文档库 最新最全的文档下载
当前位置:文档库 › 学而思四年级第五讲(抽屉原理)

学而思四年级第五讲(抽屉原理)

学而思四年级第五讲(抽屉原理)
学而思四年级第五讲(抽屉原理)

第五讲 抽屉原理与最不利原则

一、解决存在性问题

即解决“符合某种条件的选择方法一定有”或“一定没有”这类问题。在确定“选择方法一定有”后,还可以解决“至少”或“至多”有多少个的问题。

二、抽屉原理

1、基本型

将n+1个苹果任意放到n个抽屉中,至少有一个抽屉中有不少于2个苹果(即至少有2个苹果在同一个抽屉中)

2、加强型

将m个苹果任意放到n个抽屉中(m>n),

(1)m÷n是整数,至少有一个抽屉中的苹果不少于m÷n个;

(2)m÷n有余数,至少有一个抽屉中的苹果不少于[m÷n]+1个,即“m÷n的商再加1”个。注:基本型其实是加强型中的一种特殊形式。

三、做题关键——如何找抽屉和苹果

想象抽屉原理的场景,即把2个苹果放进相同的一个抽屉里。那么具体到题中重点体会是把“谁谁谁”放进相同的什么东西里。相同的这个东西就是抽屉,“谁”和“谁”就是苹果。

注意:找抽屉的个数时往往考察到同学们的计数知识。对于简单的用枚举法,对于稍微复杂的要会熟练运用加乘原理。

四、答题步骤

1、说明什么是抽屉,什么是苹果,以及各自的数量

2、抽屉原理的结论——“根据抽屉原理,至少……”

3、回答题目问题——“即……”

五、常见题型

1、考察存在性

例1:雷锋小组由13人,张老师说:“你们这个小组至少有2个人在同一个月过生日。”你知道为什么张老师这么说吗?

解析:结论是“至少有2个人在同一个月过生日”。即把2个人放进同一个月里。那么“月”就是抽屉,人就是苹果。

答:将月份看做抽屉,一年共有12个月,将人看做苹果,共有13人。将每人根据生日对应的月份放进相应的“抽屉”中。根据抽屉原理,至少有2个苹果在同一个抽屉中,即至少有2个人在同一个月过生日。

例2 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友在一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样。你能说明为什么吗?

解析:结论是“总有两个小朋友取出的两个球的颜色完全一样”。一样的东西是抽屉,“两个

球的颜色”就是抽屉。那么“取法”就是抽屉,人就是苹果。

答:从三种颜色的球中挑选2个球,取法共有6种:红红、黄黄、蓝蓝、红黄、红蓝、黄蓝。将这6种取法看做抽屉,7个小朋友看做苹果。根据抽屉原理,至少有2个苹果在同一个抽屉中,即至少有2个小朋友取出的两个球的颜色完全一样。

例3 用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色,每个小方格涂一种颜色。是否存在两列,它们的小方格中涂的颜色完全相同?

解析:结论是“两列的小方格中涂的颜色完全相同”。相同的是“颜色”,那么“颜色”就是抽屉。具体一些,什么颜色呢?——每列的颜色。那么我们就把每列的涂色方法当做抽屉。 答:把每列的涂色方法当做抽屉,共有4种:红红、蓝蓝、红蓝、蓝红。将5列方格看做苹果。根据抽屉原理,至少有2个苹果在同一个抽屉中,即至少有两列的小方格中涂的颜色完全相同。

补充:任意25个人中,必有( )个人的属相相同。

解析:将属相看做抽屉,共有12个,将人看做苹果,共有25个。根据抽屉原理(加强型),25÷12=2……1,2+1=3,那么至少有3个苹果在同一个抽屉里,即必有3个人的属相相同。

补充:17名同学参加一次考试,考试题是3道判断题(答案只有对错之分),每名同学都在答题纸上依次写上了3道题目的答案,请问,至少有几名同学的答案是一样的?

解析:将同学看做苹果,有17个,将答案看做抽屉,有几个呢?3道题,每道题都是2个选择(对/错),那么相当于分三步完成“答案”这个目的,每步都2种选择,根据乘法原理,有2×2×2=8(个)。根据抽屉原理,17÷8=2……1,2+1=3,所以至少有3名同学的答案是一样的。

(提高)学案3 在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?

