文档库 最新最全的文档下载
当前位置:文档库 › 光纤测试指导书

光纤测试指导书

光纤测试指导书
光纤测试指导书

光纤通信与光电子技术实验指导书

目录

引言 (2)

实验一半导体激光器P-I特性参数测量 (4)

实验二半导体光电检测器参数测量 (8)

实验三光纤无源器件参数测量 (15)

实验四光纤时域反射测量(OTDR) (20)

实验五语音、图像光纤传输及波分复用(WDM) (22)

实验六掺铒光纤放大(EDFA) (25)

实验七光纤激光器参数测量 (30)

实验八光纤光栅温度传感与测量 (32)

实验九单模光纤损耗特性和截止波长测量 (34)

实验十光纤色散测量 (38)

实验十一光纤非弹性散射及喇曼放大(FRA) (41)

实验十二电吸收调制(EAM) (46)

实验十三半导体激光器光谱测量与模式分析 (48)

实验十四光纤马赫任德干涉测量 (54)

实验十五液晶显示器(LCD)电光特性曲线测量 (57)

实验十六辉光放电与等离子体显示(PDP) (62)

实验十七多碱光电阴极光谱响应与极限电流密度测量 (67)

实验十八微光像增强器电子透镜调节与增益测量 (71)

实验十九CCD信号采集与处理 (75)

实验二十CCD光电摄像系统特性测量 (79)

实验二十一阴极射线显像管(CRT)电子聚焦与偏转 (83)

实验二十二MEMS微镜与DLP投影 (91)

实验二十三有机发光器件(OLED)参数测量 (94)

引言

光通信技术是当代通信技术发展的最新成就,在信息传输的速率和距离、通信系统的有效性、可靠性和经济性方面取得了卓越的成就,使通信领域发生了巨大的变化,已成为现代通信的基石,是信息时代来临的主要物质基础之一。

现代光通信是从1880年贝尔发明‘光话’开始的。他以日光为光源,大气为传输媒质,传输距离是200m。1881年,他发表了论文(关于利用光线进行声音的复制与产生)。但贝尔的光话始终未走上实用化阶段。究其原因有二:一是没有可靠的、高强度的光源;二是没有稳定的、低损耗的传输媒质,无法得到高质量的光通信。在此后几十年的时间里,由于上述两个障碍未能突破,也由于电通信得到高速发展,光通信的研究一度沉寂。这种情况一直延续到本世纪60年代。

1970年被称为光纤通信元年,在这一年发生了通信史上的两件大事:一是美国康宁(Corning)玻璃有限公司制成了衰减为20dB/km的低损耗石英光纤,该工艺理论由英国标准电信研究所的华裔科学家高锟博士于1966年提出;二是美国贝尔实验室制作出可在室温下连续工作的铝镓砷(A1GaAs)半导体激光器,这两项科学成就为光纤通信的发展奠定了基础。此后,光纤通信以令人眩目的速度发展起来,70年代中期即进入了实用化阶段,其应用遍及长途干线、海底通信、局域网、有线电视等各领域。其发展速度之快,应用范围之广,规模之大,涉及学科之多(光、电、化学、物理、材料等),是此前任何一项新技术所不能与之相比的。现在,光纤通信的新技术仍在不断涌现,生产规模不断扩大,成本不断下降,显示了这一技术的强大生命力和广阔应用前景。它将成为信息高速公路的主要传输手段,是将来信息社会的支柱。经过30年的发展,光纤通信历经五次重大技术变革,前四代光纤通信均已得到广泛应用。

第一代光纤通信的工作波长为0.85um,属短波长波段,传输光纤用多模光纤。光源使用铝镓砷半导体激光器,光电检测器为硅(Si)材料的半导体PIN光电二极管或半导体雪崩光电二极管(APD)。这一代光通信以1977年美国芝加哥进行的码速率为44.736Mbit/s的现场实验为标志。

第二代光纤通信的工作波长为1.3um,该波段属长波长波段,是石英光纤的第二个低损耗窗口,有较低的损耗且有最低的色散,可大大增加中继距离。早期的1.3um第二代光纤通信传输用多模光纤,相应的光源是长波长铟镓砷磷/铟磷(InGaAsP/InP)半导体激光器,光电探测器采用锗(Ge)材料,其中继距离超过了20km。由于多模光纤的模间色散,使得系统的比特率限制在100Mb/s以下。采用单模光纤能克服这种限制,单模光纤较多模光纤色散低得多,损耗也更小。一个实验室于1981年演示了比特率为2Gb/s,传输距离为44km的单模光波实验系统,并很快引入商业系统,至1987年1.3um单模第二代光波系统开始投人商业运营,其比特率高达1.7Gb/s,中继距离约50km。第二代光纤通信系统的应用推动了1.3um的InGaAs半导体激光器和检测器的发展,广泛地用于长途干线和跨洋通信中。

第三代光纤通信的工作波长为1.55um。石英光纤最低损耗在1.55um附近,实验技术上于1979年就达到了0.2dB/km的低损耗,然而由于1.55um处光纤色散较大,以及当时多纵模同时振荡的常规InGnAsP半导体激光器的谱展宽问题尚未解决,推迟了第三代光波系统的

问世。在80年代,1.5um附近具有最小色散的色散位移光纤(DSF)与单纵模激光器这两种技术都得到了发展,使用1.55um单模光纤的第三代光纤通信系统于80年代中后期实现。1985年的传输试验显示,其比特率达到4Gb/s,中继距离超过100km。通过精心设计激光器和光接收机,其比特率能超过l0Gb/s。后来,工作波长为1.55um的掺铒光纤放大器问世,又使这一波长具有更重要的意义。

第四代光纤通信系统以采用光放大器(OA)增加中继距离和采用频分与波分复用(FDM与WDM)增加比特率为特征,这种系统有时采用零差或外差方案,称为相干光波通信系统,在80年代在全世界得到了发展。在一次试验中利用星形耦合器实现100路622Mb/s数据复用,传输距离50km,其信道间串音可以忽略。在另一次试验中,单信道速率2.5Gb/s,不用再生器,光纤损耗用光纤放大器(EDFA)补偿,放大器间距为80km,传输距离达2223km。光波系统采用相干检测技术并不是使用EDFA的先决条件。有的实验室曾使用常规非相干技术,实现了2.5Gb/s,4500km和10Gb/s,1500km的数据传输。另一实验曾使用循环回路实现了2.4Gb/s,21000km和5Gb/s,14000km数据传输。90年代初期光纤放大器的问世引起了光纤通信领域的重大变革。

第五代光纤通信系统的研究与发展经历了近20年历程,已取得突破性进展。它基于光纤非线性压缩抵消光纤色散展宽的新概念产生的光孤子,实现光脉冲信号保形传输,虽然这种基本思想1973年就已提出,但直到1988年才由贝尔(Bell)实验室采用受激喇曼散射增益补偿光纤损耗,将数据传输了4000km,次年又将传输距离延长到6000km。EDFA用于光孤子放大开始于1989年,它在工程实际中有更大的优点,自那以后,国际上一些著名实验室纷纷开始验证光孤子通信作为高速长距离通信的巨大潜力。1992年在美国与英国的实验室,采用循环回路曾将2.5与5Gb/s的数据传输10000km以上。1995年,法国的实验室则将20Gb /s的数据传输106km,中继距离达140km。1995年线形光孤子系统试验也将20Gb/s的数据传输8100km,40Gb/s传输5000km。1994年和1995年80Gb/s和160Gb/s的高速数据也分别传输500km和200km。

实验一半导体激光器P-I特性曲线测量

一、实验目的:

1.了解半导体光源和光电探测器的物理基础;

2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性;

3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性;

4.掌握有源光电子器件特性参数的测量方法;

二、实验原理:

光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。

1.发光二极管(LED)和半导体激光二极管(LD):

LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。

LD通过受激辐射发光,是一种阈值器件。LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。

使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。

(1) LED和LD的P-I特性与发光效率:

图1是LED和LD的P-I特性曲线。LED是自发辐射光,所以P-I曲线的线性范围较大。

LD有一阈值电流I

th ,当I>I

th

时才发出激光。在I

th

以上,光功率P随I线性增加。

图1:LD和LED的P-I特性曲线

(a) LD的P-I特性曲线 (b) LED的P-I特性曲线

阈值电流是评定半导体激光器性能的一个主要参数,本实验采用两段直线拟合法对其进

行测定。如图2所示,将阈值前与后的两段直线分别延长并相交,其交点所对应的电流即为。

阈值电流I

th

图2:两段直线拟合法测量LD阈值电流

发光效率是描述LED和LD电光能量转换的重要参数,发光效率可分为功率效率和量子

效率。功率效率定义为发光功率和输入电功率之比,以η

ω表示。量子效率分为内量子效率和外量子效率。内量子效率定义为单位时间内辐射复合产生的光子数与注入PN结的电子-空穴对数之比。外量子效率定义为单位时间内输出的光子数与注入到PN结的电子-空穴对数之比。

(2) LED和LD的光谱特性:

LED没有光学谐振腔选择波长,它的光谱是以自发辐射为主的光谱,图3为LED的典型

,光谱曲线上光谱曲线。发光光谱曲线上发光强度最大处所对应的波长为发光峰值波长λ

P

两个半光强点所对应的波长差Δλ为LED谱线宽度(简称谱宽),其典型值在30-40nm之间。

的变化可以求出由图3可以看到,当器件工作温度升高时,光谱曲线随之向右移动,从λ

P

LED的波长温度系数。

图3:LED光谱特性曲线

激光二极管的发射光谱取决于激光器光腔的特定参数,大多数常规的增益或折射率导引器件具有多个峰的光谱,如图4所示。激光二极管的波长可以定义为它的光谱的统计加权。

,在规定输出光功率时,光谱内若干发射模式中最大强度的光谱波长被定义为峰值波长λ

P

相当明显。一个激光二极管能够维持的光谱线数目取对诸如DFB、DBR型LD来说,它的λ

P

决于光腔的结构和工作电流。

图4:LD光谱特性曲线

(3) LED和LD的调制特性:

当在规定的直流正向工作电流下,对LED进行数字脉冲或模拟信号电流调制,便可实现对输出光功率的调制。LED有两种调制方式,即数字调制和模拟调制,图5示出这两种调制方式。调制频率或调制带宽是光通信用LED的重要参数之一,它关系到LED在光通信中的传输速度大小,LED因受到有源区内少数载流子寿命的限制,其调制的最高频率通常只有几十兆赫兹,从而限制了LED在高比特速率系统中的应用,但是,通过合理设计和优化的驱动电路,LED也有可能用于高速光纤通信系统。调制带宽是衡量LED的调制能力,其定义是在保证调制度不变的情况下,当LED输出的交流光功率下降到某一低频参考频率值的一半时(-3dB)的频率就是LED的调制带宽。

图5:LED调制特性

在LD的调制过程中存在以下两种物理机制影响其调制特性:(1) 增益饱和效应。当注入电流增大,因而光子数P增大时,增益G出现饱和现象,饱和的物理机制源于空间烧孔、谱烧孔、载流子加热和双光子吸收等因素。谱烧孔也称带内增益饱和。这些因素导致P增大时G的减小。(2) 线性调频效应。当注入电流为时变电流对激光器进行调制时,载流子数、光增益和有源区折射率均随之而变,载流子数的变化导致模折射率五和传播常数的变化,因

此产生了相位调制,它导致了与单纵模相关的光(频)谱加宽,又称线宽增强因子。

2.PIN光电二极管和APD光电二极管:

光电探测器的作用是完成光电转换。光纤通信所用的光电探测器是半导体光电二极管。它们利用半导体物质吸收光子后形成的电子一空穴对把光功率转换成光电流。常用的有PIN 光电二极管和APD光电二极管,后者有放大作用。在短波长采用硅材料,在长波长采用锗材料或InGaAsP材料。

三、实验内容及步骤:

1.1550nm F-P半导体激光器P-I特性曲线测量

a.将1550nm半导体激光器控制端口连接至主机LD1,光输出连接至主机OPM端口,

检查无误后打开电源

b.设置OPM工作模式为OPM/mW模式,量程(RTO)切换至1mW

c.设置LD1工作模式(MOD)为恒流驱动(ACC),1550nm激光器为恒定电流工作模式,

驱动电流(Ic)置为0

d.缓慢增加激光器驱动电流,0至30mA每隔0.5mA测一个点,作P~I曲线

2.求1550nm F-P半导体激光器阈值电流

四、注意事项:

1.系统上电后禁止将光纤连接器对准人眼,以免灼伤。

2.光纤连接器陶瓷插芯表面光洁度要求极高,除专用清洁布外禁止用手触摸或接触硬物。

空置的光纤连接器端子必须插上护套。

3.所有光纤均不可过于弯曲,除特殊测试外其曲率半径应大于30mm。

实验二半导体光电检测器参数测量

一、实验目的:

1.了解半导体光电检测器件的物理基础;

2.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性;

3.掌握半导体光电检测器件特性参数的测量方法;

二、实验原理:

光检测器的作用是把接收到的光信号转换成相应的电信号。由于从光纤中传过来的光信号一般是非常微弱的,因此对光检测器提出了非常高的要求:第一,在系统的工作波长上要有足够高的响应度,即对一定的入射光功率,光检测器能输出尽可能大的光电流;第二,响应速度快,频带宽;第三,噪声小;第四,线性好,保真度高;第五,体积小,使用寿命长。满足上述要求、适合于光纤通信系统使用的光检测器主要有半导体PIN光电二极管、雪崩光电二极管、光电晶体管等。

1. 半导体PN结的光电效应

半导体光检测器的核心是PN结的光电效应,PN结光电二极管是最简单的半导体光检测器。

图1:PN结光电二极管

(a) PN结 (b) 能带图 (c) PN结外电路构成回路

图1(a)所示是一个未加电压的PN结,它是一个由不可移动的带正、负电荷的离子组成的耗尽层,或称作势垒区。当以适当波长的光照射PN结时,P型和N型半导体材料将吸收光能。如果光子能量hf≥Ke时,则光子将被吸收,使价带中的电子受激跃迁到导带中,而在价带中留下空穴,如图1(b)所示。这一过程称为光吸收。因光照射而在导带和价带中产生的电子和空穴称为光生载流子。

产生在耗尽层的光生载流子在内建场的作用下作漂移运动:空穴向P区方向运动;电子向N区方向运动,它们在PN结的边缘被收集。另外,耗尽层外的光生少数载流子会发生扩散运动:P区中的光生电子向N区扩散;N区中的光生空穴向P区扩散。在扩散的同时,一部分光生少数载流子将被多数载流子复合掉。由于这些区域的电场很小,甚至可以称为无场区,光生少数载流子在这些区域扩散速率较慢,只有小部分能扩散到耗尽层,继而在内建场的作用下分别快速漂移到对方区域。这样,在P区就出现了过剩空穴的积累,N区出现了过剩电子的积累,于是在耗尽层的两侧就产生了一个极性如图1(c)所示的光生电动势。这一现象称为光生伏特效应。产生于耗尽层的电子和空穴也要产生光生伏特效应。基于这一效应,如果将PN结的外电路构成回路,则外电路中会出现信号电流。这种由光照射激发的电流称为光电流。

照射到半导体材料上的光,由于材料的吸收等原因使光随着深入材料的深度的增加而逐渐减弱。半导体内部距入射表面d处的光功率为

P(d)=P(0)exp(-αd)

式中:P(0)为照射到材料表面的平均光功率;α为半导体材料的光吸收系数,α决定了入射光深入材料内部的深度,如果α很大,则光子只能进入半导体表面的薄层中。吸收入射光子并产生光生载流子的区域称为光吸收区;耗尽层及其两侧宽度为载流子扩散长度的区域称为作用区。在吸收区产生的光生少数载流子只有一部分进入作用区,这一部分光生载流子以较慢的速度扩散至耗尽层,进入耗尽层后在内建电场作用下作快速漂移运动,从而产生光生伏特效应。由于在作用区内,光生少数载流子的扩散速度较慢,从而影响了产生光生伏特效应的速度,导致PN结对光信号响应速度减慢。如果输入的光信号为光脉冲;则输出的光电脉冲会产生较长的拖尾。

由上述分析可见,光在耗尽层外被吸收使得光电转换效率降低、光电响应速度变慢。为此,必须设法加宽耗尽层,使照射光子尽可能被耗尽层吸收。给PN结加负偏压有助于加宽耗尽层。负偏压在势垒区产生的电场与内建场方向一致,使势垒区电场增强,加强了漂移运动,而且N区的电子向正电极运动并被中和,P区的空穴向负电极运动并被中和,这样耗尽层被加宽。

除了加负偏压的方法外,还可以通过减小P区和N区的厚度来减小载流子的扩散时间、减少在P区和N区被吸收的光能以及降低半导体的掺杂浓度来加宽耗尽层的方法来提高器件的响应速度。这种结构就是常用的PIN光电二极管。

2.PIN光电二极管

图2:PIN光电二极管的结构和它在反向偏压下的电场分布

图2是PIN光电二极管的结构和它在反向偏压下的电场分布。在高掺杂P型和N型半导体之间生长一层本征半导体材料或低掺杂半导体材料,称为I层。在半导体PN结中,掺杂浓度和耗尽层宽度有如下关系:

L P /L

N

=D

N

/D

P

其中:D

P 和D

N

分别为P区和N区的掺杂浓度;L

P

和L

N

分别为P区和N区的耗尽层的

宽度。在PIN中,如对于P层和I层(低掺杂N型半导体)形成的PN结,由于I层近于本征半导体,有

D

N <

P

L

P <

N

即在I层中形成很宽的耗尽层。由于I层有较高的电阻,因此电压基本上降落在该区,使得耗尽层宽度W可以得到加宽,并且可以通过控制I层的厚度来改变。对于高掺杂的N型薄层,产生于其中的光生载流子将很快被复合掉,因此这一层仅是为了减少接触电阻而加的附加层。

