文档库 最新最全的文档下载
当前位置:文档库 › 仪器分析笔记 《原子吸收光谱法》

仪器分析笔记 《原子吸收光谱法》

仪器分析笔记 《原子吸收光谱法》
仪器分析笔记 《原子吸收光谱法》

第四章 原子吸收光谱法

——又称原子吸收分光光度法

§4.1 原子吸收分光光度法(AAS )概述

4.1.1 概述 1、定义

原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点

? 灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达 10—9 g /mL (某些元素可更高 )

? 几乎不受温度影响:由波兹曼分布公式00

q

E q q KT

N g e N g -=知,激发态原子浓度与基态原子浓度的比

值0q N N 随T ↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的0

1%q

N N 。也就是说,q N 随温度而强烈变化,而0N 却式中保持不变,其浓度几乎完全等于原子的总浓度。

? 较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。 RSD 1~2%,相对误差0.1~0.5%。

? 选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性

? 应用范围广:可测定70多种元素(各种样品中)。

? 缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作

①将试液喷入成雾状,挥发成蒸汽;

②用镁空心阴极灯作光源,产生波长285.2nm 特征谱线;

③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱;

④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 确定待测元素。

选择该元素相应锐线光源,发射出特征谱线。 试样在原子化器中被蒸发、解离成气态基态原子。

特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。 根据吸光度与浓度间线性关系,定量分析。 5、与发射光谱异同点

①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。

§4.2 原子吸收分光光度法的基本原理

4.2.1 原子对辐射能的吸收过程——共振线与吸收线

原子吸收光谱分析是通过测定基态原子对各元素共振线(一般为主共振线)的吸收来进

行定量分析的方法。 1、共枕线与吸收线

a 、共振发射线: 电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线 。

b 、共振吸收线: 电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线 。 对大多数元素来说,共振线也是元素最灵敏的谱线。

4.2.2 原子吸收光谱的轮廓 1、谱线轮廓

从能级跃迁的观点看,吸收线与发射线应是一条严格的几何线,但实际上有一定宽度的,其原因将在“谱线变宽”这个标题下讨论。

以~V K ν作图,得原子吸收线轮廓。

中心频率(峰值频率):曲线峰顶所对应的频率0ν,其数值决定于原子跃迁能级间的能量差,

即0=E h

ν?;

峰值吸收(中心吸收):峰顶所对应的吸收值; 中心吸收系数:峰顶所对应的吸收系数0K ;

谱线的半宽度:1

2

峰高处的频率范围0ν?。通常以ν?特征地表示谱线的宽度。

ν?与谱线自然宽度N ν?、多普勒变宽D ν?、洛仑兹变宽L ν?及共振变宽R ν?的关系:

()12

2

2

=D

N L R ννννν????+?+?+???

2、谱线变宽

(1)谱线的自然宽度N ν?

自然宽度(无外界影响时),谱线仍有一定宽度,这种宽度称为自然宽度。激发态原子的平均

表征吸收线轮廓(峰)的参数:

中心频率νO

(峰值频率); 最大吸收系数对应的频率或波0K ; 中心波长:λ(nm); 半宽度:ΔνO 。

寿命越长,宽度越小。

以波长表示自然宽度N ν?:

22

=

2N

N c c νλλνπτ

??= 式中——τ:激发态原子的平均寿命。 (2)多普勒变宽D ν?

多普勒变宽的起因是原子在空间作无规则的热运动,故又称热变宽。

当火焰中基态原子向光源方向运动时,由于 Doppler 效应而使光源辐射的波长增大,基态原子将吸收较长的波长;反之亦然。因此,原子的无规则运动 就使该吸收谱线变宽。

当处于热力学平衡时, Doppler 变宽可用下式表示:

7D 10νν-???

式中——D ν?:以频率表示的多普勒变宽;

0ν:谱线的中心频率; R :气体常数; T :绝对温度; c :光速;

A :被测元素的相对原子质量。

由上式可知,D ν?是决定谱线变宽程度的主要因素之一。在2000~3000K 范围内,其值一般

由于吸光原子与蒸气中原子或分子相互碰撞而引起的能级稍微变化,使发射或吸收光量子频率改变而导致的谱线变宽。根据与之碰撞的粒子不同,可分为两类:

①因和其它粒子(如待测元素的原子与火焰气体粒子)碰撞而产生的变宽——洛伦兹变宽,以ν?表示。

共振变宽只有在被测元素浓度较高时才有影响。在通常的条件下,压力变宽起重要作用的主要是洛伦兹变宽R ν?。

(4)自吸变宽

光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。灯电流越大,自吸现象越严重。 (5)场致变宽

4.2.3 原子吸收与原子浓度的关系

在分光光度法中,测量的是分子吸收,属于宽带吸收,其峰值宽度达几十个纳米。若由单色器得到的入射光范围在1个纳米左右,那么,它相对宽带吸收,就近似于单色的了。

在原子吸收中,吸收线的宽度很窄,要求入射光的宽度在0.01纳米以内,上述朗伯-比尔定律才能适用。为此,解决的途径:

①建立新的吸收理论——积分吸收原理 ②得到准单色光源——锐线光源 1、积分吸收

积分吸收是指吸收线轮廓下所包围的面积d V K ν?。根据经典色散理论可得:

2

200d =

2.6510V z K fN fN mc

πν-=??

式中——z 、m :电子的电荷及质量;

c :光速; f :振子强度;

0N :基态原子浓度,个数/cm 3。

由上式可知,若能求得积分吸收,则可求得原子浓度。

积分吸收虽然从理论上建立了原子吸收与浓度之间的正确关系,但要实现积分吸收的测量,在目前却是不可能的。因为要测量一条0.001~0.005nm λ?≈的谱线轮廓,以求得它的积分吸收,就要用分光装置将它分离出来,这要求单色器的分辨率应高达5×105级(现约为104级),目前还难以做到。

2、Walsh 测定原子吸收的方法——采用锐线光源测定峰值吸收 ? 锐线光源:

①光源的发射线与吸收线的0ν一致; ②发射线的1/2ν?小于吸收线的1/2ν?。 ? 空心阴极灯:可发射锐线光源(主共振线)。

图4-2-3 峰值吸收测量示意图

若将锐线光源发射的不同频率的光通过原子蒸气,其入射光强度为0I ,当通过长度为L 自由原子蒸气后,其透过光强度为I ,则根据Lambert —Beer 定律有:

0V K L I I e -= (a ) 式中——V K :原子蒸气对频率为ν的光吸收系数;

在通常的原子吸收分析条件下,若吸收线的轮廓仅取决于多普勒变宽,则:

0d V K K ν=

?

(b )

对于中心吸收,有:

0lg I

A I

= (c )

因此

lg 0.4343V K L V A e K L -== (d )

式中——A :吸收度;V K c ∝。 结合上述(a )~(d )得:

2000.8686ln 2

2.6510'D A fN L K N L νπ

-=

??=?

式中——N 0:待测元素的浓度;

该式表明,当使用很窄的锐线光源作原子吸收测量时,测得的吸光度与原子蒸汽中待测元素的基态原子数呈线性关系,因此,适当增加火焰的宽度可以提高测定的灵敏度。 3、原子吸收的测量:

吸光度与试液中待测元素的c 也成正比: A Kc =

K 包含了所有的常数。

此式称为Beer 定律,他指出在一定实验条件下,吸光度与浓度呈正比的关系。通过测定吸光度就可以求出待测元素的含量。这就是原子吸收分光光度分析的定量基础。

§4.3 原子吸收分光光度计

? 基本组成:光源+原子化系统+光学系统+电学系统(检测系统)

图4-3-1 原子吸收分光光度计基本构造示意图(1)、(2)

? 如果将原子化器看作是分光光度计中的比色皿,则其仪器的构造原理与一般的分光光度计是相

类似的。区别如下:

1、应用锐线光源作原子吸收的光源;

2、分光系统安排在火焰及检测器之间。避免来自火焰的辐射直接照射在光电检测器上,影响检测器的正常运转或使准确度降低;

3、为了区分光源(经原子吸收减弱后的光源辐射)和发射背景(火焰发射的辐射),应采用调制方式进行工作。

4.3.1 光源

1、光源应满足的条件:

①能辐射出半宽度比吸收线半宽度还窄的谱线(即锐线光源),并且发射线的中心频率应与吸收线的中心频率相同;

②辐射的强度应足够大;

③辐射光的强度要稳定,且背景小。

2、作用:提供待测元素的特征谱线——共振线。

3、类型:蒸汽放电灯、无极放电灯、空心阴极灯。

(一)空心阴极灯

1、构造:硬质玻璃管、石英窗口(波长小于350nm )或光学玻璃窗口(波长大于350nm )。

?阴极:钨棒作成圆筒形,筒内熔入被测元素;

?阳极:钨棒,装有钛、锆等金属作成的阳极;

?管内充气:氩或氖,称载气。

2、工作原理

①当在正负电极上施加适当电压(一般为200~500V)时,在正负电极之间便开始放电,这时,电子从阴极内壁射出,经电场加速后向阳极运动;

②运动的电子与载气(惰性气体)原子碰撞使惰性气体电离成为阳离子,阳离子在电场加速下,以很快的速度轰击阴极表面,使阴极内壁待测元素的原子溅射出来,在阴极腔内形成待测元素的原子蒸气云;

③蒸气云中的原子再与电子、惰性气体原子、离子发生碰撞而被激发,从而发射出所需频率的光。阴极发射出的光谱,主要是阴极元素的光谱(待测元素的光谱,另外还杂有内充惰性气体和阴极杂质的光谱)。

3、影响空心阴极灯光谱特性的主要因素

(1)阴极材料的性质:它决定于共振线的波长;

(2)内充气体(载气)的种类及压力:载气担负着携载电流、溅射或蒸发及激发阴极原子蒸气的三项任务。同时,载气压力太低,使灯失效;载气压力太高,引起洛仑兹变宽,且放电不稳定,因此,最好在130~670kPa范围内。同时,载气的性质决定于发射线的性质。一般用氖作内充气体,只是在氖光谱对空心阴极金属共振线产生光谱干扰时,才使用氩。

(3)灯电流:灯电流i与灯辐射线强度I的关系为

n

I ai

=

式中——n:与阴极材料、内充气体及选定谱线等相关的一个参数,对于氖及氩,2~3

n=;

a:比例常数。

由上式可见,在一定范围内增大灯电流,可提高激发线强度,改善稳定性。

4、多元素空心阴极灯:发射强度弱

5、无极放电灯:强度高。但制备困难,价格高。

6、空心阴极灯的优点:只有一个操作参数(即电流),发射的谱线稳定性好,强度高而宽度窄,并且容易更换。

(二)锐线光产生的原理

1、特征谱线的产生:在高压电场下, 阴极向正极高速飞溅放电, 与载气原子碰撞, 使之电离放出二次电子, 而使场内正离子和电子增加以维持电流。载气离子在电场中大大加速, 获得足够的能量, 轰击阴极表面时, 可将被测元素原子从晶格中轰击出来, 即谓溅射, 溅射出的原子大量聚集在空心阴极内, 与其它粒子碰撞而被激发, 发射出相应元素的特征谱线——共振谱线。

2、特征谱线为锐线。控制光源工作条件,减少谱线变宽。

(三)光源的调制

1、使用机械斩光器进行调制;

2、光源的电源调制:优点是除了比机械调制能更好地消除发射背景的影响外,还能提高共振线发射光强度及稳定性,降低噪声,并延长灯的使用寿命.因而近代仪器多使用这种调制办法.

4.3.2 原子化系统

原子化器是将样品中的待测组份转化为基态原子的装置。目前主要有火焰原子化、石墨炉原子化和低温原子化3种。

(一)火焰原子化器

1、定义:利用气体燃烧形成的火焰来进行原子化,火焰型的原子化系统叫做火焰原子化器。

2、分类:火焰原子化器有预混合型和全消耗型两种,以预混合型最常用。

3、结构:

①雾化器

?作用:将试样溶液分散为极微细的雾滴,形成直径约10μm的雾滴的气溶胶(使试液雾化)。

?要求:a、喷雾要稳定;

b、雾滴要细而均匀;

c、雾化效率要高;

d、有好的适应性。

?气动雾化器原理:

雾化器一般为同轴型圆筒状,即由两个同心毛细管组成。当由外管进入的助燃气以高速(可达音速)流出喷嘴时,会在内管口造成一负压,于是试液沿毛细管被吸入,并为高速气流冲击分散为雾滴。高速气流携载的雾滴与撞击球撞击后会进一步破碎为直径约10μm的气溶胶。

②燃烧器

?分类:“单缝燃烧器”、“三缝燃烧器”、“多孔燃烧器”。

③火焰

原子吸收所使用的火焰,只要其温度能使待测元素离解成自由的基态原子就可以了。如超过所需温度,则激发态原子增加,电离度增大,基态原子减少,这对原子吸收是很不利的。

1)火焰的组成:

空气—乙炔火焰:火焰温度达2500K,适用于缝长10~11cm、缝宽0.5~0.6mm的燃烧器;

N2O—乙炔火焰:火焰温度达3000K,适用于缝长5cm、缝宽0.46的燃烧器;

空气—氢气火焰:火焰温度达2300K,适用于三缝燃烧器。

2)火焰的类型:

化学计量焰:助燃气与燃气按其化学计量关系提供,温度高,适于多数元素原子化。

贫燃焰:燃气较少,(燃助比小于化学计量,约为1比6)。燃烧完全,黄色焰,温度较高,适于测定易解离、易电离的元素。适用于碱金属测定。

富燃焰:燃气较多,(燃助比大于化学计量)。燃烧不完全,蓝色焰,温度较低。具有还

原性,适于易形成难解离氧化物的元素测定 。Mo 、Cr 稀土等。 4、火焰原子化器的优缺点:

?

? 缺点:喷雾气体对试样稀释严重,待测元素易氧化,使原子化效率低,灵敏度下降。

(二) 电热原子化 (非火焰原子化器) 1、电热原子化器种类: (1)石墨炉原子化器 (2)碳棒原子化器 (3)金属原子化器 2、电热原子化过程

电热高温石墨炉原子化法原子化效率高,可得到比火焰大数百倍的原子化蒸气浓度。使灵敏度增加10~200倍,一般比火焰原子化法提高几个数量级。

特点:液体和固体都可直接进样;试样用量一般很少;但精密度差,相对偏差约为4~12%(加样量少)。

3、石墨炉原子化法

(1)结构:炉体+金属套+绝缘套圈+石黑管+外层水冷却

外气路中Ar 气体沿石墨管外壁流动,冷却保护石墨管;内气路中Ar 气体由管两端流向管中心,从中心孔流出,用来保护原子不被氧化,同时排除干燥和灰化过程中产生的蒸气。 (2)原子化过程

原子化过程分为干燥、灰化(去除基体)、原子化、净化(去除残渣)四个阶段,待测元素在高温下生成基态原子。

①干燥阶段——脱溶剂 ? 目的:去溶剂;

? 干燥温度:稍低于溶液沸点的温度下进行;

? 干燥时间:一般样品为试液微升数乘1.5~2.0秒。 ②灰化阶段

? 目的:蒸发除去有机物以及低沸点的基体元素;

? 灰化温度:待测元素没有明显损失下的最高温度(350~1200℃);

? 灰化时间:待测元素没有明显损失而可能产生干扰的基体物质尽可能挥发掉。 ③原子化阶段

? 目的:待测元素挥发并解离为气态原子;

? 原子化温度:测得最大吸收值的最低温度(2400~3000℃);

?原子化时间:待测元素挥发完全而残渣不挥发。

④净化阶段

?目的:除渣,净化石墨管

?净化温度:较原子化温度稍高,约3000℃

?净化时间:3-5秒

(3)石墨炉原子化方法——升温程序:台阶升温和斜坡升温

(4)石墨炉原子化法的优缺点

?优点:原子化程度高,试样用量少(5~100μL;20~40 μg),可测固体及粘稠试样,灵敏度高,检测极限10—12 g/L;

?缺点:重现性差,共存化合物可能产生干扰,装置复杂。

(5)火焰法和无火焰法的比较

4、低温原子化法(化学原子化法)

①氢化物原子化装置:对As、Sb、Bi、Sn、Ge、Se、Pb和Te等元素,将其还原成相应的氢化物,然后引入加热的石英吸收管内,使氢化物分解成气态原子,并测定其吸光度;

②冷原子化装置:将试液中的Hg离子用SnCl2还原为Hg,在室温下,用空气流将汞蒸气引入气体吸收管中测定其吸光度。

4.3.3 光学系统

1、外光路系统(或称照明系统):作用是光源发出的共振线能正确地通过原子蒸汽,并投射在单色器入射狭缝上。

2、分光系统(单色器):是将光源发射的未被待测元素吸收的特征谱线与邻近谱线分开。

3、通带宽度(W):指通过单色器出射狭缝通过的波长范围。当倒线色散率(D)一定时,可通过选择狭缝宽度(S)来确定:W=D S。

[讨论:如何选择W?]