解析:在解决整除性命题时,常用余数做抽屉。

任何自然数除以3,余数只能是0,1,2三种情况,我们将余数的这3种情况看做3个抽屉,将任意4个自然数看做苹果,根据抽屉原理,至少有两个苹果在同一个抽屉里,即至少有2个数除以3的余数相同,那么,这两个数的差一定能被3整除。

(尖子)学案3 在任意五个自然数中,是否必有三个数的和是3的倍数?

解析:在解决整除性命题时,常用余数做抽屉。

任何自然数除以3,余数只能是0,1,2三种情况,我们将余数的这3种情况看做3个抽屉,将任意4个自然数看做苹果。会出现两种情况:

(1)每个抽屉里都有苹果,即有3个余数互不相同,那么这3个数之和一定是3的倍数。

(2)有抽屉里没有苹果,那么至少有3个苹果放在同一个抽屉里,即有3个余数相同,那么这3个数之和一定是3的倍数。

补充知识:

1、两个数除以a的余数相同,那么这两个数的差一定能被a整除。

2、几个数除以a的余数之和若是a的倍数,那么这几个数之和一定是a的倍数。

2、求抽屉数(最多)

例4 把10只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?

解析:将笼子看做抽屉,小兔看做苹果,根据抽屉原理,要保证至少有一个抽屉里有两个或两个以上的苹果,必须要抽屉数小于苹果数。即保证至少有一个笼里有两只或两只以上的小兔, 必须要笼子数小于兔子数。笼子数<10,最多有9个笼子。

3、求苹果总数(最少)

例5 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?

解析:把小朋友取玩具的取法看做抽屉,共有3种(小汽车和小火车,小汽车和小飞机,小飞机和小火车),把小朋友看做苹果。根据抽屉原理,要保证至少有两个苹果放在同一个抽屉里,必须要苹果数大于抽屉数。即要保证有两人选的玩具是相同的, 必须要人数大于取法数。人数>3,最少有4人。

(尖子)学案4 新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时,看不到颜色),结果发现总有两个人取的球相同,由此可知,参加取球的至少有( )人。

解析:把玻璃球的取法看做抽屉,共有15种(红红、黄黄、白白、蓝蓝、绿绿、红黄、红白、红蓝、红绿、黄白、黄蓝、黄绿、白蓝、白绿、蓝绿),把同学看做苹果。根据抽屉原理,要保证至少有两个苹果放在同一个抽屉里,必须要苹果数大于抽屉数。即要保证有两人取的球相同, 必须要人数大于取法数。人数>15,最少有16人。

注:本题15个“抽屉”可以用计数的知识计算出来。两个球的颜色分为两类。一类是两个球相同,显然有5种;一类是两个球颜色不同,跟取球的顺序无关,那就是从5种颜色中选2种颜色,回想握手问题。有4+3+2+1=10(种)。两类合在一起,有5+10=15(种)取法。

六、最不利原则

说明:要想保证完成什么任务,一定要想到最不好的情况。所以做题时就想自己是最倒霉的,把所有的坏情况都考虑到了,你就能保证完成任务了。

例6 口袋中有三种颜色的筷子各10根,问:

(1)至少取多少根才能保证三种颜色都取到?

(2)至少取多少根才能保证有2双颜色不同的筷子?

(2)至少取多少根才能保证有2双颜色相同的筷子?

解析:题目中说有三种颜色,我们假设就是红、黄、蓝三种颜色的筷子各10根。题目未作特殊说明时,默认为两根同色的筷子才称为一双。(即不像日程生活中,不同色的也能搭配在一起凑合用)

(1)保证三种颜色都取到,“三种颜色都取到”就是任务。你很倒霉,先抽了10根红色的,又抽了10根黄色的,这时只有蓝色的了,随便抽一根一定是三种颜色都取到了。所以至少取10+10+1=21(根)

(2)保证有2双颜色不同的筷子,任务是“2双颜色不同的筷子”。你又很倒霉,先抽了10根红色的(颜色相同),又抽了1根黄色的,又抽了1根蓝色的。这时只剩下9根黄色和9根蓝色了,无论怎么抽,总能又凑成一双颜色的筷子,加上之前的红色,就完成任务了。所以至少抽10+1+1+1=13(根)