要使入射光功率有效地转换成光电流,首先必须使入射光能在耗尽层内被吸收,这要求

耗尽层宽度W足够宽。但是随着W的增大,在耗尽层的载流子渡越时间τ

cr 也会增大,τ

cr

与W的关系为

τcr=W/v

式中:v为载流子的平均漂移速度。由于τ

cr

增大,PIN的响应速度将会下降。因此耗尽层宽度W需在响应速度和量子效率之间进行优化。

如采用类似于半导体激光器中的双异质结构,则PIN的性能可以大为改善。在这种设计中,P区、N区和I区的带隙能量的选择,使得光吸收只发生在I区,完全消除了扩散电流的影响。在光纤通信系统的应用中,常采用InGaAs材料制成I区和InP材料制成P区及N 区的PIN光电二极管,图3为它的结构。InP材料的带隙为1.35eV,大于InGaAs的带隙,对于波长在1.3~1.6um范围的光是透明的,而InGaAs的I区对1.3~1.6um的光表现为较强的吸收,几微米的宽度就可以获得较高响应度。在器件的受光面一般要镀增透膜以减弱光在端面上的反射。InGaAs的光探测器一般用于1.3um和1.55um的光纤通信系统中。

图3:InGaAs PIN光电二极管的结构

PIN光电二极管的主要特性包括波长响应范围、响应度、量子效率、响应速度、线性饱和、击穿电压和暗电流等。

从光电二极管的工作原理可以知道,只有当光子能量hf大于半导体材料的禁带宽度E

g 才能产生光电效应,即

hf>E

g

因此对于不同的半导体材料,均存在着相应的下限频率f

c 或上限波长λ

c

,λ

c

亦称为光

电二极管的截止波长。只有入射光的波长小于λ

c

时,光电二极管才能产生光电效应。Si-PIN 的截止波长为1.06um,故可用于0.85um的短波长光检测;Ge-PIN和InGaAs-PIN的截止波长为1.7um,所以它们可用于1.3um、1.55um的长波长光检测。

当入射光波长远远小于截止波长时,光电转换效率会大大下降。因此,PIN光电二极管是对一定波长范围内的入射光进行光电转换,这一波长范围就是PIN光电二极管的波长响应范围。

响应度和量子效率表征了二极管的光电转换效率。响应度R定义为

R=I

P /P

in

其中:P

in 为入射到光电二极管上的光功率;I

P

为在该入射功率下光电二极管产生的光电流。

R的单位为A/W。

量子效率η定义为

η=光电转换产生的有效电子-空穴对数/入射光子数

=(I

P /q)/(P

in

/hf)

= R(hf/q)

响应速度是光电二极管的一个重要参数。响应速度通常用响应时间来表示。响应时间为光电二极管对矩形光脉冲的响应——电脉冲的上升或下降时间。响应速度主要受光生载流子的扩散时间、光生载流子通过耗尽层的渡越时间及其结电容的影响。

光电二极管的线性饱和指的是它有一定的功率检测范围,当入射功率太强时,光电流和光功率将不成正比,从而产生非线性失真。PIN光电二极管有非常宽的线性工作区,当入射光功率低于mW量级时,器件不会发生饱和。

无光照时,PIN作为一种PN结器件,在反向偏压下也有反向电流流过,这一电流称为PIN光电二极管的暗电流。它主要由PN结内热效应产生的电子一空穴对形成。当偏置电压增大时,暗电流增大。当反偏压增大到一定值时,暗电流激增,发生了反向击穿(即为非破坏性的雪崩击穿,如果此时不能尽快散热,就会变为破坏性的齐纳击穿)。发生反向击穿的电压值称为反向击穿电压。Si-PIN的典型击穿电压值为100多伏。PIN工作时的反向偏置都远离击穿电压,一般为10~30V。

3. 雪崩光电二极管

雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。

雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。

图4为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I 区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P 区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足

够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪崩区较窄,不能充分吸收光子,相当多的光子进入了I区。I区很宽,可以充分吸收光子,提高光电转换效率。我们把I区吸收光子产生的电子-空穴对称为初级电子-空穴对。在电场的作用下,初级光生电子从I区向雪崩区漂移,并在雪崩区产生雪崩倍增;而所有的初级空穴则直接被P+层吸收。在雪崩区通过碰撞电离产生的电子-空穴对称为二次电子-空穴对。可见,I区仍然作为吸收光信号的区域并产生初级光生电子-空穴对,此外它还具有分离初级电子和空穴的作用,初级电子在N+-P区通过碰撞电离形成更多的电子-空穴对,从而实现对初级光电流的放大作用。

图4: APD的结构及电场分布

碰撞电离产生的雪崩倍增过程本质上是统计性的,即为一个复杂的随机过程。每一个初级光生电子-空穴对在什么位置产生,在什么位置发生碰撞电离,总共碰撞出多少二次电子一空穴对,这些都是随机的。因此与PIN光电二极管相比,APD的特性较为复杂。

与PIN光电二极管相比,APD的主要特性也包括:波长响应范围、响应度、量子效率、响应速度等,除此之外,由于APD管中雪崩倍增的存在,APD的特性还包括了雪崩倍增特性、噪声特性、温度特性等等。

APD的雪崩倍增因子M定义为

M=I

P /I

P0

式中:I

P 是APD的输出平均电流;I

P0

是平均初级光生电流。从定义可见,倍增因子是

APD的电流增益系数。由于雪崩倍增过程是一个随机过程,因而倍增因子是在一个平均之上随机起伏的量,雪崩倍增因子M的定义应理解为统计平均倍增因子。M随反偏压的增大而增大,随W的增加按指数增长。

APD的噪声包括量子噪声、暗电流噪声、漏电流噪声、热噪声和附加的倍增噪声。倍增噪声是APD中的主要噪声。

倍增噪声的产生主要与两个过程有关,即光子被吸收产生初级电子-空穴对的随机性和在增益区产生二次电子-空穴对的随机性。这两个过程都是不能准确测定的,因此APD倍增因子只能是一个统计平均的概念,表示为,它是一个复杂的随机函数。

由于APD具有电流增益,所以APD的响度比PIN的响应度大大提高,有

R 0=(I

P

/P)=(ηq/hf)

量子效率只与初级光生载流子数目有关,不涉及倍增问题,故量子效率值总是小于1。

APD的线性工作范围没有PIN宽,它适宜于检测微弱光信号。当光功率达到几uw以上时,输出电流和入射光功率之间的线性关系变坏,能够达到的最大倍增增益也降低了,即产生了饱和现象。、

APD的这种非线性转换的原因与PIN类似,主要是器件上的偏压不能保持恒定。由于偏压降低,使得雪崩区变窄,倍增因子随之下降,这种影响比PIN的情况更明显。它使得数字信号脉冲幅度产生压缩,或使模拟信号产生波形畸变,因而应设法避免。

在低偏压下APD没有倍增效应。当偏压升高时,产生倍增效应,输出信号电流增大。当

反偏压接近某一电压V

B 时,电流倍增最大,此时称APD被击穿,电压V

B

称作击穿电压。如

果反偏压进一步提高,则雪崩击穿电流使器件对光生载流子变的越来越不敏感。因此APD 的偏置电压接近击穿电压,一般在数十伏到数百伏。须注意的是击穿电压并非是APD的破坏电压,撤去该电压后APD仍能正常工作。

APD的暗电流有初级暗电流和倍增后的暗电流之分,它随倍增因子的增加而增加;此外还有漏电流,漏电流没有经过倍增。

APD的响应速度主要取决于载流子完成倍增过程所需要的时间,载流子越过耗尽层所需的渡越时间以及二极管结电容和负载电阻的RC时间常数等因素。而渡越时间的影响相对比较大,其余因素可通过改进结构设计使影响减至很小。

三、实验内容及步骤:

1.PIN光电二极管反向击穿电压测量

a.连接InGaAs PIN 光电二极管、高压电源HVS和主机PD输入,屏蔽掉PIN管光输

入。

b.OPMMOD置PD/AM档,OPMRTO置100nW档。

c.由0V开始慢慢增加HVS输出电压,每隔2V测一个点,至56V结束,作Ir~Vr曲

线,求PIN光电二极管反向击穿电压。偏压不可以大于56V,否则PIN管及易烧毁。

2.PIN光电二极管响应度测量

a.将1550nm半导体激光器控制电缆连接至LD1控制器

b.清洁光纤连接器接头,连接1550nm半导体激光器和光功率计OPM

c.调节LD1控制器,设置激光器为恒流输出功率模式ACC,激光器输出功率调至

0.2mW。

d.将1550nm半导体激光器输出改接至被测PIN光电二极管,记录PIN检测器输出电

流I

P

e.计算PIN光电二极管响应度

四、注意事项:

1.系统上电后禁止将光纤连接器对准人眼,以免灼伤。

2.光纤连接器陶瓷插芯表面光洁度要求极高,除专用清洁布外禁止用手触摸或接触硬物。

空置的光纤连接器端子必须插上护套。

3.所有光纤均不可过于弯曲,除特殊测试外其曲率半径应大于30mm。

实验三光纤无源器件参数测量

一、实验目的:

1.了解光纤无源器件的工作原理及相关特性;

2.掌握光纤无源器件特性参数的测量方法;

二、实验原理:

光无源器件有很多种类,主要有光纤连接器、光纤耦合器、光滤波器、光隔离器、波分复用解复用器、光开关、光衰减器、光环形器、偏振选择与控制器等。

1.光纤连接器:

光纤(光缆)连接器是使一根光纤与另一根光纤相连接的器件,实现光信号的平滑无损或低损连接。光纤连接器会引入一定的功率损耗,称为插入损耗,它是衡量光纤连接器质量的主要技术指标之一。

2.光纤耦合器:

光纤耦合器是实现光信号分路/合路的功能器件,一般是对同一波长的光功率进行分路或合路。光纤耦合器的耦合机理基于光纤的消逝场耦合的模式理论。多模与单模光纤均可做成耦合器,通常有两种结构型式,一种是拼接式,另一种是熔融拉锥式。拼接式结构是将光纤埋人玻璃块中的弧形槽中,在光纤侧面进行研磨抛光,然后将经研磨的两根光纤拼接在一起,靠透过纤芯一包层界面的消逝场产生耦合。熔融拉锥式结构是将两根或多根光纤扭绞在一起,用微火炬对耦合部分加热,在熔融过程中拉伸光纤,形成双锥形耦合区。

光耦合器是一种光无源器件,该领域内的一般技术术语对它也适用,同时,它还另有一些体现自身特点的参数。

1).插入损耗(Insertion Loss)

就光耦合器而言,插入损耗定义为指定输出端口的光功率相对全部输入光功率的减少值。该值通常以分贝(dB)表示,数学表达式为:

IL

i =-1Olg(P

Oi

/P

i

)

其中,IL

i 是第i个输出端口的插入损耗;P

Oi

是第i个输出端口测到的光功率值;P

i

是输

入端的光功率值。

2).附加损耗(Excess Loss)

附加损耗定义为所有输出端口的光功率总和相对于全部输入光功率的减小值。该值以分贝(dB)表示的数学表达式为:

EL=-1Olg(ΣP

O /P

i

)

对于光纤耦合器,附加损耗是体现器件制造工艺质量的指标,反映的是器件制作过程带来的固有损耗;而插入损耗则表示的是各个输出端口的输出功率状况,不仅有固有损耗的因素,更考虑了分光比的影响。因此不同种类的光纤耦合器之间,插入损耗的差异,并不能反映器件制作质量的优劣,这是与其他无源器件不同的地方。

3).分光比(Coupling Ratio)

分光比是光耦合器所特有的技术术语,它定义为耦合器各输出端口的输出功率的比值,在具体应用中常常用相对输出总功率的百分比来表示:

CR=P

Oi /ΣP

Oi

x 100%

例如对于标准X形耦合器,1:1或50:50代表了同样的分光比,即输出为均分的器件。实

际工程应用中,往往需要各种不同分光比的器件,这可以通过控制制作过程的停机点来得到。

4).方向性(Directivity)

方向性也是光耦合器所特有的一个技术术语,它是衡量器件定向传输特性的参数。以标准X形耦合器为例,方向性定义为在耦合器正常工作时,输入一侧非注入光的一端的输出光功率与全部注入光功率的比较值,以分贝(dB)为单位的数学表达式为:

DL=-1Olg(P

i2/P

i1

)

其中,P

i1代表注入光功率,P

i2

代表输入一侧非注入光的一端的输出光功率。

5).均匀性(Uniformity)

对于要求均匀分光的光耦合器(主要是树形和星形器件),实际制作时,因为工艺的局限,往往不可能做到绝对的均分。均匀性就是用来衡量均分器件的“不均匀程度”的参数。它定义为在器件的工作带宽范围内,各输出端口输出光功率的最大变化量。其数学表达式为:

FL=-1Olg(Min(P

O )/ Max(P

O

))

6).偏振相关损耗(Polarization Dependent Loss)

偏振相关损耗是衡量器件性能对于传输光信号的偏振态的敏感程度的参量,俗称偏振灵敏度。它是指当传输光信号的偏振态发生360°变化时,器件各输出端口输出光功率的最大变化量:

PDL

i =-1Olg(Min(P

Oi

)/ Max(P

Oi

))

在实际应用中,光信号偏振态的变化是经常发生的,因此,往往要求器件有足够小的偏振相关损耗,否则将直接影响器件的使用效果。

7).隔离度(Isolation)

隔离度是指光纤耦合器件的某一光路对其他光路中的光信号的隔离能力。隔离度高,也就意味着线路之间的“串话"(crosstalk)小。对于光纤耦合器来说,隔离度更有意义的是用于反映WDM器件对不同波长信号的分离能力。其数学表达式是:

I=-1Olg(P

t /P

i

)

式中:P

t 是某一光路输出端测到的其他光路信号的功率值;P

i

是被检测光信号的输入功率值。

从上述定义可知,隔离度对于分波耦合器的意义更为重大,要求也就相应地要高些,实际工程中往往需要隔离度达到40dB以上的器件;而一般来说,合波耦合器对隔离度的要求并不苛刻,20dB左右将不会给实际应用带来明显不利的影响。

3.波分复用/解复用器与光滤波器:

波分复用/解复用器是一种特殊的耦合器,是构成波分复用多信道光波系统的关键器件,其功能是将若干路不同波长的信号复合后送入同一根光纤中传送,或将在同一根光纤中传送的多波长光信号分解后分送给不同的接收机,对利用光纤频带资源,扩展通信系统容量具有重要意义。WDM器件有多种类型,如熔锥型、光栅型、干涉滤波器型和集成光波导型。

4.光隔离器:

在光纤与半导体激光器的耦合系统中,某些不连续处的反射将影响激光器工作的稳定性。这在高码速光纤通信系统,相干光纤通信系统,频分复用光纤通信系统,光纤CATV传输系统以及精密光学测量系统中将带来有害的影响。为了消除这些影响,需要在激光器与光纤之间加光隔离器。光隔离器是一种只允许光线沿光路正向传输的非互易性元件,其工作原理主要是利用磁光晶体的法拉第效应,它由两个线偏振器中间加一法拉第旋转器而成。

5.光开关:

光开关是一种具有一个或多个可选择的传输端口,可对光传输线路或集成光路中的光信号进行相互转换或逻辑操作的器件。端口即指连接于光器件中允许光输入或输出的光纤或光纤连接器。光开关可用于光纤通信系统、光纤网络系统、光纤测量系统或仪器以及光纤传感系统,起到开关切换作用。

根据其工作原理,光开关可分为机械式和非机械式两大类。机械式光开关靠光纤或光学元件移动,使光路发生改变。它的优点是:插入损耗较低,一般不大于2dB;隔离度高,一般大于45dB;不受偏振和波长的影响。不足之处是:开关时间较长,一般为毫秒数量级,有的还存在回跳抖动和重复性较差的问题。机械式光开关又可细分为移动光纤、移动套管、移动准直器、移动反光镜、移动棱镜、移动耦合器等种类。非机械式光开关则依靠电光效应、磁光效应、声光效应以及热光效应来改变波导折射率,使光路发生改变,它是近年来非常热门的研究课题。这类开关的优点是:开关时间短,达到毫微秒数量级甚至更低;体积小,便于光集成或光电集成。不足之处是插入损耗大,隔离度低,只有20dB左右。

光开关在光学性能方面的特性参数主要有插入损耗、回波损耗、隔离度、远端串扰、近端串扰、工作波长、消光比、开关时间等。

插入损耗定义为输入和输出端口之间光功率的减少,以分贝来表示。

I L =-1Olg(P

1

/P

)

式中:P

0为进入输入端的光功率;P

1

为输出端接收的光功率。插入损耗与开关的状态有关。

回波损耗(也称为反射损耗或反射率)定义为从输入端返回的光功率与输入光功率的比值,以分贝表示。

R L =-1Olg(P

1

/P

)

式中:P

0为进入输入端的光功率;P

1

为在输入端口接收到的返回光功率。回波损耗也与开关

的状态有关。

隔离度定义为两个相隔离输出端口光功率的比值,以分贝来表示。

I n,m =-1Olg(P

in

/P

im

)

式中:n、m为开关的两个隔离端口(n≠m);P

in

是光从i端口输入时n端口的输出光功率,

P

im

是光从i端口输入时在m端口测得的光功率。

远端串扰定义为光开关的接通端口的输出光功率与串入另一端口的输出光功率的比值。

FC

12=-1Olg(P

1

/P

2

)

式中:P

1是从端口1输出的光功率;P

2

是从端口2输出的光功率。

近端串扰定义为当其它端口接终端匹配时,连接的端口与另一个名义上是隔离的端口的光功率之比。

NC

12=-1Olg(P

2

/P

1

)

式中:P

1是输入到端口1的光功率,P

2

是端口2接收到的光功率。

消光比定义为两个端口处于导通和非导通状态的插入损耗之差。

ER

nm =IL

nm

-IL0

nm

式中:IL

nm 为n,m端口导通时的插入损耗;IL0

nm

为非导通状态的插入损耗。

开关时间指开关端口从某一初始态转为通或断所需的时间,开关时间从在开关上施加或撤去转换能量的时刻起测量。

三、实验装置:

实验装置图一

实验装置图二

四、实验内容及步骤:

1.测试光路准备

a.按实验装置图一所示结构连接1550nm半导体激光器、单模光纤耦合器、OPM和主

机,暂将1550nm半导体激光器输出直接连接至OPM输入,检查无误后打开电源

b.设置OPM工作模式为OPM/dBm,量程(RTO)切换至0dBm

c.设置LD1工作模式(MOD)为恒流驱动(ACC),1550nm激光器为恒定电流工作模式,

调节驱动电流(Ic)至输出功率为-7.0dBm(0.2mW)附近,记录光功率值P

i

d.连接1550nm激光器输出(1550 Out)至待测光纤耦合器输入端(PORT1)