? 光栅线色散率的倒数,也称倒线色散率(d λ/d l )。其物理意义为光谱成像在焦面上时,单位长

度(mm)所包含的波长(nm)范围。

? 单色仪的光谱通带和狭缝宽度的调节?

比如线色散倒数D 为0.2nm/0.1mm ,狭缝宽度S 为0.1mm ,光谱通通带W 是0.2nm ;线色散倒数尽可能的小较好,要使较大辐射能进入单色仪需采用较大的狭缝宽度,因此需要强色散元件以获得较小的光谱通带。

被测元素共振吸收线与干扰线波长相近时,选用W 要小;干扰线较远,可用大的W 。一般单

色器色散率一定,仅调整单色仪的狭缝宽度改变光谱通带W 。

4.3.4 检测系统(电学系统)

1、检测器:作用是将单色器分出的光信号进行光电转换。 在原子吸收分光光度计中常用光电倍增管作检测器,作为光电转换元件以产生合适测量的电流。

2、放大器:其作用是将光电倍增管输出的电压信号放大。

3、对数变换器

A 、对数转换

B 、曲线校直

C 、标尺扩展

D 、信号积分

4、显示系统:记录器、数字直读装置、电子计算机程序控制等。

4.3.5 原子吸收分光光度计的类型 1、单光束原子吸收分光光度计

结构简单、价廉;但易受光源强度变化影响,灯预热时间长,分析速度慢. 2、双光束原子分光光度计

一束光通过火焰,一束光不通过火焰,直接经单色器,此类仪器可消除光源强度变化及检测器灵敏度变动影响.

3、双波道或多波道原子分光光度计

使用两种或多种空心阴极灯,使光辐射同时通过原子蒸汽而被吸收,然后再分别引到不同分光和检测系统,测定各元素的吸光度值。

此类仪器准确度高,可采用内标法,并可同时测定两种以上元素。但装置复杂,仪器价格昂贵。

§4.4 分析方法的选择与应用

4.4.1 特征参数 1、灵敏度及特征浓度 A 、灵敏度

灵敏度(S )指在一定浓度时,测定值(吸光度)的增量(d A )与相应的待测元素浓度(或质量)的增量(d c 或d m )的比值:

d d A S c =或d d A

S m

=

可见,S 即为分析校准曲线的斜率。 B 、特征浓度(火焰原子吸收法)

能产生1%吸收或0.00434吸光度时,试液中待测元素的浓度(单位:μg .mL -1/1%):

()00.00434 μg /mL /1%x

x c c A =???? 式中——c x :试液中待测元素的浓度(μg /mL );A :试液的吸光度。

C 、特征质量(石墨炉原子吸收法)

能产生1%吸收或0.00434吸光度时,所对应的待测元素的质量(单位:g/1%):

()00.00434 μg /g /1%x

x

m m A =

????

指能产生一个能够确证在试样中存在某元素的分析信号所需要的该元素的最小含量。它以被测元素能产生三倍于标准偏差的读数时的浓度来表示:

[]3 μg/mL c c

D A σ=?

[]3 μg/g m m

D A

σ=?

式中——A :多次测的吸光度的平均值;σ:空白溶液吸光度的标准偏差,对空白溶液,至少4.4.2 测定条件的选择 1、分析线

一般选待测元素的共振线作为分析线,测量高浓度时,也可选次灵敏线。 2、空心阴极灯电流

在保证有稳定和足够的辐射光通量的情况下,尽量选较低的电流(最大电流的12

~23

为工作电

流)。 3、火焰

依据不同试样元素选择不同火焰类型。 4、观测高度

调节观测高度(燃烧器高度),可使光束通过自由原子浓度最大的火焰区,灵敏度高,观测稳定性好。

5、光谱通带(可调节狭缝宽度改变)

无邻近干扰线(如测碱及碱土金属)时,选较大的通带,反之(如测过渡及稀土金属),宜选较小通带。

4.4.3 定量分析方法

原子吸收光谱法是一种元素定量分析方法,它可以用于测定70多种金属元素和一些非金

属元素的含量。

一、标准曲线法(校准曲线法) 1、方法:

配制一组含有不同浓度被测元素的标准溶液,在与试样测定完全相同的条件下,按浓度由低到高的顺序测定吸光度值。绘制吸光度对浓度的校准曲线。测定试样的吸光度,从校准曲线上用内插法求出被测元素的含量。

2、特点:该法简便、快速,但仅适用于组成简单、干扰较少的试样.

3、偏差:在实际分析中,有时出现标准曲线弯曲的现象,浓度高时曲线向浓度坐标弯曲.

(1)配制标准溶液时,应尽量选用与试样组成接近的标准样品,并用相同的方法处理。如用纯待测元素溶液作标准溶液时,为提高测定的准确度。可放入定量的基体元素; (2)应尽量使得测定范围在T =30~90%之间(即A=0.05~0.5),此时的测量误差较小; (3)每次测定前必须用标准溶液检查,并保持测定条件的稳定; (4)应扣除空白值,为此可选用空白溶液调零。 二、标准加入法 1、方法:

取若干份体积相同的试液(c x ),依次按比例加入不同量的待测物的标准溶液(c 0),定容后浓度依次为:c x ,c x +c 0,c X +2c 0,c x +3c 0,c x +4 c 0 ……。 然后分别测得吸光度为:A x ,A 1,A 2,A 3,A 4……。

以A 对浓度增量c 做图得一直线,图中

0x

2、注意事项:

①待测元素浓度与对应的吸光度应呈线性关系; ②最少应采用4个点来作外推曲线;

③本法能消除基体效应带来的影响,但不能消除背景吸收的影响; ④对于斜率太小的曲线(灵敏度差),误差较大。

4.4.4 应用

原子吸收分光光度法应用广泛,微量金属元素测定的首选方法(非金属元素可采用间接法

测量)。

1、头发中微量元素的测定—微量元素与健康关系

? 微波消解—原子吸收光谱法测定头发中多种金属元素 2、水中微量元素的测定—环境中重金属污染分布规律 ? 石墨炉原子吸收光谱法测定涉水产品中镍;

? 吐温-80存在下火焰原子吸收光谱法测定化妆品中铅。 3、水果、蔬菜中微量元素的测定

? 微波消解-火焰原子吸收光谱法测定黄花菜、薇菜和核桃仁中的铜、锌、铁、锰; ? 火焰原子吸收光谱法测定辣椒中的铁、锌、锰。 4、矿物、合金及各种材料中微量元素的测定

? 从吸食前后香烟中微量元素含量的变化看吸烟的危害; 5、各种生物试样中微量元素的测定 ? 葱属类植物微量元素的测定;

? 微波消解-石墨炉原子吸收光谱法测定鱼粉中的镉和铬。

§4.5 干扰及其抑制

4.5.1 概述

总的说干扰是较小的,这是由方法本身的特点所决定的。因为用的是锐线光源,应用的是共振吸收线,吸收线的数目比发射线数目少得多,谱线相互重叠的几率较小,这是光谱干扰小的重要原因。蒸汽中基态原子数近似地等于总原子数,这是干扰小的一个基本原因。

实际工作中仍不可忽视干扰问题,甚至还很严重。

※类型:

1、光谱干扰:谱线重叠干扰、背景干扰;

2、非光谱干扰:物理干扰、化学干扰、电离干扰。

4.5.2 光谱干扰——主要来自光源和原子化器.