(3)保证有2双颜色相同的筷子,任务是“2双颜色相同的筷子”。你又很倒霉,先抽了3根红色的,又抽了3根黄色的,又抽了3根蓝色的。这时无论怎么抽,总能凑成2双颜色相同的筷子。所以至少抽3+3+3+1=10(根)

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

四年级奥数抽屉原理

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 四、应用抽屉原理解题的具体步骤 知识框架 抽屉原理 发现不同

第二步:构造抽屉。这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。 例题精讲 【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业. 【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天? 【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

《三集合容斥原理》

三集合容斥原理 华图教育梁维维 我们知道容斥原理的本质是把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复的一种计数的方法。之前我们叙述过了两集合容斥原理,下面我们来看一下三集合容斥原理,相对于两集合容斥原理而言,三集合容斥原理的难度有所增加,但总体难度适中,所以三集合容斥原理在国家公务员考试中出现的频率较高,在其他省份考试以及各省份联考当中也时有出现,下面我们了解一下三集合容斥原理的公式。 三集合容斥原理公式: 三者都不满足的个数。 总个数- = + - - - + + =| | | | | | | | | | | | | || |C B A C B C A B A C B A C B A 有些问题,可以直接代入三集合容斥原理的公式进行求解。 【例1】如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?( ) A.15 B.16 C.14 D.18 【解析】依题意,假设阴影部分的面积为x,代入公式可得:64+180+160-24-70-36+x=290,解得x=16,正确答案为B选项。 近几年,直接套用三集合公式的题目有所减少,开始出现条件变形的题目,往往告诉大家“只满足两个条件的共有多少”这样的信息,看似无法直接套用公式,其实只要掌握本质,仍然可以直接套用公式。 【例2】(2012河北-44)某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?() A. 148 B. 248

2018最新四年级奥数.杂题.抽屉原理(C级).学生版

知识框架 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n+1或多于n+1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n - ,结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.抽屉原理

例题精讲 一、直接利用公式进行解题 【例1】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.欢迎关注:“奥数轻松学” 【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多. 【例2】证明:任取8个自然数,必有两个数的差是7的倍数. 【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。 【例3】任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).

我们在小学四年级奥数已经学过抽屉原理

追击问题练习题 专题简析 追击问题也是行程问题中的一种情况,这类问题的特点是:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近,最后终于可与追上。 解答这类问题,关键是明确速度差的含义(即单位时间内快者追上慢者的路程)。 追击问题的解答公式:速度差×追击时间=路程差 路程差÷速度差=追击时间 路程差÷追击时间=速度差 速度差+慢者速度=快者速度 快者速度-速度差=慢者速度 例题精讲 例1、甲乙两车相距90千米,两车同时同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲车能追上乙车? 分析:从“甲乙两车相距90千米”可知甲乙两车的路程差是90千米,甲与乙的速度差是65-50=15千米,即每小时甲比乙多行14千米,那么相差90千米的路程,甲追上乙的时间就是90÷15=6小时 解:90÷(65-50)=6(小时) 答:经过6小时甲车能追上乙车。 例2、某港停有甲乙两船,某一天,甲船以每小时24千米,乙船以每小时16千米的速度,同时同地背向出发,2小时后,甲船因事调转船头追乙船,几小时才能追上? 分析:甲、乙两船背向而行,2小时后两船相距(24+16)×2=80千米,即为甲船的追击路程,甲乙的速度知道,速度差为24-16=8千米/小时,追击时间也就好算了。

