传递到闸 瓦,使闸瓦夹紧车轮产生制动;缓解时,靠闸瓦自重使闸瓦离开车轮实现缓解。 9.闸瓦、车轮和钢轨:实现制动三大要素。制动时,闸瓦压紧转动 的车轮踏面后,闸瓦与车轮间的摩擦力借助钢轨,在与车轮接触点上产生与列车运行方向相反(与钢轨平行)的反作用力,即制动力。(黏着效应) 制动缸压力计算 1空气制动机的工作过程就是利用空气受压缩后体积与压力的自动变化来实现的。

重载列车复习题

重载列车复习题 1 、世界铁路重载运输是从20世纪50年代开始出现并发展起来的。 2 、认真抄写运行揭示,根据担当列车种类、天气等情况,制定运行安全注意事项,并摘录于司机手账。 3 、起动列车前,必须二人及其以上确认行车凭证、发车信号显示正确。 4 、电力机车进整备线,在隔离开关前停车,确认隔离开关在闭合位置后再动车。 5 、我国铁路发展重载运输对既有干线铁路进行配在改造,在繁忙干线上、开行5000t 级整列式重载列车。 6 、我国目前采用的仍是传统的空气制动方式,尚未全面采用ECP技术。 7、机车乘务员必须经过专业培训,并经考试合格后,方准担任乘务作业。 8 、牵引列车起车前应压缩车钩并适当撤砂,压缩年钩的辆数一般不超过牵引辆数的2/3 。 9 、列车运行在上坡道区段以及通过曲线、道岔等处,均有发生空转的可能。 10 、我国铁路新型货年目前正在向23T、25T轴重发展。 11 、重载运输从20世纪60年代中后期开始取得实质性进展,并逐步形成强大的生产力。 12 、机车到达站、段分界点停车,签认出段时分,了解机车股道和径路,按信号显示出段。 13 、机车司机在运行中应依照列车操纵示意图操纵列车,并执行呼唤应答和车机联控制度。 14 、1990~1992年为新建大秦铁路,开行单元式重载列车模式阶段。 15 、检查低矮零件时,做到一腿半屈,一腿稍弓,斜身向着检在部件。 16 、双机重联运行时,重联机车的换向手柄必须和机车运行方向一致。 17 、机车动车前和运行中,必须坚持不间断嘹望和呼唤应答制度,必须按规定鸣示音响信 号。 18 、研制大功率内燃、电力机车以提高华引列车重量,是我国重载机车要发展方向。 19 、雨、雪、霜、露天气易发生空转,发车前应主要检查撒砂机能,并确保砂管畅通。 20 、通过分相绝缘,主断路器断不开时,应降弓过分相。 21 、列车重量的提高是铁路重载运输技术发展总体水平的体现。

城轨车辆空气制动系统

空气制动,又称为机械制动或摩擦制动。城市轨道交通车辆常用的空气制动方式有闸瓦制动和盘形制动。空气制动主要以压缩空气为动力,压缩空气由车辆的供气系统供给。 一空气制动系统的组成 城市轨道交通车辆的空气制动系统由供气系统、基础制动装置(常见的有闸瓦制动系统与盘形制动装置)、防滑装置和制动控制单元组成。 供气系统主要由空气压缩机、空气干燥剂、压力控制装置和管路组成,供气系统除了给车辆制动系统供气外,还向车辆的空气悬架设备,车门控制装置(气动门),气动喇叭,刮水器及车钩操作气动控制设备等需要压缩空气的设备供气。 防滑装置适用于车轮与钢轨黏着不良时,对制动力进行控制的装置。它的作用是:防止车轮即将抱死;避免滑动并最佳地利用粘着力,以获取最短的制动距离。 制动控制单元是空气制动的核心部件,它接受微机制动控制单元(EBCU)的指令,然后再指示制动执行部件动作。其组成部分有:模拟转换阀、紧急阀、称重阀和均匀阀等。这些部件都安装在一块铝合金的气路板上,实现了集成化。这样避免用管道连接而造成容易泄露和占用空间大等问题。 二、空气制动系统的控制方式 空气制动系统按其作用原理的不同,可以分为直通式空气制动机,自动式空气制动机和直通自动式空气制动机。 1.直通式空气制动机 直通式空气制动机的机构如图所示