1、与光源有关的光谱干扰

光源在单色器的光谱通带内存在与分析线相邻的其它谱线.

A、与分析线相邻的是待测元素谱线:减小狭缝宽度来改善或消除这种影响

由于这些谱线不被待测元素所吸收,所以会导致测定灵敏度下降,工作曲线弯曲。

B、与分析线相邻的是非待测元素的谱线:选用高纯元素灯

如果这根谱线是待测元素的非吸收线,同样会使待测元素的灵敏度下降,工作曲线弯曲;

如果这根谱线是待测元素的吸收线,而当试样中又含有这个元素时,将产生“假吸收”,产生正误差。

另外,若空心阴极灯中有连续背景发射,不仅使灵敏度降低,工作曲线弯曲,而且若试样中共存元素吸收线处于该发射区时,有可能产生假吸收.灯的连续背景发射是由于灯的制作不良,或长期不用而引起的;——纯化灯内气体或换灯.

2、光谱线重叠干扰:分析线可能与干扰元素的某谱线重叠——另选分析线

4.5.3 原子化器的干扰

1、原子化器的发射:来自火焰本身或原子蒸汽中待测元素的发射—采用调制方式可避免;

2、背景吸收(分子吸收):来自原子化器的一种光谱干扰。它是由气态分子对光的吸收以及高浓度盐的固体微粒对光的散射所引起的。是一种宽频带吸收。

A、火焰成分对光的吸收:波长愈短,火焰成分的吸收愈严重.

这类干扰对分析结果影响不大,一般可通过零点调节来消除,但影响信号的稳定性.

B、金属的卤化物、氧化物以及部分硫酸盐和磷酸盐分子对光的吸收.

在低温火焰中,它们的影响较明显;

在高温火焰中,由于分子分解而变得不明显.

C、固体微粒对光的散射:是由于基体成分进入原子化器,这些基体成分在原子化过程中形成烟雾 可见:背景吸收主要由于在火焰中形成了分子或较大的质点,

因此除了待测元素吸收共振线外,火焰中的这些物质—分子和盐类,也吸收或散射光线,引起了部分共振发射线的损失而产生误差.

这种影响一般是随波长的减短而增大,同时随基体元素浓度的增加而增大,并与火焰条件有关.

无火焰原子化器具有严重得多的分子吸收,测量时必须予以校正.

、背景吸收的校正:

a、邻近线校正法:因为背景吸收是宽频带吸收,因此若有可能,可以测量与分析线邻近的非吸收线的吸收(即背景吸收),再从分析线的总吸收中扣除非吸收线的吸收;

b、用与试样溶液有相似组成的标准溶液来校正;

c、用分离基体的办法来消除影响;

d、采用氘灯背景校正器,可不必考虑共振线吸收的影响;

e、塞曼效应背景校正法是另一种有效背景校正。

4、氘灯扣背景(190-350 nm)

氘灯自动背景校正原理:氘灯发射的连续光谱经过单色器的出光狭缝后,出射带宽约为0.2nm 的光谱通带(带宽取决于狭缝宽度和色散率);空心阴极灯发射线的宽度一般约为0.002nm;

测量前调制:在测定时,如果待测元素原子产生一正常吸收,则从连续光源氘灯发出的辐射在共振线波长处也被吸收,但由于所观察的谱带宽度至少有0.2nm ,因此,在相应吸收线处宽度约为0.002nm 的辐射即使被100% 吸收最多也只占辐射强度的1% 左右,故可忽略不计;

因此可合理地认为,用氘灯作光源,测得的吸收值是背景吸收值,而不必考虑共振线吸收的影响.

测量时,使空心阴极灯和氘灯所发射的光束位于同一光轴而通过原子蒸汽的相同部位.二灯分别以500Hz和1000Hz脉冲电源供电,因此检测器的输出是两种不同频率信号的和.该信号经放大后用两个同步检测器进行分离,最后由减法器得到该两信号的差.

※缺点:a、应用的波长范围较窄,一般为190-360nm;

b、背景校正能力较弱。

5、塞曼效应校正法

塞曼效应—将光源置于强大的磁场中时,光源发射的谱线在强磁场作用下,因原子中能级发生分裂而引起光谱线分裂的磁光效应(塞曼效应),背景校正比氘灯连续光源背景校正优越,可在各波长范围内进行,背景校正的准确度高。

4.5.4 物理干扰(基体效应)

1、产生:是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应.这类干扰是非选择性的,亦即对试样中各元素的影响基本上是相似的。

2、干扰因素:

A、试液的粘度:影响试液喷入火焰的速度;

B、表面张力:影响雾滴的大小及分布;

C、溶剂的蒸汽压:影响蒸发速度和凝聚损失;

D、雾化气体的压力:影响喷入量的多少;等等。

3、消除:配制与待测试样具有相似组成的标准溶液,是消除基体干扰的常用而有效的方法。

4.5.5 化学干扰

1、产生:是指待测元素与其他组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率。这类干扰具有选择性。化学干扰是原子吸收分光光度法中的主要干扰来源。

2、干扰因素:

①待测元素与共存组分生成难挥发的化合物,致使参与吸收的基态原子数减少;

②电离是化学干扰的又一重要形式。

3、抑制方法:抑制干扰是消除干扰的理想方法。在标准溶液和试样溶液中均加入某些试剂,常可控制化学干扰。

①消电离剂:加入较大量的易电离元素(如钠、钾、铷、铯),使在火焰中强烈电离而消耗了能量,减少待测元素基态原子的电离;

②释放剂:与干扰组分形成更稳定的或更难挥发的化合物,使待测元素释放出来(如加入La或Sr将钙从磷酸盐中释放出来);

③保护剂:这些试剂的加入,能使待测元素不与干扰元素生成难挥发化合物(为了消除磷酸盐对钙的干扰,加入EDTA使钙生成易于原子化的EDTA-Ca而消除了磷酸盐对钙的干扰);

④缓冲剂:于试样与标准溶液中均加入超过缓冲量(即干扰不再变化的最低限量)的干扰元素;

(如:测钛时,在试样和标准溶液中都加入质量分数为2x10-4以上的铝,使铝对钛的干扰趋于稳定)

⑤还可用标准加入法来控制化学干扰;

⑥可考虑用沉淀法、离子交换、溶剂萃取等分离方法,将干扰组分与待测元素分离。

4.5.6 有机溶剂的影响

有机溶剂会改变火焰温度和组成,因而影响原子化效率;溶剂的产物会引起发射及吸收,有机溶剂燃烧不完全将产生微粒碳而引致散射,因而影响背景等。有机溶剂既是干扰因素之一,但也可用来有效地提高测定灵敏度。

常见仪器分析方法的缩写、谱图和功能说明

常见仪器分析方法得缩写、谱图与功能说明

A AAS 原子吸收光谱法 AES 原子发射光谱法 AFS 原子荧光光谱法 ASV 阳极溶出伏安法?ATR 衰减全反射法?AUES俄歇电子能谱法 C CEP 毛细管电泳法?CGC毛细管气相色谱法?CIMS 化学电离质谱法 CIP 毛细管等速电泳法 CLC毛细管液相色谱法 CSFC 毛细管超临界流体色谱法?CSFE 毛细管超临界流体萃取法?CSV 阴极溶出伏安法?CZEP 毛细管区带电泳法

D DDTA导数差热分析法?DIA注入量焓测定法 DPASV 差示脉冲阳极溶出伏安法 DPCSV差示脉冲阴极溶出伏安法 DPP 差示脉冲极谱法?DPSV 差示脉冲溶出伏安法?DPVA差示脉冲伏安法?DSC 差示扫描量热法 DTA差热分析法 DTG差热重量分析法 E?EAAS电热或石墨炉原子吸收光谱法 ETA 酶免疫测定法?EIMS 电子碰撞质谱法 ELISA酶标记免疫吸附测定法 EMAP 电子显微放射自显影法?EMIT酶发大免疫测定法?EPMA 电子探针X射线微量分析法 ESCA 化学分析用电子能谱学法 ESP 萃取分光光度法 F?FAAS 火焰原子吸收光谱法 FABMS 快速原子轰击质谱法 FAES 火焰原子发射光谱法 FDMS 场解析质谱法 FIA流动注射分析法 FIMS场电离质谱法?FNAA 快中心活化分析法?FT-IR傅里叶变换红外光谱法 FT-NMR傅里叶变换核磁共振谱法?FT—MS傅里叶变换质谱法?GC 气相色谱法?GC—IR 气相色谱—红外光谱法?GC—MS气相色谱-质谱法?GD-AAS 辉光放电原子吸收光谱法?GD-AES 辉光放电原子发射光谱法