解:甲、乙路程差(24+16)×2=80(千米)甲追上乙的时间80÷(24-16)=10(小时) 答:甲10小时才能追上乙。 例3、有快慢两列火车从南京开往天津,慢车上午5时出发,每小时48千米,快车上午9时出发,8小时后追上慢车,快车每小时比慢车多行多少千米? 分析:慢车比快车早出发9-5=4小时,慢车每小时行48千米,4小时行48×4=182千米,也就是快车要追192千米才能追上,1小时追192÷8=24千米,也就是快车每小时比慢车多行24千米。 解:快车与慢车的路程差48×4=182(千米)快车1小时比慢车多 行192÷8=24(千米) 答:快车每小时比慢车多行24千米。 例4、A、B两城之间的路程长240千米,快车从A城、慢车从B城同时相向开出,3小时相遇,如果两车分别在两城同时向同一方向开出,慢车在前,快车在后,那么15小时快车可以追上慢车,求两车的速度? 分析:由相遇棵知道速度和是240÷15=16千米/小时,由追击可求出速度差是240÷15=16千米/小时,根据和差公式就能求出两车的速度。 解:快车与慢车的速度和240÷3=80(千米/小时)快车和慢车的速度 差240÷15=16(千米/小时) 快车速度(80+16)÷2=48(千米/小时)慢车速度(80-16)=32(千米/小时) 答:快车速度为48千米每小时,慢车速度为32千米每小时 练习题 1、A 、B两地相距60千米,一辆快车和一辆慢车同时分别从A、B两地朝一个方向出发,快车每小时120千米,慢车每小时90千米,几小时快车追上慢车? 2、两船从甲码头开往乙码头。客船每小时行30千米,快艇每小时行45千米,客船先出发4小时,多少小时以后快艇能追上客船? 3、甲、乙两人分别从吴村到刘村,甲骑摩托车每小时行50千米,乙骑自行车每小时20千米,乙先行3小时,结果两人同时到达。求两村的距离。 4、两船从北岸开往南岸,第一艘船以每小时45千米的速度先开了6小时,经过4小时后两船还相距190千米,求第二艘船每小时行多少千米?

六年级数学专题详解 容斥原理

容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A|表示有限集A的元素的个数。在两个集合的研究中,已经知道,求两个集合并集的元素个数,不能简单地把两个集合的元素个数相加,而要从两根集合的个数之中减去重复计算的元素个数,用式子可以表示成|A∪B|=|A|+|B|–|A∩B|。 我们称这一公式为包含与排除原理,简称为容斥原理。 包含与排除原理|告诉我们,要计算两个集合A、B的并集A∪B的元素个数,可以分一下两步进行: 第一步:分别计算集合A、B的元素个数,然后加起来。即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起); 第二步“从上面的和中减去交集的元素的个数,即减去|A∩B|(意思是“排除”了重复计算的元素的个数)。 例1.求不超过20的正整数中是2的倍数或3的倍数的数共有多少? 解:设I={1、2、3、…、19、20},A={I中2的倍数},B={I中3的倍数}。 显然题目中要求计算并集A∪B的元素个数,即求|A∪B|。

我们知道A ={2、4、6、……、20},所以|A |=10, B ={3、6、9、12、15、18},|B |=6。 A ∩ B ={I 中既是2的倍数又是3的倍数}={6、12、18},所以|A ∩B |=3, 根据容斥原理有|A ∪B |=|A |+|B |–|A ∩B |=10+6–3=13. 答:所求的数共有13个。 此题可以直观地用图表示如下: 例2.某班统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人,问两科都在90分以上的有多少人? 解:设A ={数学在90分以上的学生},B ={语文在90分以上的学生}, 由题意知|A |=25,|B |=21。 A ∪ B ={数学、语文至少一科在90分以上的学生},|A ∪B |=38。 A ∩ B ={数学、语文都在90分以上的学生}, 由容斥原理知|A ∪B |=|A |+|B |–|A ∩B |, 所以|A ∩B |=|A |+|B |–|A ∪B |=25+21–38=8。 159320 1816 1412 1086 42 B A

小学奥数竞赛专题训练之抽屉原理

小学奥数竞赛专题训练之抽屉原理 竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 [专题介绍] 把4只苹果放到3个抽屉里去,共有4种放法(请小朋友们自己列举),不论如何放,必有一个抽屉里至少放进两个苹果。 同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。 …… 更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。 利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。 [经典例题] 【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。 想一想,例2中4改为7,3改为6,结论成立吗? 【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。 按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 思考:1.能用抽屉原理2,直接得到结果吗? 2.把题中的要求改为3双不同色袜子,至少应取出多少只? 3.把题中的要求改为3双同色袜子,又如何? 【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少