空气压缩机将压缩空气储入总风缸内,经总风缸管至制动阀。制动阀有缓解位、保压位和制动位3个不同位置。在缓解位时,制动管内的压缩空气经制动阀Ex (Exhaust) 口排向大气;在保压位时,制动阀保持总风缸、制动管和Ex口各不相通;在制动位时,总风缸管压缩空气经制动阀流向制动管。 (1)制动位驾驶员要实施制动时,首先把操纵手柄放在制动位,总风缸的压缩空气经制动阀进入制动管。制动管是一根贯穿整个列车,两端封闭的管路。压缩空气由制动管进入各个车辆的制动缸,压缩空气推动制动缸活塞移动,并通过活塞杆带动基础制动装置,使闸瓦压紧车轮,产生制动作用。制动力的大小,取决于制动缸内压缩空气的压力,由驾驶员操纵手柄在制动位放置时间长短而定。 (2)缓解位要缓解时,驾驶员将操纵手柄置于缓解位,各车辆制动缸内的压缩空气经制动管从制动阀Ex口排入大气。操纵手柄在缓解位放置的时间应足够长,使制动缸内的压缩空气排尽,压力降至为零。此时制动缸活塞借助于制动缸缓解弹簧的复原力,使活塞回到缓解位,闸瓦离开车轮,实现车辆缓解。 (3)保压位制动阀操纵手柄放在保压位时,可保持制动缸内压力不变。当驾驶员将操纵手柄在制动位与保压位之间来回操纵,或在缓解位与保压位之间来回操纵时,制动缸压力能分阶段上升或降下,即实现阶段制动或阶段缓解。 直通式空气制动机的特点如下: 1)制动管增压制动、减压缓解,列车分离时不能自动停车。 2)能实现阶段缓解和阶段制动。 3)制动能力大小靠驾驶员操纵手柄在制动位放置时间的长短决定的,因而控制不太精确。4)制动时全列车制动缸的压缩空气都由总风缸供给;缓解时,各制动缸的压缩空气都需经制动阀排气口排入大气。因此前后车辆制动一致性不好。 自动式空气制动机 自动式空气制动机在直通式空气制动机的基础上增加了三个部件:在总风缸与制动阀之间增加了给气阀;在每节车辆的制动管与制动缸之间增加了三通阀和副风缸。给气阀的作用是限定制动管定压,人为规定制动管压力,即无论总风缸压力多高,给气阀出口的压力总保持在一个设定值。 自动式空气制动机的制动阀同样也有缓解位、保压位和制动3个作用位置,但内部通路与直通式空气制动机的制动阀有所不同。在缓解位时它联通给气阀与制动管的通路;制动位时它使制动管与制动阀上的Ex口相通,制动管压缩空气经它排向大气;保压位时仍保持各路不通。

动车组制动技术综述

动车组制动技术综述 列车制动的一般概念是指对行进中的列车施行减速或使在规定的距离内停车。制动的重要性不仅在于它直接关系到运输安全,还在于它是进一步提高列车运行速度的决定因素。列车速度越高,对制动的要求也就越高。因而,动车组的制动技术成为其高速运行的关键技术之一。 一、动车组制动方式分类 1.按动能消耗方式分: (1)摩擦制动:闸瓦制动、盘形制动、磁轨制动等; (2)动力制动:电阻制动、再生制动、轨道涡流制动、旋转涡流制动等。 2.按制动形成方式分: (1)粘着制动:闸瓦制动、盘形制动、电阻制动、再生制动、旋转涡流制动等; (2)非粘着制动:磁轨制动、轨道涡流制动等; 3.按动力的操作控制方式分:空气制动、电空制动、电磁制动。 二、高速动车组制动系统的基本要求 1.制动能力的要求 制动能力表现为停车制动时对制动距离的控制。在同样的制动装置、操纵方式和线路条件下,其制动距离基本上与列车制动初速度的平方成正比关系,所以随着列车速度的提高,必须相应地改进其制动装置和制动控制方式才能满足缩短制动距离的要求。 通过国外主要国家高速列车制动能力比较得知:国外300km/h高速列车的紧急制动距离均在3000~4000m之间。根据制动粘着利用和热负荷等理论计算的结果,我国动车组在初速300km/h条件下的复合紧急制动距离可保证在3700m