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

最新《仪器分析》知识点整理

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M* 发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。M*→M+hv 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 第6章原子吸收光谱法(P130) 熟识: 原子吸收光谱产生的机理以及影响原子吸收光谱轮廓的因素 了解: 原子吸收光谱仪的基本结构;空心阴极灯产生锐线光源的原理 掌握:火焰原子化器的原子化历程以及影响因素、原子吸收光谱分析干扰及其消除方法、AAS测量条件的选择及定量分析方法(实验操作) 1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。 原子吸收光谱位于光谱的紫外区和可见区。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收;③具有良好的稳定性和重现形; ④操作简单及低的干扰水平等。 1.测量条件选择 ⑴分析线:一般用共振吸收线。 ⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。 ⑶灯电流:按灯制造说明书要求使用 ⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值 ⑸进样量:(主要指非火焰方法) 2.分析方法 (1).工作曲线法 最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。 ⑵. 标准加入法 精品文档

仪器分析知识点复习

第一章绪论 1.解释名词:(1)灵敏度(2)检出限 (1)灵敏度:被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。(2)检出限:一定置信水平下检出分析物或组分的最小量或最小浓度。 2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的(C )。 A.1倍 B.2倍 C.3倍 D.4倍 3.书上第13页,6题,根据表里给的数据,写出标准曲线方程和相关系数。 y=5.7554x+0.1267 R2=0.9716 第二章光学分析法导论 1. 名词解释:(1)原子光谱和分子光谱;(2)发射光谱和吸收光谱;(3)线光谱和带光谱; (1)原子光谱:原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。 分子光谱:分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。 (2)吸收光谱:当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。 发射光谱:处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,

产生电磁辐射。 (3)带光谱:除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。 线光谱:物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱。其谱线的宽度约为10-3nm,称为自然宽度。 2. 在AES、AAS、AFS、UV-Vis、IR几种光谱分析法中,属于带状光谱的是UV-Vis、IR,属于线性状光谱的是AES、AAS、AFS。 第三章紫外-可见吸收光谱法 1. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?两者之间的关系是什么? 2. 有色配合物的摩尔吸收系数与下面因素有关系的是(B) A.吸收池厚度 B.入射光波长 C.吸收池材料 D.有色配合物的浓度 3. 物质的紫外-可见吸收光谱的产生是由于(B) A.分子的振动 B. 原子核外层电子的跃迁 C.分子的转动 D. 原子核内层电子的跃迁 4. 以下跃迁中那种跃迁所需能量最大(A) A. σ→σ* B. π→π* C. n→σ* D. n→π* 5. 何谓生色团和助色团?试举例说明。 从广义来说,所谓生色团,是指分子中可以吸收光子而产生电子跃迁的原子基团,人们通常将能吸收紫外,可见光的原子团或结构系统定义为生色团。此类基团为具有不

现代仪器分析知识点总结

现代仪器分析 绪论: 1仪器分析定义:现代仪器分析就是以物质的物理性质或物理化学性质及其在分析过程中所产生的分析信号与物质的内在关系为基础,借助比较复杂或特殊的现代仪器,对待测物质进行定性、定量及结构分析与动态分析的一类分析方法。2仪器分析的特点:灵敏度高,试样用量少;选择性好;操作简便,分析速度快,自动化程度高;用途广泛,能适应各种分析要求;相对误差较大。需要价格比较昂贵的专用仪器。3仪器分析包括:光分析法;分离分析法;电化学分析法;分析仪器联用技术;质谱法。4光分析:光分析法就是利用待测组分的光学性质(如光的发射、吸收、散射、折射、衍射、偏振等)进行分析测定的一种仪器分析方法。5光谱法包括:紫外/可见吸收光谱法;原子吸收光谱法;原子发射光谱法;分子发光分析法;拉曼光谱法;红外光谱法。6电化学分析法:电化学分析法就是利用待测组分在溶液中的电化学性质进行分析测定的一种仪器分析方法。7电化学分析法包括:电导分析法;电位分析法;极谱与伏安分析法;电解与库仑分析法。8分离分析法:利用物质中各组分间的溶解能力、亲与能力、吸附与解吸能力、渗透能力、迁移速率等性能的差异,先分离后分析测定的一类仪器分析方法。分离分析法包括:超临界流体色谱法;气相色谱法;高效液相色谱法;离子色谱法;高效毛细管电泳法;薄层色谱法。9质谱法:质谱法就是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置与质谱线的相对强度建立的分析方法称为质谱法。10联用分析技术:已成为当前仪器分析的重要发展方向。将几种方法结合起来,特别就是分离方法(如色谱法)与检测方法(红外吸收光谱法、质谱法、原子发射光谱法等)的结合,汇集了各自的优点,弥补了各自的不足,可以更好地完成试样的分析任务。气相色谱—质谱法(GC—MS)、气相色谱—质谱法—质谱法(GC—MS—MS)、液相色谱—质谱法(HPLC—MS)。11仪器分析方法的主要评价指标:精密度(Precision) ;准确度(Accuracy);选择性(Specificity);标准曲线(Calibration Curve);灵敏度(Sensitivity);检出限(Detection Limit)。12精密度:指在相同条件下用同一方法对同一样品进行多次平行测定结果之间的符合程度。同一人员在相同条件下测定结果的精密度—重复性、不同人员在不同实验室测定结果的精密度—再现性。13准确度:指测定值与真值相符合的程度。准确度常用相对误差Er来描述; Er越小,准确度越高。准确度就是分析过程中系统误差与随机误差的综合反映,准确度愈高分析结果才愈可靠。14选择性:指分析方法不受试样中基体共存物质干扰的程度。选择性越好,即干扰越少。15标准曲线:就是待测物质的浓度(或含量)与仪器响应(测定)信号的关系曲线。标准曲线的直线部分所对应的待测物质浓度(或含量)的范围称为该方法的线性范围。16灵敏度:待测组分单位浓度或单位质量的变化引起响应信号值的变化程度,用b表示。指在浓度线性范围内标准曲线的斜率。斜率越大,方法的灵敏度就越高。17检出限:指某一分析方法在给定的置信度能够被仪器检出的待测物质的最低量。D=3S0/b;S0—空白信号(仪器噪声)的标准偏差、b—分析方法的灵敏度(标准曲线的斜率)、3—IUPAC建议在一定置信度所确定的系数。检出限就是方法的灵敏度与精密度的综合指标,方法的灵敏度越高,精密度越好,检出限就越低。精密度、准确度及检出限就是评价仪器性能及分析方法的最主要技术指标。 第一章光分析法导论 1光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法。电磁辐射范围:射线~无线电波所有范围、相互作用方式:吸收、发射、散射、反射、折射、干涉、衍射与偏振等。光分析法在研究物质组成、结构表征、表面分析等方面具有其她方法不可取代的地位。2电磁辐射的波粒二象性:光在传播时主要表现出波动性,可用波长(或波数)、频率υ描述;在与其她物质相互作用时,主要表现出粒子性,可用能量描述。3光的吸收:M + 光子→M*当光与物质接触时,某些频率的光被选择性