小学人教四年级数学抽屉原理

《抽屉原理》教学教案 井冈山小学:吴宇峰 本节课的教学目的: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动, 发现、归纳、总结原理。 3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解 决问题的能力和兴趣。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 新授 一、问题引入。 师:今天,我们教室里来了很多的客人,希望每位同学能够超常发挥,在客人的面前能够充分展示自我,大家有信心吗? 生:齐答,好! 师:好!,我们一起来玩一个游戏游戏吧!这个游戏的名字叫做“抢椅子” 现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 生:生争先恐后的要上来,师顺势一大组选一代表 师:请听清楚游戏要求,下面的同学为他们进行倒计时,时间一到,请你们5个都坐在椅子上,每个人必须都坐下。听清楚要求了吗? 游戏完后师述: “不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 二、探究新知 (一)教学例1 课件出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法? 师:请同学们分小组实际放放看,或者动手画一画。 生:分小组活动 各小组汇报放或者画的情况. (1)、枚举法(师用课件演示各种摆放的过程) (2)、数的分解法:(课件出示) (4,0,0)(3,1,0)(2,2,0)(2,1,1), 课件出示问题: 4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢? 总结:不管怎么放,总有一个盒子里至少有2枝笔。 课件出示问题,生回答后师课件出示 (1)“总有”是什么意思?(一定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个

第二十讲 容斥原理讲解学习

第二十讲容斥原理

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题]

[例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈: 其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但: 30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有4 个项目,每个学生至多参加3项,至少参加1 项.那么至少有多少个学生,才能保证至少有5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

四年级抽屉原理初步主要内容及解题思路

四年级抽屉原理初步主要内容及解题思路一、抽屉原理 研究对象:放苹果最多的抽屉 研究方法:平均分 核心思想:使最多的至少 计算公式:苹果数÷抽屉数=? 1)有余数苹果数÷抽屉数=商...余数 有一个抽屉至少有商+1个苹果 2)无余数苹果数÷抽屉数=商 有一个抽屉至少有商个苹果 问法: 1)放苹果最多的抽屉至少有()个苹果; 2)总有一个抽屉至少有()个苹果; 3)至少有一个抽屉至少有()个苹果; 题型: 1)求商; 2)求苹果数,至少几个苹果才能保障有一个抽屉至少有a个苹果苹果数=抽屉数×(a-1)+1 3)构造抽屉 区分苹果和抽屉,通常情况下,苹果数>抽屉数 二、最不利原则 关键字:“保证...至少...”;“至少...才能保证...”

从最不利的情况考虑,考虑最倒霉的情况。 生活中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最糟糕的情况出发解决问题,这就是最不利原则。做题时,当题目遇到“保证”等文字时,我们就一定要从最坏的角度出发,直到最终满足要求为止。 【举例】比如,小明买了7个肉包,8个素包,那么他吃几个包子,才能保证他一定能吃到肉包?这个时候我们想,他可能吃第一个包子就吃到了肉包,这个很幸运,但是我们能说他一定这么幸运吗?当然不能。他那一天就是十分倒霉,吃一个是素包,再吃一个还是素包,再吃一个仍然是素包,直到吃完所有的8素包,还是没吃到肉包,生活中是有可能会出现这个情况的,但是这个时候,如果小明再吃1个包子,一定吃到的是肉包。所以我们要保证小明一定吃到肉包,需要他吃8+1=9(个)。所以,对于这种“保证”类的问题,我们就从最倒霉,最坏的角度出发,直到最终达到要求为止。 【典型例题】 类型一:抽屉原理 例:有10个苹果,放进9个抽屉里,一定有个抽屉至少有两个苹果,对吗?【分析】对的。10个苹果要放进9个抽屉里,每个放一个这样还剩下一个,随便放进那个抽屉里,这样就可以找到一个抽屉至少有2个苹果。同样,可以直接用抽屉原理,当苹果数比抽屉数多1个时,一定可以找到一个抽屉至少有2个苹果。 例:任意100个人中,至少有几个属于同一个星座? 【分析】一共有12个星座,我们可以把100个人当做100个苹果,12个星座当做12个抽屉,100个苹果放进12个抽屉里,100÷12=8(个)……4(个),8+1=9(个),根据抽屉原理,我一定可以找到一个抽屉至少有9个苹果,也