以内。 2.舒适性的要求 从列车动力学的观点出发,旅客的乘坐舒适性包括横向、垂向和纵向三方面的指标,高速动车组纵向运动的特点除起动加速度较快以外,主要是制动作用的时间和减速度远大于普通旅客列车,因此必需有相应措施来控制旅客纵向舒适性的指标,包括对制动平均减速度、最大减速度和纵向冲动的要求,均应高于普通旅客列车。 为满足纵向舒适性的高要求,动车组制动系统必须采用下述关键技术:(1)采用微机控制的电气指令制动系统以实现制动过程的优化控制,并在提高平均减速度的同时尽量减少减速度的变化率; (2)对复合制动的模式进行合理设计,使不同型式的制动力达到较佳的组合作用; (3)减少同编组列车中不同车辆制动力的差别,以缓和车辆之间的纵向动力作用; (4)采用摩擦性能良好的盘型制动装置和强有力的动力制动装置,以提供足够的制动力。 3.安全可靠性 制动系统作用的可靠性是列车行车安全的基本保证。特别是高速运行时制动系统失灵的后果将不堪设想。为此,动车组制动系统的安全可靠性设计涉及有下列四个方面: (1) 制动控制方式设计。动车组一般设有空气制动、微机控制的电空制动和计算机网络三种制动控制方式。在正常运行状况下由计算机网络控制并传递全列车各车辆的制动信息。当该控制系统发生故障时能自动转换为电空制动作用。

重载铁路

世界铁路重载运输技术的最新进展 1. 世界铁路重载运输发展的新水平 1.1 重载列车最高牵引重量的世界记录已达10万吨,最高平均牵引重量达3.9万吨 世界各国重载铁路借助于采用高新技术,促使重载列车牵引重量不断增加。2001年6月21日澳大利亚西部的BHP铁矿集团公司在纽曼山—海德兰重载铁路上创造了重载列车牵引总重99734t的世界纪录。2004年巴西CVRD铁矿集团经营的卡拉齐重载铁路上,开行重载列车的平均牵引重量已达39000t。南非Orex铁矿重载线是窄轨铁路(1067mm轨距),开行重载列车的平均牵引重量为25920t。美国最大的一级铁路公司联合太平洋铁路(UP)经营的铁路里程为54000km,其所有列车的平均牵引重量已达14900t,一般重载列车的牵引重量普遍达到2~3万t,其复线年货运量在2亿t以上。 2005年国际重载运输协会(IHHA)的巴西年会上已对重载运输的定义作了新的修订:重载列车牵引重量至少达到8000t(以前为5000t);轴重(或计划轴重)为27t及以上(以前为25t);在至少150km线路区段上年运量超过4000万t(以前为2000万t)。 1.2 重载运输推广范围日益扩大,欧洲已在客货混运干线上开行重载列车 重载运输技术在越来越多的国家推广应用。不仅在幅员辽阔的大陆性国家(如美国、加拿大、澳大利亚、南非等国)重载铁路上大量开行重载列车,而目前在欧洲传统以客运为主的客货混运干线铁路上也开始开行重载列车。德国铁路从2003年开始在客货混运的既有线路(如汉堡—萨尔兹特)上开行轴重25t、牵引重量6000t的重载列车,最高运行速度80k m/h(重车),同时开行200~250km/h速度的旅客列车。2005年9月开始,法国南部铁路正式开行25t轴重的运送石材的重载列车。芬兰铁路正在研究开行30t轴重的重载列车。欧盟经过研究认为,欧洲铁路客运非常发达,每年运送90亿人次、6000亿人公里。但欧洲铁路货运同样也很繁忙,货运量占全世界铁路货运总量的30%,而且每年还以4.4~7.5%的速度增加。欧洲铁路的货运量中有30%重载运输潜力。2001年以欧洲铁路为主体的国际铁路联盟(UIC)以团体名义加入国际重载运输协会(IHHA)、成为团体理事成员。由此可见欧洲铁路发展重载运输的战略已定局。 1.3 美国已在高速既有铁路东北走廊上开行30t轴重重载列车 另一个重要标志是美国重载列车开始在东北走廊高速铁路上运行。2003年美国在东北走廊高速铁路的巴尔的摩和Rerryville间不仅开行240km/h的Acela高速列车,还同时开行