仪器分析知识点总结

1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法; 光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号。 光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不 涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。 光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器;显示与数据处理; 2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。 原子发射光谱分析法的特点: (1)可多元素同时检测各元素同时发射各自的特征光谱; (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪); (3)选择性高各元素具有不同的特征光谱; (4)检出限较低(5)准确度较高10?0.1 g x g-1(—般光源);ng x g-1(ICP ) 5%?10% (一般光源) ; <1% (ICP) ; (6)ICP-AES性能优越线性范围4?6数量级,可测高、中、低不同含量试样; 缺点:非金属元素不能检测或灵敏度低。 3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。 特点: (1)检出限低,10-10 ?10-14 g; (2)准确度高,1%?5%; (3)选择性高,一般情况下共存元素不干扰; (4)应用广,可测定70多个元素(各种样品中) ; 局限性:难熔元素、非金属元素测定困难、不能同时多元素测量 4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器)则在观察者看来,其频率较静止原子所发的频率低,反之,高。 5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10-8s 后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90 度的方向上,测定荧光强度进行定量分析的方法。 6、分子荧光分析法:某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。 特点: (1)灵敏度高 比紫外-可见分光光度法高2? 4 个数量级;为什么? 检测下限:0.1?0.1 g/cm -3 相对灵敏度:0.05mol/L 奎宁硫酸氢盐的硫酸溶液。 (2)选择性强 既可依据特征发射光谱,又可根据特征吸收光谱; (3)试样量少 缺点:应用范围小。 7、分子磷光分析法:处于第一最低单重激发态分子以无辐射弛豫方式进入第一三重激发态,再跃迁返回基态发出磷光。测定磷光强度进行定量分析的方法。 8、X射线荧光分析法:原子受高能辐射,其内层电子发生能级跃迁,发射出特征X射

各种仪器分析的原理及选择

1. 仪器名称:X射线荧光光谱仪 基本功能: 对样品作无机元素的定性定量分析,可分析元素范围为:5B~92U。 仪器用途: 该仪器对分析样品要求低,固体块状,粉状,金属等都可直接分析,而不需要溶样、分 析速度快。不损坏样品;故广泛用于新型材料,钢铁冶金、有色金属、化工、环境、电子等部门。 2. 仪器名称:扫描俄歇微探针(SAM); 基本功能: (1)可进行样品表面的微区选点分析(包括点分析,线分析和面分析); (2)可进行深度分析; (3)化学价态研究 用途:纳米薄膜材料,微电子材料的表面和界面研究及摩擦化学研究。 3. 仪器名称:X射线光电子能谱(XPS) 基本功能: (1)样品的表面组成分析,化学状态分析,取样深度为~3 nm; (2)元素成分的深度分析(角分辨方式和氩离子刻蚀方式); (3)可进行样品的原位处理; 用途:纳米薄膜材料,微电子材料, 催化剂,摩擦化学,高分子材料的表面和界面研究的表面和界面研究及摩擦化学研究 4.

仪器名称:四圆X射线衍射仪 基本功能: 通过测定大量(几千甚至上万条)衍射线的方向和强度,确定晶体结构在三维空间中的重复周期(即晶胞参数)和晶胞中每个原子的三维坐标,可准确地测定样品的分子和晶体结构。用途:在化学、物理学、生物学、材料科学以及矿物学等领域中都有广泛而重要的应用,是认识物质微观结构的重要工具。 5. 仪器名称:多晶X射线衍射仪 基本功能: 多晶样品的物相分析和定量分析,室温至12000C物相分析,晶胞参数的测定,修正,多晶X射线衍射的指标化,晶粒尺寸和结晶度测定。 用途:在化学、物理学、生物学、材料科学以及矿物学等领域中都有广泛应用。 6. 仪器名称:透射电子显微镜 主要功能及应用范围: 透射电子显微像;选区电子衍射;扫描透射及扫描像;微区成份分析;反射衍射及高分辨衍射;对各种固体材料作显微形貌、电子衍射、化学成份分析。可获得较高的图象分辩率,又可作分析显微技术方面的工作。 7. 仪器名称:扫描电子显微镜 主要功能及应用范围: 二次电子象,背散射电子象,图象处理及分析,能做各种固体材料样品表面形貌及组织结

现代仪器分析重点笔记

仪器分析和化学分析的区别:从原理看。根据化学反应及计量关系。根据物质的物理 或物理化学性质、参数及变化规律。从仪器看。主要为简单玻璃仪器。较复杂、特殊 的仪器。从操作看。多为手工操作、较繁琐。多为开动仪器开关、操作简单易实现自 动化。从试样看。样量多,破坏性分析。样量少、有的非破坏性分析,可现场或在线 分析。从应用看。常量分析、定性、定量。微量、痕量的组分分析,状态、结构等分析。 比较原子光谱和分析光谱。原子光谱:由于原子外层电子能级发生变化而产生的辐射 或吸收的光谱。分子光谱:由于分子中电子能级、分子振动能级、分子转动能级发生 变化而产生的辐射或吸收的光谱。原子光谱特征:线光谱。分子光谱特征:带状光谱 或连续光谱。 比较吸收光谱与发射光谱。吸收光谱:物质中分子、原子及强磁场中的原子核吸收了 特定的光子后,由低能态跃迁至高能态,将所吸收的光辐射记录下来得到的光谱。分 为分子吸收光谱、原子吸收光谱、核磁共振光谱。发射光谱:吸收了光能处于高能态 的分子或原子其寿命很短,当它们回到基态或较低能态时重新以光辐射形式释放出来 由此获得的光谱。分为原子发射光谱、分子发射光谱、X-射线发射光谱。发射光谱特征:在暗背景上有明亮的谱线或谱区。吸收光谱特征:在连续的亮背景上有有暗线或 暗区。 光分析法优点。检测的选择性和灵敏度有了很大提高;大大冯妇了检测信息量,增强 了多组分同时检测的能力;应用范围不断扩大。 原子发射光谱优缺点。多元素同时检测能力;灵敏度高;选择型好;准确度较高;试 样用量少,测定范围广。有一定的局限性,它一般只用于元素总量分析,而无法确定 物质的空间结构和官能团,也无法进行元素的价态和形态分析,而且一些常见的非金 属元素谱线在远紫外区,目前一般的光谱仪尚无法检测。 气象色谱法特点。选择性高;灵敏性高;分离效能高;分析速度快;应用范围广。 原子吸收光谱法的优缺(AAS):优:灵敏度高。选择性好。精密度和准确度高。测 定元素多。需样量少,分析速度快。缺:测定不同元素用不同的灯更换不太方便。价 格比较昂贵。对多数非金属元素还不能直接测定。 紫外—可见吸收光谱法特点(UV-VIS):灵敏度高:适于微量组分的测定。准确度较高:1%--5%。方法简便:操作容易,设备简单,分析速度快。应用广泛:定量分析,结构分析。

常用仪器分析方法概论.

第十三* 常用仪分析方法轨淹 第一节仪器分析简介 仪器分析法是通过测定物质的光、电、 磁等物理化学性质来确定其化学组 含量和化学结构的分析方法。 热、 - \ 6 *豪

方法试样质!n/mg试液体积/mL 常量分析>100>10 半微量分析10~1001~10 微量分析0?1~100.1-1 超微量分析<0.1<0.01 ?灵敏度高,检出限量可降低.样品用量由化学分析的mL、mg级降低到pg、|1L级,S至至低。适合于微量、痕量和超痕量成分的测定。 ?选择性好:仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 ?操作简便,分析速度快,容易实现自动化。 ?相对误差较大:化学分析一般用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。

?需要价格比较昂贵的专用仪器。

仪器分析与化学分析关系 仪器分析是在化学分析基础上的发展 -不少仪器分析方法的原理,涉及到有关化学分析的基本理论; -不少仪器分析方法,还必须与试样处理、分离及掩蔽等化学分析手段相结合,才能完成分析的全过程。 -仪器分析有时还需要采用化学富集的方法提高灵敏度; -有些仪器分析方法,如分光光度分析法,由于涉及大量的有机试剂和配合物化学等理论,所以在不少书籍中,把它列入化学分析。 仪器分析与化学分析关系 ?应该指出,仪器分析本身不是一门独立的学科,而是务种仪器方法的组合。这些仪器方法在化学学科中极其重要,已不单纯地应用于分析的目的,而是广泛地应用于研究和解决各种化学理论和实际问题。因此,将它们称为“化学分析中的仪器方法' 更为确切。 4和滞 Vi