2.将待测光纤耦合器输出端PORT3连接至OPM输入,记录该端口输出光功率Po

1

,计算光

纤耦合器插入损耗IL

1

3.绕轴向缓慢旋转待测光纤耦合器输入端光纤,记录该端口输出光功率Po

1

的最小值

Min(P

O1)和最大值Max(P

O1

),计算光纤耦合器偏振依赖损耗PDL

1

4.将待测光纤耦合器输出端PORT4连接至OPM输入,记录该端口输出光功率Po

2

,计算光

纤耦合器插入损耗IL

2

5.绕轴向缓慢旋转待测光纤耦合器输入端光纤,记录该端口输出光功率Po

2

的最小值

Min(P

O2)和最大值Max(P

O2

),计算光纤耦合器偏振依赖损耗PDL

2

6.计算光纤耦合器分光比CR

7.计算光纤耦合器附加损耗EL

8.按实验装置图二所示结构将待测光纤耦合器输入端PORT2连接至OPM输入。待测光纤耦

合器输出端PORT3和PORT4分别连接一根光跳线,每根光跳线均在手指上绕5圈,使得PORT3和PORT4的输出光功率在两跳线中极大衰耗,最终减小其反射光对方向性测量的影响。设置OPM至合适量程(RTO),记录该端口反向输出光功率P

i2

,计算光纤耦合器方向性DL

五、注意事项:

1.系统上电后禁止将光纤连接器对准人眼,以免灼伤。

2.光纤连接器陶瓷插芯表面光洁度要求极高,除专用清洁布外禁止用手触摸或接触硬物。

空置的光纤连接器端子必须插上护套。

3.所有光纤均不可过于弯曲,除特殊测试外其曲率半径应大于30mm。

六、思考题:

如何借助于标准3dB耦合器测量待测光纤耦合器输入端PORT1的回波损耗?请画出测试光路,并写出测试步骤和数据处理方法。

光缆测试方案

光缆测试方案 1.作业准备 1.1内业技术准备 在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前技术培训。 1.2外业技术准备 确认中继段光缆接续完成并全部符合接续测试指标。 2.技术要求 2.1光缆中继段光纤线路的测试值应小于光缆中继段光纤线路衰减计算值。其计 算值为 αl=α0L+αn+αc m(dB) 式中α ——光纤衰减标称值(dB/km) α——光缆中继段每根光纤接头平均损耗(dB) 单模光纤α≤0.08dB(1310mm、1550mm) 多模光纤α≤0.2dB αc——光纤活动连接器平均损耗(dB) 单模光纤α多模光纤αc c ≤0.7dB ≤ 1.0dB L——光中继段长度(km) n——光缆中继段内每根光纤接头数 m——光缆中继段内每根光纤活动连接器数 2.2在一个光缆中继段内,每一根光纤接续损耗平均值应符合下列指标:单模光纤α≤0.08dB(1310mm、1550mm) 多模光纤α≤0.2dB

2.3对传输STM-4、STM-16的1310nm、1550nm波长光纤和传输STM-1的1550nm 波长光纤,应进行最大离散反射系数和S点最小回波损耗的测试,测试值应满足下列要求: 2.3.1光缆中继段S、R点间的最大离散反射系数: STM-11550nm,不大于-25dB STM-41310nm,不大于-25dB STM-41550nm,不大于-27dB STM-161310nm、1550nm,不大于-27dB 2.3.2光缆中继段在S点的最小回波损耗(包括连接器): STM-11550nm,不小于20dB STM-41310nm,不小于20dB STM-41550nm,不小于24dB STM-161310nm、1550nm,不小于24dB 2.4对用于高速率密集波分复用(DWDM)系统的光纤需要进行偏振模色散(PMD)的测量: 偏振膜色散(PMD)的值应小于0.2ps/km。 2.5同一中继段光缆必须采用同一厂家光缆,且光缆的电气指数必须一致 2.6电性能测试 1.电性能测试应包括下列内容: 1)直埋光缆线路对地绝缘电阻; 2)防护接地装置地线电阻。 2.为保证光缆金属外护层免遭腐蚀,埋设接续后的单盘直埋光缆,其金属外护层对地绝缘电阻竣工验收指标应不低于10MΩ·km。目前暂允许10%的单盘光缆不低于 2MΩ·km。直埋光缆线路对地绝缘的测试方法应符合原邮电部《光缆线路对地绝缘指标及测试方法》的要求。 3.防护接地装置地线的接地电阻应小于2欧姆。 3.指标测试 1.光缆具体测试比例与要求如下:

光纤配线架验收测试报告

光纤配线架验收测试报 告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

光纤配线架测试报告 检验记录 检验清单 主检人: 校核人: 批准人: 日期:

光纤配线架测试 一、认可项目、检验类别及检验依据、流程图 1.认可项目及检验标准 产品名称:光纤配线架 检验标准:YD/T 778-2006 光纤配线架 2.检验类别 (1)产品认证型式检验 (2)产品认证复评型式检验 (3)产品认证监督检验 (4)产品认证监督检验+产品认证变更检验 (5)委托检验 上述(1)-(4)类别的检验依据除了对应产品的检验标准以外,还应依据泰尔发布的最新配线设备认证实施规则来执行。 3.检验流程图

二、检验项目及检验方法 1、外观与结构检查 用卡尺或卷尺检测机架外形尺寸。 用手实际操作转动、插拔、锁定部位应感觉适度,用万能角尺,检测机架门开启角;用塞规检测其间隙的上、中、下三处。 用装配工具手工检查紧固件,用裸手触摸外露和操作部位。 用R 量规检测光缆尾纤的弯曲半径。 其它用目视方法检查。 2、功能检查 测试步骤:采用视察法和操作法检查各功能装置安装的完整齐备性及其达到的功能性。 3、光电性能测试 插入损耗 测试连接框图 测试步骤 按测试连接图连接测试光纤测试,光回波损耗测试仪RM3750的光源输出口作为稳定光源,此时,图中S 2点先不接入被测尾纤,而是通过标准尾纤2按虚线连接(S 2R 1),至光回波损耗测试仪RM3750的光功率输入口,将光源和光功率计光波长设置为指定波长,开启光源开关,预热15分钟后,记录光功率计示值P 1。然后将被测尾纤和标准尾纤2按图中实线连接,测记录光功率计示值P 2。P=P 1-P 2即为S 2R 2插入损耗。同理,将被测尾纤调换方向,则可测出另一 端对应的插入损耗值。 回波损耗 测试连接框图 标准尾纤1 S 1稳定光 光功率 光纤配线架 标准尾纤 图 插入损耗测试连接框图 光回损仪 光纤配线 被测适配器

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

分析介绍光纤基本参数和测量方法

分析介绍光纤基本参数和测量方法 本文来源于:工控商务网 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。 1.单模光纤模场直径的测量 从理论上讲单模光纤中只有基模(LP0l)传输,基模场强在光纤横截面的存在与光纤的结构有关,而模场直径就是衡量光纤模截面上一定场强范围的物理量。对于均匀单模光纤,基模场强在光纤横截面上近似为高斯分布,通常将纤芯中场强分布曲线最大值1/e处所对应的宽度定义为模场直径。简单说来它是描述光纤中光功率沿光纤半径的分布状态,或者说是描述光纤所传输的光能的集中程度的参量。因此测量单模光纤模场直径的核心就是要测出这种分布。 测量单模光纤模场直径的方法有:横向位移法和传输功率法。下面介绍传输功率法。测量系统的原理方框示意如图1所示。 取一段2米长的被测光纤,将端面处理后放入测量系统中,测量系统主要由光源和角度可以转动的光电检测器构成。光纤的输入端应与光源对准。另外为了保证只测主模(LP01)而没有高次模,在系统中加了一只滤模器,最简单的办法是将光纤打一个直径60mm的小圆圈。当光源所发的光通过被测光纤,在光纤末端得到远场辐射图,用检测器沿极坐标作测量,即可测得输出光功率与扫描角度间的关系,P—θ线如图2所示。然后,按模场直径的定义公式输入P和θ值,由计算机按计算程序算出模场直径。

2.光纤损耗的测量 光纤损耗是光纤的一个重要传输参数。由于光纤有衰减,光纤中光功率随距离是按指数的规律减小的。但是,对于单模光纤或近似稳态的模式分布的多模光纤衰减系数a是一个与位置无关的常数。若设P(Z1)为Z=Z1处的光功率,即输入光功率。若设P(Z2)为Z2处的光功率,即这段光纤的输出功率。因此,光纤的衰减系数a定义为 因此,只要知道了光纤长度Z2-Z1和Z2、Z1处的光功率P(Z1)、P(Z2),就可算出这段光纤的衰减系数a。测量光纤的损耗有很多种办法,下面只介绍其中的两种办法。 1)截断法 截断法是一种测量精度最好的办法,但是其缺点是要截断光纤。这种测量方法的测量方框如图3所示。 取一条被测的长光纤接入测量系统中,并在图中的“2”点位置用光功率计测出该点的光功率P(Z2)。然后,保持光源的输入状态不变,在被测量光纤靠近输入端处“1”点将光纤截断,测量“l”点处的光功率P(Z1)。这个测量过程等于测了1~2两点间这段光纤的输入光功率P(Z1)和输出光功率P(Z2),又知道“1”、“2”点间的距离Z2-2l,因此,将这些值代入 即可算出这段光纤的平均衰减系数。 在测量方框图中斩波器(又称截光器)是一种能周期断续光束的器件。例如是一个有径向开缝的转盘。它将直流光信号变为交变光信号,作为参考光信号送到锁相放大器中,与通过了被测光纤的光信号锁定,以克服直流漂移和暗电流等影响,以确保测量精度。