重载列车运行工况仿真与试验比较研究

Open Journal of Transportation Technologies 交通技术, 2019, 8(2), 129-137 Published Online March 2019 in Hans. https://www.wendangku.net/doc/f214302485.html,/journal/ojtt https://https://www.wendangku.net/doc/f214302485.html,/10.12677/ojtt.2019.82016 Comparative Study on Simulation and Experiment of Heavy Haul Train Operating Conditions Xingguang Yang, Wei Wei School of Locomotive and Vehicle Engineering, Dalian Jiaotong University, Dalian Liaoning Received: Mar. 4th, 2019; accepted: Mar. 18th, 2019; published: Mar. 25th, 2019 Abstract The actual operation of heavy haul trains is affected by many uncertain factors, and the corres-ponding simulation accuracy is difficult, which makes the longitudinal dynamics research and maneuver optimization difficult. Therefore, the comparative study of simulation accuracy has im-portant practical significance. According to the test data of 20,000 tons of turmeric, the train air brake and longitudinal dynamics simulation system (TABLDSS) is used to calculate the speed and longitudinal dynamics of the train under actual operating conditions, and the simulation results are compared with the test results: the results show that the simulation speed curve agrees well with the test; the speed change trend is basically the same; the speed error is maximum 0.8 km/h; the train running resistance, the locomotive traction/dynamic braking force model have higher accuracy, and the air brake decompression characteristics are basically the same. When the brake is relieved, the tail pressure is basically the same; the brake opening time error is small; the maxi-mum is 0.8 s; the air brake model is accurate; the simulated maximum coupler force occurs in the same position as the test, and the maximum coupler force appears in the train mitigation process. Near the middle locomotive, the braking distance and the hook force error were 2.4% and 4.4%, respectively, and the simulation system was highly accurate. This work provides an advantageous tool for train manipulation optimization. Keywords Heavy Haul Train, Braking System, Air Brake, Train Operation, Simulation Analysis 重载列车运行工况仿真与试验比较研究 杨兴光,魏伟 大连交通大学,机车车辆工程学院,辽宁大连

铁路重载运输-

第7篇铁路货物重载运输 要点:阐述铁路重载运输的定义及组织形式,国内外铁路重载运输发展概况,单元式、组合式重载运输组织方法以及重载运输对铁路技术装备的要求。 第19章重载运输概述 19.1铁路重载运输的定义及组织形式 19.1.1铁路重载运输的定义及特点 铁路重载运输是指行驶列车总重大、行驶轴重大的货车或行车密度和运量特大的铁路运输。铁路重载运输的主要特点,是在一定的铁路技术装备条件下,扩大列车编组长度,不降低行车速度,大幅度提高列车重量,充分利用运输设施的综合能力,采用大功率内燃或电力机车(一台或多台)牵引达到一定重量标准的运输方式,发挥铁路集中、大宗、长距离、全天候的运输优势,达到增加运输能力、提高运输效率、降低运输成本的目的。 由于各国铁路运营条件、技术装备水平、发展重载运输的着眼点不一样,采用的重载列车运输类型和组织方式也各有特点。对于重载列车的重量过去并没有规定统一的标准,都是开行重载列车的国家根据各自的具体技术条件和运营需要,按照相对于普通列车的重量和长度进行确定的。 为了促进各国铁路重载运输的发展,1986年10月在加拿大温哥华召开的第三届国际重载会议上,在综合各国铁路重载运输发展水平的基础上,国际重载协会通过了铁路重载运输的定义:线路年运量在2000万t及其以上,列车牵引重量至少为5000t,列车中车辆轴重达到21t。具备上述三个条件之二者,可视为铁路重载运输。 1994年6月国际重载运输年会上,对铁路重载运输的定义作了一些修改。凡具备以下三个条件之二者,可视为铁路重载运输线路: (1)经常、定期或准备开行总重最少为5000t的单元或组合列车; (2)在长度至少为150km的铁路区段上,年计费货运量最少达到2000万t及其以上; (3)经常、定期或准备开行轴重25t及以上的列车。 重载运输在运送大宗货物上显示出高效率、低成本的巨大优势,是铁路运输规模经济和集约化经营的典范。铁路重载运输已成为许多国家追求的现代货运方式。 19.1.2 重载列车的组织形式 目前,国内外铁路开行的重载列车组织形式主要有单元式、整列式和组合式重载列车三种。 (1)单元式重载列车 单元式重载列车的概念最早是在美国提出的,它是以固定的机车车辆(大功率机车+一定编成辆数的同一类型的专用货车)组合成为一个运输单元,并以此作为运营计费单位,在装卸车站间循环直达运行的货物列车。其特点是:实行“五固定”,即固定机车、车底、货种、装车站、卸车站;货物装卸时不摘机车整列装卸;运行过程中不进行改编;按规定走行公里整列入段检修。在机车车辆充足的情况下,采用这种重载运输组织模式可以最大限度地减少运营支出,大幅度降低运输成本;但要求货源充足,货物品类单一,货物到发地点统一,机车车辆、线路站场、装卸仓储等设备要配套,并要采取最合理的运行图及最佳周转方案。 这种重载运输方式目前运用范围最广,经济效益也最显著。在路网规模大、行车密度小、货运比重大、运能较富裕的美国、加拿大、澳大利亚等国,组织开行从装车地到卸车地之间的重载单元列车,通过货物集中发送、快速装卸、加速机车车辆周转来降低成本,从而获得较大的效益,提高了与其他运输方式的竞争能力。我国大秦重载运煤专线上也有重载单元列车的开行。 (2)整列式重载列车