仪器分析各章知识点

各章知识要点 第2章气相色谱分析 1.色谱法的分类(按两相状态) 2.何为GC法,GC定性定量的依据、定量方法及优缺点 3.GC分离原理(包括GSC法和GLC法) 4.气相色谱仪的构造 5.色谱流出曲线及其作用、色谱术语及换算关系 6.分配系数K和分配比k的定义、二者的异同点及相关计算 7.塔板理论的作用(包括H的n计算) 8.速率理论方程的作用(包括U最佳、Hmin的计算) 9.R的含义、作用 10.检测器的性能指标、四种检测器的适用特点及英文缩写 11.归一化法的使用条件、原理 12.内标法及内标物具备的条件 13.外标法的具体操作 第4章电位分析法 1.电化学分析法、电位分析法、电位滴定法的定义。 2.电位分析法的测定依据。 3.电位测定法如何测定溶液的pH值(包括计算)。 4.指示电极、参比电极。 5.电位滴定法的原理及终点确定方法(重点掌握E/V曲线法和ΔE/ΔV—V 法及相关计算)。 6.电位滴定法的优点。 第5章伏安分析法 1.极谱分析法及其特殊条件 2.极谱图及作用、极谱图上的各参数的定义及意义和作用 3.极谱分析定性定量的依据,半波电位的特性 4.极谱分析中的干扰及其消除方法 5.迁移电流 6、极谱分析的底液及其组成,各种物质的作用 7、极谱分析定量方法及其相关计算 8、单扫描极谱图的特征,单扫描极谱法定性、定量的依据(包括定性定量参数)

第8章原子吸收光谱分析 1.AAS及基本原理 2.与其它光谱分析法相比,AAS的干扰少,具有相对高选择性。为什么? 3.何为共振线?在AAS中,是否一定以共振线为分析线?选择分析线的原则是什么? 4.在AAS中,被测物质是何微粒形式? 5.原子吸收分光光度计的基本组成部件有哪些?各部件的作用,常用何种光源? 6.何为光电倍增管的疲劳现象?如何防止或消除? 7.影响空心阴极灯发射特性的因素有哪些?关系如何? 8.在火焰原子化中,影响火焰温度的因素、火焰温度与原子化效率的关系? 9.AAS法定量的基础、定量方法及相关计算 10.AAS法适宜于常量分析还是微量分析? 11.AAS分析中,需控制哪些测定条件? 12.AAS分析中,常见的干扰有哪些? 13.何为化学干扰?有哪些具体形式?如何消除? 14.何为释放剂、保护剂、消电离剂? 15.何为原子分析中的灵敏度、特征浓度、检出限?它们与仪器的检测性能有何关系? 16.干扰形式的判断 a.在进行原子吸收分析,若在试样前处理时使用了硫酸或磷酸,从而导致其对测定元素的干扰,此干扰属 于何种干扰形式? b.待测元素与试样中共存元素的分析线重叠,引起什么干扰? c.分析试液的粘度太大,使试液喷入火焰的速度不稳或降低,造成什么干扰? 第9章紫外吸收光谱分析 1.UV法的概念 2.UV吸收光谱是怎样产生的?在UV光谱分析中,物质处于何种微粒状态? 3.按物质微粒形式,紫外光谱属何种光谱?若按产生机理,紫外光谱又称何种光谱? 4.分子内价电子及其跃迁类型;哪些跃迁产生的吸收光谱在紫外可见光区?紫外可见光区的波长范围? 5.助色团、生色团、红移、蓝移 6.K吸收带、R吸收带及它们的跃迁类型、强度。 7.紫外吸收光谱法的作用及其定性、定量的依据。 8.利用紫外吸收光谱推断物质的结构,其主要信息依据有哪些? 9.顺反异构体的UV光谱有何不同? 10.溶剂效应、影响该效应的因素及其关系。 11.紫外可见分光光度计的组成部件。 12.能够根据物质结构特征指出跃迁类型;由吸收光谱特征推断物质分子中的特征官能团。

仪器分析知识点整理

分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M* 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 ⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场) ⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响? ①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

常用仪器分析介绍

近代分析仪器及其发展(一) (北京普析通用仪器有限责任公司分析中心北京 100081)Recent Analysis Instruments and Development Beijing Purking General InstrumentCo.,Lt Analytical Centre 近代分析仪器的发展促进了分析化学向纵深发展,并在国民经济各个领域获得了广泛的应用,从航天材料、食品安全、环境污染、医疗卫生、地质勘探、工业生产、农业生产、检验检疫诸多方面都离不开分析仪器。现代分析化学的发展趋势是高灵敏度、高选择性(复杂体系)、智能化、快速、自动、简便、经济。对分析仪器而言,一方面要降低仪器的信噪比,另一方面是各类分析仪器的联用,特别是分离仪器和检测器的连用,如色谱仪 (气相色谱、液相色谱或超临界流体色谱仪、多维色谱仪等)和各种分析仪器(质谱、核磁共振波谱、傅立叶红外光谱、原子吸收光谱和原子发射光谱)的联用,利用前者的优异的分离功能,将组分分离后由后者加以识别,进行定性和定量分析。此外,近红外光谱化学计量学软件设计及其在各行业的应用软件 (包括建模、校准、评价、数据优化等软件和软件包)的开发和完善也将成为国内外分析仪器发展的另一个热点。 1 原子光谱分析法 1.1 原子发射光谱分析法(AES) 21世纪新兴的原子光谱分析光源是等离子体光源(plasma source),分为直流等离子体 (DCP)、高频电感耦合等离子体(ICP)和微波等离子体 (MP)。直流等离子体是最早用于原子光谱分析的一种等离子体光源,功率较ICP低,雾化器不易堵塞,总氩气的用量只及 ICP耗气量的一半,无高频辐射,检出限与ICP相近或稍差,精密度不如ICP好,线性范围比ICP窄,基体效应比 ICP严重,电极易污染。ICP具有优良的分析特性,被测元素能有效的进行原子化和消除化学干扰,工作曲线有较宽的线性范围,达 4~6个数量级,信噪比高,可快速进行多元素的同时测定。微波等离子体包括电容耦合微波等离子体(CMP)和诱导微波等离子体 (MIP),常用微波频率为 2450 MHz,主要优点是激发能力强,以He气为工作气体时,可以测定包括卤素在内的几乎所有元素,有很好的检出限。AES法广泛应用于钢铁、合金、有色金属、地质、石化等领域的分析。 1.2 原子吸收光谱法(AAS) 按照所用的原子化方法的不同,可分为火焰原子吸收法(FAAS)、石墨炉原子吸收法 (GFAAS)和石英炉原子化法,可以在较低的温度下原子化,包括汞蒸气原子化、氢化物原子化和挥发物原子化。背景校正器有氘灯背景校正器、塞曼效应背景校正器、自吸背景校正器。原子吸收法的优点是检出限低,FAAS为 10-6~10-9 g/mL,GFAAS为10-10~10-14g/mL。目前, 1.3 原子荧光光谱法(AFS) 原子荧光光谱在元素及其形态分析方面有着广泛的应用,特别是与氢化物发生进样技术的结合,在测定地质样品、钢铁合金、环境样品、食品、生物样品等中的 Ge、Sn、Pb、As、Sb、Bi、Se、Te、Hg和 Cd等元素都有很好的效果。原子荧光光谱法的特点是谱线简单、光谱干扰少、检出限低,测定空气中的汞,检出限达到每立方米2.2×10-9个原子,可进行多元素同时测定,校正曲线的线性范围宽,达到4~7数量级,适用元素的范围不如AES和 AAS广泛。AFS法与AAS、AES分析技术互相补充,在冶金、地质、环境监测、生物、医学分析等领域得到了日益广泛的应用。 2 分子光谱分析法 2.1 紫外一可见分光光度法(UV-VIS) 紫外可见分光光度法是历史最悠久、应用面最为广泛的一种仪器分析方法,现在又发展了多种分光光度测量技术,如双波长(三波长)分光光度法,可以有效地消除复杂试样的背景吸收、散射、浑浊对测定的影响,很适合于生物样品和环境样品的分析。胶束增溶分光光度法可以提高测定选择性和灵敏度,摩尔吸收系数一般可达 106 L/(mol·cm )。导数分光光度法提高了对重叠、平坦谱带的分辨率与测定灵敏度,示差分光光度法提高了测定很稀或很浓溶液吸光度的精度。正交函数吸光光度法在吸收曲线的某一区域选择适当的正交多项式,使干扰组分的正交多项式系数最小,以致可以忽略不计,用待测组分的正交多项式的系数进行定量分析。随着化学计量学方法的兴起,出现了多种计算机辅助分光光度法,如因子分析、偏最小二乘法、多元线性回归分光光度法等,可以在谱带严重重叠的情况下,不经分离可以直接实现多组分的同时测定。此外,还有流动注射吸光光度法、动力学吸光光度法、浮选吸光光度法、固相吸光光度法、计量学吸光光度法等。 2.2 红外光谱吸收法(IR) 红外光谱能提供有机化合物丰富的结构信息,特别是中红外光谱是鉴定有机化合物结构最主要的手段之一。近年来,近红外光谱技术与各种化学计量学算法相结合,取得了显著的研究成果。目前,傅立叶变换红外光谱仪 (FTIR),逐渐取代了色散型红外光谱仪,它主要由红外光源、光学系统、检测器以及数据处理与数据控制系统组成。现在数据库已储存有大量的有机化合物的标准红外图谱,检索也十分方便。对于化工生产控制和未知物剖析有很大帮助。 综 述