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

光纤测试方案

光纤测试方案 一.布线系统测试概述 为确保综合布线系统性能,确认布线系统的元器件性能及安装质量,工程完工后需按综合布线系统测试说明进行有关的测试。 综合布线系统测试包括: ·>水平铜缆链路测试; ·>垂直干线铜缆链测试; >垂直干线光缆链测试; >·端对端信道联合测试 系统测试完毕后,即组织有关技术及管理人员对整个系统进行验收。 千兆比水平铜缆的测试说明: 千兆比水平铜缆系统采用专用测试仪器进行测试,测试指标包括: 1.极性、连续性、短路、断路测试及长度 2.信号全程衰减测试 3.信号近、远串音衰耗测试 4.结构回转衰耗SRL 5.特性阻抗 6.传输延时 本方案中,采用下列布线测试仪表进行测试: Microtest QmniScanner FLUKE 国际标准组织(ISO)及Lucent推荐下列布线测试仪表: 1、fluke (Fluke Corporation) 2、PenaScanner (Microtest Inc) 本方案中,我公司建意采用以下铜缆测试仪器:

Microtest Lucent KS23763L1 (连接性测试) 3、FLUKE (特性指标测试) STPl 六类100-150双绞线,250 MHz FTP;阻燃特性NFC32070 2.1标准 4、用网络测试仪,测试线路是否安装完好,将测线报告整理,归档。 二.系统测试所用工具 测试所用工具主要是: FLUCK DSP FLUCK 网络测试仪操作规程: 根据测量的种类是通道还是链路,选择相对的适配器; 测量前将仪器校准; 测量时,将主机和智能远端的旋钮打开; 输入测量时间、地点、测试姓名; 在AUTOTEST项开始测试,储存结果; 将测试结果转换成电子文档; 将主机和智能远端关机; 将仪器收好,检查是否有遗漏配件。 注意事项:插接时一定要将插头和插口对齐,将线路接通;注意轻拔轻 插,一定要将头弹起按下再拔出;注意仪器和线路远离电力线和强电场。 其他工具如下表: 仪器名称数量产地说明 接地摇表 1 进口 万用表 2 国产 水平尺 6 国产 FULKE 1 美国

电信光缆验收报告

电信光缆验收报告 1 2020年4月19日

电信光纤施工验收报告 工作概况 对集团原有光纤结构进行整改。 1、废除原有主干双模光纤,改换单模光纤线。 2、改变原有光纤结构走向,重新布局光纤网络结构。 示意图 改造前改造后 3、更换光纤终端设备(改用高速单模光纤猫)验收报告 施工单位:电信施工工程队 工程于 5月15日完成,预计施工期2天,实际施工期为4天。共铺设光纤线缆1.2公里、高速光纤猫6对、熔光纤接头16蕊.并应行政部要求对原有光纤线缆以及电话线缆规整。施工过程由集团行政部网管全程监督。验收单位:集团行政部 施工单位: 验收单位:篇二:电信光缆线路工程验收 电信光缆线路工程验收 1、随工检验 (1)按国家机关规定,光缆线路工程均应实行监理制。由监理人员采取巡视、旁站等方式进行随工检验。对隐蔽工程项目,应由监理和施工双方签署《隐蔽工程检验签证》。 2 2020年4月19日

(2)光缆线路工程的随工检验,应按下表的项目及内容进行 光缆线路工程随工检验项目内容 2、光缆线路工程初步验收 (1)干线光缆线路工程初步验收(简称工程初验),应在施工完毕并经工程监理单位预检合格后进行。业主(省级)在收到监理单位“关于工程初验申请报告”后一周内组织工程初步验收。初验工作,一般可分档案、安装工艺、传输特性测试和财务、物资等四个组,分别对工程质量进行全面检查和评议。初验组认为有必要时可对隐蔽工程质量进行复查。 (2)光缆线路的安装工艺、传输特性应按下表的项目内容进行检查和抽测。安装工艺和测试数据应符合设计和规范的相关标准,测试数据还应与施工单位提供的竣工测试记录相符或吻合。 光缆线路工程初步验收项目内容 (3)初步验收会议应在全面检查和抽测后对施工质量进行评议,工程质量达到设计和规范标准的为合格。 (4)初步验收会议还应对施工图设计能否指导施工进行评议。施工图设计应达到的深度要求按相关规范或规定。 3、光缆线路工程竣工验收 (1)干线光缆线路工程的竣工验收,应由业主的主管单位(集团公司)组织进行。 3 2020年4月19日

光纤测试方案

OTDR:光纤测试方案(短光纤测试)及OM4光纤介绍 首先来看一下当前数据中心的情况,10G已经不是什么新鲜事物了,而介质这块,铜缆双绞线也开始6A化,光纤也逐步升级,而数据中心里的大部分光纤链路都小于200米,这使得基于VCSEL的850nm光收发器可以被大量使用,配合OM3光纤,光纤方案的成本更为降低,也使OM3成为万兆速率数据中心的首选。 如表格1表格2所示,OM3光纤(MM50 um MBW=2000),在同样插入损耗的情况下,与OM2 和OM1光纤相比,OM3光纤的传输距离可以更远。而通道最大距离与模式带宽和通道最大插入损耗相关。例如,对于一个使用850nm OM3光纤的300米10GBase-SR链路而言,所能被允许的最大插入损耗是2.6分贝,而在1000BASE-SX网络中则为3.56分贝,可以预见随着速率不断提升,损耗这块的要求也越来越高了。而即使是在这2.6分贝的最大允许损耗中,也被分为光纤本身所固有的损耗,以及光纤连接和连接器损耗。 伴随数据中心TIA-942推行的结构化光布线系统的发展,在带来灵活易用的同时,也对光纤测试带来了新的内容,引入的结构化布线,增加了连接器件,对接头连接器的插入损耗有了更高的要求。 那么下面先来谈一下数据中心短光纤的测试面临的新的问题: 从目前光纤链路的测试来看,主要分成两个等级,第一等级为OLTS测试,第二等级为OTDR测试;从实际验收来看更多的采用的是OLTS测试,即光源和光表的测试方式,其原因除了测试设备相对价格低廉有关外,也和其使用简易程度有关,相对来说,使用第二级别的OTDR测试仪需要更专业的知识,需要读懂OTDR的曲线图,并且判定故障原因,这绝非简单培训就可以上手的工作。 另外,不论部署结构化光布线网络,还是模块化高密度MPO方案时,多模光纤都被大量运用,此时用光纤元件标准测试通过,而用应用标准测试则不一定过,两类标准门限值有所不同,测试时选标准不当,也会给后续网络运行埋下故障隐患。 不仅如此,在选用OTDR(Optical Time Domain Reflectometer,简称OTDR)测试仪时,死区的问题也是不能忽略的一大问题,OTDR的死区分为事件死区和衰减死区,事件死区代表OTDR所能检测到的光缆的最短长度。死区越短,可检测到的光缆长度就越短。如果事件死区比被测的光缆长度要短,那么就可以使用OTDR来测试这条链路。而衰减死区一般要大于事件死区,它的定义是可以测得的连续两个事件插入损耗数值的最小距离。 数据中心内网络的光缆链路通常都非常短,同时通道里还会有多个连接器和短的跳线。在进行光缆测试时,应该使用具有短事件死区和衰减死区的OTDR测试仪。

光纤熔接步骤及OTDR测试曲线分析方法

光纤熔接步骤及OTDR测试曲线分析方法 随着网络的飞速发展,传统的10M,100M速度已经越来越满足不了人们日常学习工作的需要了。用户迫切希望提高网络速度,1000M是目标,但对于双绞线来说虽然可以使用六类线满足1G的传输需要,但六类线制作起来非常麻烦,而且对两端连接设备要求也很高,各项衰减参数也不能降低要求。因此目前最有效的突破1G传输速度的介质仍然是光纤。本文将为读者介绍如何使用工具将断纤尾纤进行熔接,满足实际需求。 1,熔接工作何时进行 大家都应该知道光纤是非常长的,但任何线缆都会遇到长度不合适的问题,光纤也是如此,这时候就需要对光纤进行裁剪了。并且光纤在户外传输时都是一股的,而连接到局端就需要将里头的线芯分开连接,这时也需要对光纤进行熔接。因此可以说熔接工作用到的地方还是不少的,使用了光纤就必定会有熔接问题。 2,如何进行光纤的熔接 光纤熔接在以前是一个技术含量很高的工作,以前熔接一个纤芯的工作能拿到500元的报酬,而如今恐怕只有1/10了。下面我们将一步步的为大家介绍如何将分离的光纤熔接到一起。不过看完后理论的东西了解很多,真正掌握还需要大家亲自去动手。 第一步:准备工作 光纤熔接工作不仅需要专业的熔接工具还需要很多普通的工具辅助完成这项任务,如剪刀,竖刀等。(如下图)IT 辅助工具第二步:安装工作 一般我们都是通过光纤收容箱(如下图)来固定光纤的,将户外接来的用黑色保护外皮包裹的光纤从收容箱的后方接口放入光纤收容箱中。在光纤收容箱中将光纤环绕并固定好防止日常使用松动。