四年级数学A班奥数专题-“最大与最小”问题

四年级数学A班奥数专题->“最大与最小”问题 在应用数学知识解决日常生活中的一些实际问题时,经常会出现解决方案不止一种,有时还会有无数种的情况。在这种情况下,我们往往需要找最大量或最小量。 例1试求乘积为36,和为最小的两个自然数。 分析与解不考虑因数顺序,乘积是36的两个自然数有以下五种情况:1×36、2×18、3×12、4×9、6×6。相应的两个乘数的和是:1+36=37、2+18=20、3+12=15、4+9=13、6+6=12。显然,乘积是36,和为最小的两个自然数是6与6。 例2试求乘积是80,和为最小的三个自然数。 分析与解不考虑因数顺序,乘积是80的三个自然数有以下八种情况:1×2×40、1×4×20、1×5×16、1×8×10、2×2×20、2×4×10、2×5×8、4×4×5。经过计算,容易得知,乘积是80,和为最小的三个自然数是4、4、5。 结论一:从上述两例可见,m个自然数的乘积是一个常数,则当这m 个乘数相等或最相近时,其和最小。 例3试求和为8,积为最大的两个自然数。

分析与解不考虑加数顺序,和为8的两个自然数有以下四种情况:1+7、2+6、3+5、4+4。相对应的两个加数的积是:1×7=7、2×6=12、3×5=15、4×4=16。显然,和为8,积为最大的两个自然数是4和4。例4试求和为13,积为最大的两个自然数。 分析与解不考虑加数顺序,和为13的两个自然数有以下六种情况:1+12、2+11、3+10、4+9、5+8、6+7。经过计算,不难发现,和为13,积为最大的两个 结论二:从上述两例可知,m个自然数的和是一个常数,则当这m个数相等或最相近时,其积最大。 例5砌一平方米的围墙要用砖50块,现有5600块砖,用来砌一个矩形晒谷场的围墙。如果围墙高2米,则砌成的晒谷场的长和宽各是多少米时,晒的谷最多? 分析与解根据题意,首先可知5600块砖可砌围墙(5600÷50÷2=)56米,即长方形晒谷场的周长为56米。要使晒谷场晒的谷最多,实际就是长方形晒谷场的面积(长×宽)要最大。而长方形的周长56米一定,即长与宽的和(56÷2=)28米也一定,因此只有当长与宽相等(都是14米)时,面积才最大。所以,晒谷场的长和宽都是14米时,晒的谷最多。这时晒谷场的面积是: 14×14=196(平方米)

小学四年级奥数抽屉原理二例题练习及复习资料

小学四年级奥数抽屉原理(二)例题、练习及答案 抽屉原理(二) 这一讲我们讲抽屉原理的另一种情况。先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单。如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。 抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。 说明这一原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。 从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。这就说明了抽屉原理2。 不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。即抽屉原理2是抽屉原理1的推广。 例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 例3六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况; 订二种杂志有:订甲乙、订乙丙、订丙甲3种情况; 订三种杂志有:订甲乙丙1种情况。 1 / 3

小学六年级奥数 抽屉原理(含答案)

抽屉原理 知识要点 1.抽屉原理的一般表述 (1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。 (2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为: 第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。 2.构造抽屉的方法 常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。 点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。 解(1)13×2+1=27(张) (2)9×4+1=37(张)

例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内? 点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。 解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。 (2)要保证有5人的属相相同的最少人数为4×12+1=49(人) 不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。 例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有? 点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。 解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张) 例4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同? 点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况:解借球有6种情况,看做6个抽屉, 所以至少要来7名学生借球,才能保证。 例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个

四年级 数学试题 奥数 第8讲 抽屉原理一 苏教版(2014秋) 无答案

第8讲抽屉原理一 内容概述 理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明,在考虑某些问题时,需要利用最不利原则进行分析. 典型问题 兴趣篇 1. 学校周末要组织四个班的同学去春游,有三个地点可供选择:石景山游乐园、植物园和动物园,如果一个班只能去一个地点,试说明:一定有两个班要去同一个地点. 2. 小悦,冬冬和阿奇到费步步家玩,费叔叔拿出许多巧克力来招待他们,他们一数,共有19块巧克力,如果把这些巧克力分给他们三人,试说明:一定有人至少拿到7块巧克力,但不一定有人拿到8块. 3. 任意40个人中,至少有几个人属于同一生肖?