大连交通大学硕士车辆系统动力学知识点精华

基础题 一、车体运动的六种形式是什么? 沿着XYZ 轴的三个平移运动分别称为伸缩、横摆、浮沉。绕着XYZ 轴的回转运动分别称为侧滚、点头和摇头。 二、单节车辆动力学与整列车的动力学的研究的模型有什么不同? 1单节车辆动力学包括:垂向与横向动力学模型(研究对各种轨道不平顺的响应),横向稳定性模型(眼镜车辆蛇形运动特性和临界),曲线动过模型(分析通过曲线是轮对偏移和轮轨作用力) 2整列车动力学模型包括:列车纵向动力学模型;列车横向动力学模型;列车垂向动力学模型。 动力学研究问题范畴:响应问题(在不平顺和通过曲线是引起的)和稳定性问题(不同运行工况引起的) 动力学模型的要求:模型的结构必须是可靠的;模型的各个参数必须的准确的。 三车辆动力性能有哪几种?各用什么指标描述? 1运行平稳性;德sperling 平稳性指标;国际联盟UIC 指标 2运行稳定性:包括:防止蛇形运动稳定性(临界速度要远高于运行速度);防止脱轨稳定性(脱轨系数Q/P ,轮重减载率?P/P );车辆倾覆稳定性(倾覆系数D=P 动载荷/P 静载荷)。 3通过曲线的能力:磨耗指数 四:轨道不平顺有哪几种? 1几何性轨道不平顺:垂向不平顺(轨道在同一轮载作用下沿长度方向高低不平);水平不平顺(左右轨对应点高度差);方向不平顺(左右轨横向平面内弯曲不直);轨距不平顺(左右两轨横向平面内轨距偏差) 2周期性轨道不平顺:钢轨接头处等 3随机性轨道不平顺 4局部轨道不平顺:曲线顺坡轨距变化;过道岔;钢轨局部磨损;路基隆起和下沉。 五:轮轨接触几何参数有哪些?引起车辆振动的原因有哪些?什么是自激振动? 左右车轮的实际滚动圆半径;左右轮轨接触点处的车轮踏面曲率半径;左右轮轨接触点处的钢轨截面曲率半径;左右轮接触点处的接触角;轮对侧滚角;轮对中心的垂向位移。 原因1与轨道有关的激振因素:钢轨接头处的轮轨冲击;轨道的垂向变形;轨道的局部不平顺;轨道的随机不平顺; 2与车辆自身结构的激振因素:车轮偏心;车轮不均重;车轮踏面擦伤剥离;锥形踏面轮对的蛇形运动 自激振动:指一个系统在运动中,如果引起振动的激振源是由于系统结构本身所造成,而不是由于外界强迫输入的,当运动停止时,这种激振力也就随之消失,那么这种振动就称为自激振动。 六:为何轮缘根部圆弧最小半径>钢轨肩部圆弧半径?相等行么?相反行么? 当轮对相对于轨道的横移量不大时,对产生一点接触,当横移量过大时,不可避免的会出现两点接触。圆弧最小半径>钢轨肩部圆弧半径,使得轮对具有较大横移量,即轮缘根部移动到轨肩时,也不出现会两点接触,出现两点接触的可能性降低,能减少轮轨磨耗。 七:什么是踏面斜度与等效斜度?有何区别?等效斜度直接影响车辆的什么性能? 锥形踏面的车轮在滚动园附近作一斜度为λ的直线段,当轮对中心离开对中位置,有一横移量为y 时候,左右轮的实际滚动圆,则的可得出踏面斜度。对于纯锥形踏面,踏面斜度λ恒为常数。 对于磨耗型踏面,踏面由多段弧组成,踏面斜度λ随着轮对横移量y w 的改变而改变,λ不再为一个恒定常数,因此在计算时候,要取的等效值,此等效值定义为踏面等效斜度。 等效斜度直接影响车辆曲线通过性能 八:轮对低动力设计有哪些方法? 1减小簧下质量(空心轴、小轮径车轮、薄车轮)2采用合理的车轮踏面 3 采用弹性轮对4 严格控制车轮质量 九:什么是蠕滑?蠕滑产生的条件是什么?什么是蠕滑率、蠕滑力、与蠕滑系数?他们有怎样的关系? 由于轮轨间产生的相对位移,车轮滚动时走过的距离将比纯滚动时小,这一现象叫蠕滑。 条件:轮轨接触形成接触斑,轮轨间有运动或者相对运动趋势,接触斑上产生切向力。 蠕滑率其实就是车轮相对钢轨在各方向的相对滑动率。分为3种:纵向蠕滑率、横向蠕滑率、自旋蠕滑率。 纵向蠕滑率=(车轮实际前进速度-纯滚动前进速度)/纯滚前进速度 横向蠕滑率=(车轮实际横向速度-纯滚动横向速度)/纯滚前进速度 w L R e y r r 2-=λ