光纤收容箱 第三步:去皮工作 首先将黑色光纤外表去皮,(如下图)大概去掉1米长左右。 去黑皮接着使用美工刀将光纤内的保护层去掉。(如下图)要特别注意的是由于光纤线芯是用玻璃丝制作的,很容易被弄断,一旦弄断就不能正常传输数据了。

G652D光纤宏弯损耗测试方法(精)

G652D光纤宏弯损耗测试方法 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 光纤宏弯损耗测试,在国家标准GB/T9771.3-2008中描述为:光纤以30mm半径松绕100圈,在1625nm测得的宏弯损耗应不超过0.1dB。 而注2中描述:为了保证弯曲损耗易于测量和测量准确度,可用1圈或几圈小半径环光纤代替100圈光纤进行试验,在此情况下,绕的圈数环的半径和最大允许的弯曲损耗都应该与30mm半径100圈试验的损耗值相适应。 大多光纤厂家都提供Φ60mm*100圈的判断标准,然而,在日常的测试工作中,若要采用方便快捷的实验方法,则倾向于按照注2中的建议去进行一些常规判断。因此,掌握Φ32mm*1圈与Φ60mm*100圈的数据差异就十分有必要。 Φ32mm*1宏弯测试更为简便 两种宏弯损耗测试方法示意图如图1所示。 用上述方法对10盘正常生产条件下的光纤样品进行对比测试。 分别在1310nm、1550nm、1625nm三种波长下,对10盘光纤样品的宏弯平均值、标准偏差进行统计,最后将全部数据汇总,得到图2。 从整体数据汇总图可看出,Φ32mm*1宏弯测试方法所得数据的平均值和标准偏差都比Φ60mm*100的要小,且数据相对稳定,重复性好。当然所抽样品也不是完全都遵循此规律,10个样品中有3个样品在1625nm窗口下Φ32mm*1 所得数据的平均值大于Φ60mm*100所测得的;还有1个样品在1550nm、1625nm窗口下所得数据的标准偏差大于Φ60mm*100的。 10个样品用两种测试方法所得数据的平均值和标准偏差相差不大,处于一个数据等级内。Φ32mm*1的判断标准应考虑的与60mm*100比较接近。

光纤验收测试方法简介

光纤验收测试方法简介 前言 在光纤工程项目中必须执行一系列的测试以便确保其完整性,一根光缆从出厂到工程安装完毕,需要进行机械测试、几何测试、光测以及传输测试。前3个测试一般都是在工厂进行,传输测试则是光缆布线系统工程验收的必要步骤。 国家标准《GB 50312-2007综合布线工程验收规范(含条文说明)》中明确要求对综合布线工程进行验收测试:“综合布线工程电气测试包括电缆系统电气性能测试及光纤系统性能测试。电缆系统电气性能测试项目应根据布线信道或链路的设计等级和布线系统的类别要求制定。各项测试结果应有详细记录,作为竣工资料的一部分。” 布线系统测试可以从多个万面考虑,设备的连通性是最基本的要求;跳线系统是否有效可以很方便地测试出来;通信线路的指标数据测试相对比较困难,一般都借助专业工具进行。 但国标中对光纤链路测试方法的描述非常简单,未给出详细的测试方法,对于目前在工程中常用的光时域反射损耗测试(OTDR),国标中并未阐述。本文从光纤测试标准、测试参数、测试设备、测试方法等几个方面进行简单的介绍,希望能对工程验收提供帮助。 一、参照标准 在国际标准IEC 61746、TIA/EIA TSB-107等标准中对光纤测试如光功率,OTDR等做了明确的规定,布线系统测试可以参照这些标准进行: 《GB 50312-2007综合布线工程验收规范(含条文说明)》 《IEC 61350 功率计校准》 《IEC 61746 OTDR校准》 《G.650.1 单模光纤与光缆的线性、确定性属性的定义与测试方法》 《G.650.2 单模光纤与光缆的统计与非线性属性的定义与测试方法》 《IEC 60793》 《TIA/EIA TSB-107》 《TIA/EIA FOTP-169》 … 二、测试参数 光缆测试一般应执行以下几个重要参数: 端到端光纤链路损耗 每单位长度的衰减速率 熔接点、连接器与耦合器各个事件 光缆长度或者事件的距离 每单位长度光纤损耗的线性(衰减不连续性) 反射或者光回损(ORL) 色散(CD) 极化模式色散(PMD)

光纤损耗测试方法及其注意事项

1引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如下图上半部分)。设置参考值后,将被测链路接进来(如下图下半部分),进行测试。

光纤收发器测试方案

北京瑞斯康达科技发展有限公司RC系列光纤收发器设备 测试方案建议书 日期:2005年 4 月 26日 北京瑞斯康达科技发展有限公司

RC系列光纤收发器测试报告 此测试报告是关于10/100M自适应收发器的性能、功能测试以及对网管软件平台的功能。其中RC513/514-FE-XX具有N*32kbps带宽可控,支持远端网管功能单纤收发器。测试分四部分。 一、常规性能测试 二、收发器与交换机、路由器配合实现交换机、路由器链路备份功能 三、带宽限制与FTP测试 四、结合网管功能的测试 一、常规性能测试 1、测试内容及目的 本测试方案的主要目的是测试10/100M自适应以太网光纤收发器的稳定性、灵活性及恶劣环境下的传输能力。 ◆稳定性测试:在标准传输环境及恶劣传输环境下系统运行的稳定性。实现 方式是在系统测试时,100Base-T 的RJ-45接口使用60米~100米长的标准五类双绞线,100Base-FX的光接口在光路上模拟15dB~20dB的衰减,在此环境下测试系统运行效果。 ◆灵活性测试:测试系统对各种不同应用环境及不同网络设备联接的互联能 力。实现方式是测试时将网络设备的端口模拟成100Mbps全双工、自适应等各种模式,在此环境下测试系统的运行效果。 ◆传输能力:测试系统的有效传输能力。实现方式是在光纤收发器两端设备上模拟80% 的双向数据流量,在此负载下测试系统的丢包率。 2、测试环境

测试设备连接图: 3、测试过程 固定流程: ?PC机A:向B最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机B:向A最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机A:进入DOS环境,ping B的IP地址,64K字节,500次,统计丢包率。 ?PC机B:进入DOS环境,ping A的IP地址,64K字节,500次,统计丢包率。 ?填写测试记录表,如表1 1)、将PC机A的网卡配置为100Mbps,全双工;将PC机B的网卡配置为100Mbps,

光缆接续损耗及互联网测试计算方法

工信部颁YDJ44-89《电信网光纤数字传输系统施工及验收暂行规定》简称《暂规》,对光纤接续损耗的测量方法做了规定,但没有规定明确的标准。原信产部郑州设计院在中国电信南九试验段以后的工程中提出了中继段单纤平均接续损耗0.08dB/个的设计标准,以后的干线工程均沿用。 1、光纤衰减:1310nm波长,0.35dB/km;1490nm波长,0.22dB/km。 2、光活动连接器插入衰减:0.5dB/个(尾纤连接)。 3、光纤熔接接头衰减:束状光缆0.1dB/每个接头,带状光缆0.2db/每个接头。 4、冷接子双向平均值为0.15dB/每个接头。 互联网(Dedicated Internet Access)测试计算方法: 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit 1B=8b----------1B/s=8b/s(或1Bps=8bps) 1KB=1024B----------1KB/s=1024B/s 1MB=1024KB----------1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。然而我们可以按照换算公式换算一下: 128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

光纤测试方案

1.Power灯不亮 电源故障 2.LOS灯亮必有以下故障: (a)从机房到用户端的光缆已经断了; (b) SC尾纤与光纤收发器的插槽没有插好或者已经断开。 3.Link灯不亮可能有如下情况: (a)检查光纤线路是否断路 (b) 检查光纤线路是否损耗过大,超过设备接收范围 (c) 检查光纤接口是否连接正确,本地的TX 与远方的RX 连接,远方的TX 与本地的RX连接。 (d)检查光纤连接器是否完好插入设备接口,跳线类型是否与设备接口匹配,设备类型是否与光纤匹配,设备传输长度是否与距离匹配。 4.电路Link灯不亮故障可能有如下情况: (a)检查网线是否断路 (b) 检查连接类型是否匹配:网卡与路由器等设备使用交叉线,交换机,集线器等设备使用直通线。 (c) 检查设备传输速率是否匹配 5.网络丢包严重可能故障如下: (a)收发器的电端口与网络设备接口,或两端设备接口的双工模式不匹配。 (b)双绞线与RJ-45头有问题,进行检测 (c)光纤连接问题,跳线是否对准设备接口,尾纤与跳线及耦合器类型是否匹配等。 6. 光纤收发器连接后两端不能通信 (a)光纤接反了,TX和RX所接光纤对调 (b)RJ45接口与外接设备连接不正确(注意直通与绞接)光纤接口(陶瓷插芯)不匹配,此故障主要体现在100M带光电互控功能的收发器上,如APC插芯的尾纤接到PC插芯的收发器上将不能正常通信,但接非光电互控收发器没有影响。 7. 时通时断现象 (a)可能为光路衰减太大,此时可用光功率计测量接收端的光功率,如果在接收灵敏度范围附近,1-2dB范围之内可基本判断为光路故障 (b)可能为与收发器连接的交换机故障,此时把交换机换成PC,即两台收发器直接与PC连接,两端对PING,如未出现时通时断现象可基本判断为交换机故障