4. 有红、黄、蓝、绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多,一次至少要取几颗珠子,才能保证其中一定有两颗颜色相同? 5. 某校的小学生中,年龄最小的6岁,最大的13岁,从这个学校中至少选几个学生,就能保证其中一定有三个学生的年龄相同? 6. 有红、黄、蓝、绿四种颜色的铅笔各10支,拿的时候不许看铅笔的颜色,那么一次至少要拿多少支,才能保证其中一定有4支是同一种颜色的铅笔? 7. 口袋里装有红、黄、蓝、绿这4种颜色的球,且每种颜色的球都有4个,小华闭着眼睛从口袋里往外摸球,那么他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?

8. 一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张,那么: (1)至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃? (2)至少从中摸出多少张牌,才能保证至少有3张牌是红桃? (3)至少从中摸出多少张牌,才能保证有5张牌是同一花色的? 9. 把40块巧克力放入A、B、C、D四个盒子内,如图8-1,A盒中放的最多,放了13块,且四个盒子内装的巧克力的数量依次减少,那么: (1)D盒最少可以装几块? (2)D盒最多可以装几块? 10. 圆桌周围恰好有12把椅子,现在已经有一些人在桌边就坐,当再有一人入座时,就必须和已就坐的某个人相邻,问:已就坐的最少有多少人?

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一)

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一) 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共34题;共175分) 1. (5分)有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”…,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片? 2. (5分)一个正方体有六个面,给每个面都涂上红色或白色,至少有三个面是同一颜色。为什么? 3. (5分)在一个矩形内任意放五点,其中任意三点不在一条直线上。证明:在以这五点为顶点的三角形中,至少有一个的面积小于矩形面积的四分之一。 4. (5分)有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 5. (5分)小明参加飞镖比赛,投了5镖,成绩是36环,小明至少有一镖不低于8环,对吗?为什么? 6. (5分)六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么? 7. (5分) 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。证明:这9 条直线中至少有3 条通过同一个点。 8. (5分)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34. 9. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么? 10. (5分)在下面每个格子中任意写上“爸爸”或“妈妈”,至少有几列所写的字是完全一样的?

四年级奥数之抽屉原理

四年级奥数之抽屉原理 知识概要:抽屉原理1:把多于n个的物体放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的物体 原理2 :把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。 一、填空 1、四年级2班共有54名学生,他们年龄都相同,至少有()个同学在同一周出生,至少有()个同学在同一月出生。 2、在2007年出生的1000个孩子当中,至少有()个孩子是在同一天出生的。至少有()个孩子将来不单独过生日。 3、班上有50个学生,老师至少拿()本书,随意分给学生才能保证至少有一个学生分到不少于两本书。 4、黑、白、黄筷子各8根,混杂在一起,黑暗中起从这些筷子中取出颜色不同的两双筷子,问至少要取()根才能保证达到要求。 5、一只鱼缸里有很多条鱼,共有5个品种,问至少要捞出()鱼,才能保证有5条相同品种的鱼。 6、参加元旦文艺演出的合唱队中,最小的队员8岁,最大的队员14岁,从这些队员中任选()位就一定能保证其中有两位队员的年龄相同。 7、有红、黄、蓝三色的球各10个,混在一个布袋中,一次摸出13个球,其中至少有()个球是同色的。 8、学校图书室里有甲乙丙丁四类书,规定每个同学最多可以借2本书,在借书的86名同学中,至少有()个人所借书的类型是完全一样的。 9、第一组有16名学生至少有()个学生在同一个月过生日。 10、某班有个小图书库,有诗歌、童话、小人书三类课外读物。规定每位同学最多可以借阅两本书,问至少有()位同学来借阅图书才一定有两名同学借阅书的类型相同。 二、论述题 1、三位同学在操场上玩,其中必有两位同学都是男的或都是女的,这话对吗?

小学奥数-抽屉原理(教师版)

抽屉原理 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。说明抽屉原理1成立。 抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。 假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。说明原来的假设不成立。所以抽屉原理2成立。 运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运用原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1的变形。 【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。 【例2】★某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有: 买一本的:有语文、数学、外语3种。 买二本的:有语文和数学、语文和外语、数学和外语3种。 买三本的:有语文、数学和外语1种。 3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。 【小试牛刀】某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书

中小学数学概率与统计中的抽屉原理

中小学数学概率与统计中的抽屉原理 基本介绍 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 抽屉原理- 表述 抽屉原理的一种更一般的表述为: “把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 应用抽屉原理解题 例1:同年出生的400人中至少有2个人的生日相同。 解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。 “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要

相关文档
相关文档 最新文档