5.1概述 5.2列车自动空气制动机

第五章制动装置 第一节概述 一、相关概念 1.制动:人为地施加相反方向的力于运动中的车辆使其减速、停止运动,或采取措施防止静止中的车辆移动,这种作用叫制动。 2.制动装置:机车车辆上为了达到制动目的而装设的机械。 制动装置是提高列车运行速度,增加牵引重量和提高调车作业效率的重要条件。 3.制动方式:我国目前广泛使用闸瓦摩擦式制动装置或盘形制动装置。 4.制动作用:闸瓦(或闸片)压紧车轮踏面(或制动盘),阻止车辆运行的作用。消除制动的作用称为缓解作用。 5.制动距离:司机将大闸手把置于制动位起,到列车停车止,列车所走行的距离。 二、制动机种类 根据动力来源及操作方法,制动机主要有以下几种: 1.自动空气制动机——使用范围最广的制动机。 特点:充风缓解、排风制动 2.电空制动机——以压缩空气为动力,用电来操纵控制的制动机。 特点:列车前后部制动机动作一致性较好,列车纵向冲击较小,制动距离短。 3.轨道电磁制动机 特点:电磁铁以一定的吸力吸附在轨面上,产生摩擦力而起制动作用。 4.再生制动 特点:将列车动能转化的电能反馈回电网,提供给别的列车使用。 5.电阻制动 特点:电阻制动方式是把列车动能转化的电能加于列车自带的电阻器中,使电能变为电阻器的热能,并最终消散于大气中。 6.人力制动机——以人力为动力来源,通过人力进行控制的制动机。。 作用 介绍自动空气制动机的由来

第二节列车自动空气制动机 【历史回顾】 最早——手动式机械闸; 1869年——直通式空气制动机;(美国:韦斯汀豪斯) 1872年——自动式空气制动机。 列车自动空气制动机由机车制动机和车辆制动机构成,分别装在机车、车辆上,列车运行时由司机统一操纵。 一、列车自动空气制动机的主要组成部分 (一)装设在机车上的部件 1.空气压缩机。又称风泵,用以产生压缩空气,供制动系统及其他风动装置使用。 2.总风缸。机车贮存压缩空气的容器,风缸内空气压力为750~900 kPa。 3.电空制动控制器。通过控制相关电路的闭合与开断,产生电信号,控制全列车制动系统进行制动、缓解与保压。 1)单独制动阀(简称单阀,俗称小闸)用于单独控制机车制动、缓解; 2)自动制动阀(简称自阀,俗称大闸)用于全列车制动、缓解。 6个作用位: 1.过充位 2.运转位 3.中立位 4.制动位 5.重联位 6.紧急制动位 (二)装设在车辆上的部件 1.副风缸。每辆车辆储存压缩空气的容器。缓解时,总风缸经调压后的压缩空气通过控制阀(或分配阀)进入副风缸贮存;制动时副风缸内的压缩空气又经控制阀(或分配阀)直接进入制动缸。 2.控制阀(或分配阀)。根据制动管内空气压力的变化来控制压缩空气的流向,使制动机形成制动、保压或缓解作用,为空气制动机中最主要且复杂的部件。 3.制动缸。制动缸是将压缩空气的压力转变为制动动力的部件。利用压缩空气推动制动缸活塞,压缩缓解弹簧,再通过基础制动装置的作用将制动缸活塞杆的推力传递到制动梁,使闸瓦压紧车轮,产生摩擦力而起制动作用。结合图片P69页有误

相关文档
相关文档 最新文档