光纤测试步骤简介

光纤测试步骤简介 ◆总述 以太网联盟(Ethernet Alliance)要求参加此次测试的成员至少携带一只满足10GBASE-LRM标准的模块及其评估板。在下表中列出了参加本次测试的成员和每个成员所提供模块的封装信息,而Cisco则在此次测试中承担了东道主的义务。 测试成员 Company: Excelight, Intel, Fiberxon, Finisar, Opnext, Picolight, Fujitsu; Name of participants from Cisco ◆测试步骤 ★步骤一 .... 光纤的选择方法 用于LRM规范的光纤链路是依据IEEE建议的理论计算方法计算而得, 这样可以通过CSRS和TWDP测试来确定不同光纤的最大传输距离. 我们在测试中需要考虑到这些参数能用于复制和确保真实链路在不同模块下的性能表现。 因此,我们将通过TWDP和EMBW的测试来定义“realistic links”(包括99%已经安装了的FDDI,OM1,OM2,OM3光纤),并通过这些测试来挑选光纤和验证每一个发射端和光纤的组合是否满足10GBASE-LRM的标准。 (1) 计算出来的TWDP值不超过10GBASE-LRM标准的最大值(使用IEEE Matlab运算法则来计算,见68.6.6.2章节,光纤加扰器设置为0,1,0,0) ● 由于光纤的特性会随着光纤的摆动而动态变化,我们对所有光纤定义了最大的TWDP值4.2dB(这是10GBASE-LRM规定的最大值)。 (2) 要求最小EMBW值(EMBW在测试时应考虑其入射条件,并且要排除光模块发射端和接收端的影响) ● 10GBASE-LRM标准(table 68-2)规范了FDDI/OM1/OM2/OM3光纤的最小传输距离(220米)和最小MBW(500MHz*km),对应的EMBW为2.3GHz。这些值代表了现实中符合IEEE规范的最差链路。 由于链路特性在正常操作时也会发生变化(10GBASE-LRM标准定义了信道动态变化的最高频率为10Hz),为了测试更加准确,因此我们在测试中增加了一个偏振控制器来模拟光纤的动态变化。在每一次测试TWDP和EMBW时,偏振控制器都会被调节到各种状态。 一个激光器光源将会送PRBS9-1信号给待测模块的接收端,模块的接收端在收到信号后再环回到发射端,这样待测模块的发射端就符合10GBASE-LRM标

施工方案-光缆施工组织方案

5.3.4熔纤 5.3.4.1端面的制备 光纤端面的制备包括剥覆、清洁和切割这几个环节。合格的光纤端面是熔接的必要条件,端面质量直接影响到熔接质量. 光纤涂面层的剥除 纤涂面层的剥除,要掌握平、稳、快三字剥纤法。“平”,即持纤要平。左手拇指和食指捏紧光纤,使之成水平状,所露长度以5cm为准,余纤在无名指、小拇指之间自然打弯,以增加力度,防止打滑。“稳”,即剥纤钳要握得稳。“快”即剥纤要快,剥纤钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤右手,随之用力,顺光纤轴向平推出去,整个过程要自然流畅,一气呵成。 裸纤的清洁 观察光纤剥除部分的涂覆层是否全部剥除,若有残留,应重新剥除。如有极少量不易剥除的涂覆层,可用绵球沾适量酒精,一边浸渍,一边逐步擦除。 将棉花撕成层面平整的扇形小块,沾少许酒精(以两指相捏无溢出为宜),折成“V” 形,夹住以剥覆的光纤,顺光纤轴向擦拭,力争一次成功,一块棉花使用2~3次后要及时更换,每次要使用棉花的不同部位和层面,这样即可提高棉花利用率,又防止了探纤的两次污染。 裸纤的切割 裸纤的切割是光纤端面制备中最为关键的部分,精密、优良的切刀是基础,而严格、科学的操作规范是保证。 切刀的选择 切刀有手动(如日本CT—07切刀)和电动(如爱立信FSU—925)两种。前者操作简单,性能可靠,随着操作者水平的提高,切割效率和质量可大幅度提高,且要求裸纤较短,但该切刀对环境温差要求较高。后者切割质量较高,适宜在野外寒冷条件下作业,但操作较复杂,工作速度恒定,要求裸纤较长。熟练的操作者在常温下进行快速光缆接续或抢险,采用手动切刀为宜;反之初学者或在野外较寒冷条件下作业时,采用电动切刀。 操作规范 操作人员应经过专门训练掌握动作要领和操作规范。首先要清洁切刀和调整切刀位置,切刀的摆放要平稳,切割时,动作要自然、平稳、勿重、勿急,避免断纤、斜角、毛刺及裂痕等不良端面的产生。另外学会“弹钢琴”,合理分配和使用自己的右手手指,使之与切口的具体部件相对应、协调,提高切割速度和质量。 谨防端面污染 热缩套管应在剥覆前穿入,严禁在端面制备后穿入。裸纤的清洁、切割和熔接的时间应紧密衔接,不可间隔过长,特别是以制备的端面,切勿放在空气中。移动时要轻拿轻放,防止与其他物件擦碰。在接续中应根据环境,对切刀“V”形槽、压板、刀刃进行清洁,谨防端面污染。 5.3.4.2光纤熔接 光纤熔接是接续工作的中心环节,因此高性能熔接机和熔接过程中科学操作是十分必要的。 熔接机的选择 应根据光缆工程要求,配备蓄电池容量和精密度合适的熔接设备。按照经验,日本FSM—30S 电弧熔接机性能优良、运行稳定、熔接质量高,且配有防尘防风罩、大容量电池,适宜于各

OTDR进行光纤测量可分为三步

OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。人工设置测量参数包括: (1)波长选择(λ): 因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。 (2)脉宽(Pulse Width): 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。 (3)测量范围(Range): OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5~2 倍距离之间。 (4)平均时间: 由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min 的获得取提高0.8dB的动态。但超过10min的获得取时间对信噪比的改善并不大。一般平均时间不超过3min。

(5)光纤参数: 光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。这两个参数通常由光纤生产厂家给出。 参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。 2经验与技巧 (1)光纤质量的简单判别: 正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。 (2)波长的选择和单双向测试: 1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。在实际的光缆维护工作中一般对两种波长都进行测试、比较。对于正增益现象和超过距离线路均须进行双向测试分析计算,才能获得良好的测试结论。

插入法测光纤的平均损耗系数

实验一 插入法测光纤的平均损耗系数 一.实验目的 1.掌握插入法测量光纤损耗系数的原理 2. 熟悉光纤多用表的使用方法 二.实验原理 最精确的光纤损耗测量方法是剪断法,这种方法首先在光纤输出端(远端)测量光功率,然后在不改变入射条件的情况下,在离光源几米长的光纤处剪断,再测量近端光功率,如图1.1所示。 图1.1 剪断法测量光纤损耗的示意图 但是这种方法是破坏性的。在工程中往往需要非破坏性测量,因此更常用插入法测量光纤的损耗。插入法测量光纤损耗的装置如图1.2所示。 图1.2 插入损耗法测量光纤损耗 光源 (a )参考测量 光源 光纤活动连接器 2(b ) 被测光纤损耗测量 光源

光的发射和探测都通过光纤活动连接器连接。光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。首先,测量短光纤的输出功率 () mW P λ1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率()mW P λ2, 则光纤的总损耗为 ()() ()dB P P A λλ21lg 10= (1-1) A 实际上是被测光纤的损耗与连接器损耗之和。如果忽略连接器损耗,被测光纤的长度为L ,则光纤的损耗系数为 ()km dB L A =α (1-2) 对于多模光纤,不同的模式分布对损耗有很大影响。不同的发射条件,可产生不同的模式分布,因此有不同的光纤损耗值。解决办法是在光的注入系统加一个扰模器,使多模光纤在短的传播长度内达到稳态模分布。对于单模光纤,光的注入系统是一个剥模器,可以滤除单模光纤的包层模。 三.实验设备 AV2498光纤多用表、 1310nmLD 光源、 待测光纤、 光纤跳线 四.实验步骤 1.将1310nmLD 光源打开预热30分钟。 2. 在激光耦合进光纤的起始端,用一定长度的光纤跳线在扰模器上缠绕,达到稳定 的模式输出后,在光纤跳线的另一端测量或连接待测光纤。 3.将光纤多用表电源开关拨到"单开"位置。 4.光纤多用表调零 。调零是在最小量程下进行,按“平均”键后,在遮光下进行(盖 上光输入保护盖),按“调零”键即可。 5.测量方式的选择。用“波长”键设定波长为1310nm ,使之与被测波长相符。 6.按照图1.2(a)测出参考光功率P 0。将两端都带有标准FC/PC 活动接头的光纤跳线 的一端直接插入光纤多用表的光输入插座,另一端插入光源的光输出插座,测出参考光功率P 0。 7.按照图1.2(b)测出参考光通过待测光纤后的功率P S 。将待测光纤串到跳线的一端 和光纤多用表输入端之间,测出此时的功率P S 。 测试中可根据用户的习惯和测试特点随时按"W/dBm"键得到线性(W)、对数值(dBm)读数。 对数值(dBm)=10log(测量线性值/1mW) 8.算出光纤的损耗和损耗系数。 总损耗为:

相关文档