仪器分析课程教学大纲

《仪器分析》课程教学大纲 课程编号:190142110 课程类型:必修课 英文名称:Instrumental Analysis 课程类型:基础方向课 学时:64学时讲课学时:60学时 学分:4学分 适用对象:环境科学专业、化学专业 先修课程:无机化学、分析化学、有机化学、高等数学、计算机 执笔人:刁春鹏审定人:张金萍 一、课程的性质、目的与任务以及对先开课要求 仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析及结构分析。它具有测定快速、灵敏、准确和自动化程度高等特点,它是分析化学的发展方向。 仪器分析是化学专业必修的基础课程之一。仪器分析的主要任务是介绍常用的主要仪器分析方法,介绍这些分析方法的基本原理、基本概念和典型仪器的结构与性质,利用这些仪器完成定性、定量、定结构的分析任务,为今后开展科学研究和更好的指导工农业生产打下牢固的基础。 仪器分析是建立在无机化学、分析化学、有机化学、高等数学、物理学及计算机基础上的后续课程,它为后续课和今后的科研工作打下扎实的理论基础和操作技能。它是许多学科进行科学研究不可缺少的重要测试手段,并在提高人才素质和实现现代化的进程中,发挥着越来越重要的作用。 二、教学重点与难点 本课程重点介绍光谱、电化学和色谱三大块和质谱法的内容。 掌握常用仪器分析方法的基本原理、基本知识和基本技能。如:紫外-可见吸收光谱法,红外吸收光谱法,分子发光分析法,原子发射光谱法原子吸收光谱法,电位分析法,极谱分析法,色谱分析法,核磁共振波谱法和质谱分析法等。 了解仪器的结构及常用仪器的主要组成部分,学会使用一些仪器。 要求学生初步具有根据分析的目的、要求和各种仪器分析方法的特点、应用范围,选择适宜的分析方法以解决分析化学问题的能力。了解一些仪器分析方法和技能在实际中的应用,为后续课的学习及今后科学研究打下一定的基础。 三、与其他课程关系 仪器分析是建立在无机化学、分析化学、有机化学、高等数学、物理学及计算机基础上的后续课程,用到先修课的一些基础知识。 四、教学内容、学时分配及基本要求 第1章绪论

仪器分析笔记 《原子吸收光谱法》..

第四章 原子吸收光谱法 ——又称原子吸收分光光度法 §4.1 原子吸收分光光度法(AAS )概述 4.1.1 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 ? 灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达 10—9 g /mL (某些元素可更高 ) ? 几乎不受温度影响:由波兹曼分布公式00 q E q q KT N g e N g -=知,激发态原子浓度与基态原子浓度的比 值0q N N 随T ↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的0 1%q N N 。也就是说,q N 随温度而强烈变化,而0N 却式中保持不变,其浓度几乎完全等于原子的总浓度。 ? 较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。 RSD 1~2%,相对误差0.1~0.5%。 ? 选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 ? 应用范围广:可测定70多种元素(各种样品中)。 ? 缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长285.2nm 特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 确定待测元素。 选择该元素相应锐线光源,发射出特征谱线。 试样在原子化器中被蒸发、解离成气态基态原子。 特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。 根据吸光度与浓度间线性关系,定量分析。 5、与发射光谱异同点 ①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。

各种仪器分析及原理

化学专业学生必备:各种仪器分析的基本原理及谱图表示方法 紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法 IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线

仪器分析 复习笔记

一、色谱分析 色谱法的分离原理: 混合物中各组分在经过由固定相和流动相组成的体系时,由于各组分性质上的差异,在两相中具有不同的分配系数;当两相作相对运动时,各组分随流动相一起流动,并在两相中进行反复多次的分配,使各组分最终得以分离。 一、气相色谱 a.概念 气相色谱:流动相是气体,固定相是固体或液体的色谱法称为气相色谱法。 基线: 反映检测器系统噪声随时间变化的线 基线漂移: 基线随时间定向的变化 基线噪声: 由各种因素引起的基线起伏 保留值: 试样中各组分在色谱柱中的滞留时间,由色谱分离过程中的热力学因素控制,作定性参数 死时间tM: 不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现极大值所需时间 保留时间tR: 试样从进样到柱后出现峰极大值所经历的时间 调整保留时间tR’: tR’= tR- tM 程序升温:指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。各组分的保留值可用色谱峰最高处的相应温度即保留温度表示。 b.流程示意图 c.分离过程 溶解-脱溶解-再溶解-再脱溶 d.原理 气相色谱法亦称气体色谱法或气相层析法,是以气体为流动相的柱色谱分离技术。它分离的主要依据是利用样品中各组分在色谱柱中吸附力或溶解度不同,也既是利用各组分在色谱住中气相和固定相的分配系数不同来达到样品的

分离。对于气—固色谱(也叫吸附色谱),它的分配系数确切地讲,应称吸附平衡常数,主要用于永久性气体或气态烃等的分离分析。本课程主要介绍气—液色谱。 e. 色谱流出曲线 这种以组分的浓度变化(或某种信号)作为纵坐标,以流出时间(或相应流出物的体积)作为横坐标,所绘出的曲线称为色谱流出曲线。 f. 色谱分析的依据 (1)色谱峰的位置(即保留时间或保留体积)决定于物质的性质,是色谱定性的依据; (2)色谱峰的高度或面积是组分浓度或含量的量度,是色谱定量的依据; (3)色谱峰的位置与其宽度,可以对色谱柱分离的情况进行评价。 (4)样品中所含组分数(峰个数) g. 理想的气液色谱法条件 (1)在色谱柱内任何点两相的比例恒定。 (2)载气流在色谱柱内任何部位均一样. (3)在两相中无论哪一相里都不发生成分分子的纵向扩散作用。 (4)组分分子在两相间的分配平衡能瞬间完成。 h.分离度 为判断两种难分离组分在色谱柱中真实的分离效果,常用分离度R 作为色谱柱的总分离效率(能)指标,其定义为相 邻两组分的色谱峰保留值之差与两个组分峰宽总和之半的比值 i.检测器 (1)积分型检测器:显示某一组分含量随时间的累加,该检测器所给的响应信号与流出组分总量成比例。 (2)微分型检测器: i. 浓度型微分检测器 被测组分和载气相混合,检测器的响应值和组分的浓度成比例,检测器的瞬间响应值(峰高)本质上与载气流速无关,而积分响应值(峰面积)则与流速成反比。 包括热导、电子捕获(非离解型)、气体密度、超声等检测器。 ii. 质量型微分检测器 载气把被测组分带入检测器,检测器的响应信号和单位时间内进入检测器的组分的量成比例,检测器的响应值(峰高)取决于单位时间组分进入检测器的质量;也就是说当进样量一定时,峰高与流速成正比,而峰面积则与流速无关。 包括氢焰离子化、火焰光度计以及氮磷检测器等。 j. 检测器的性能指标 (1)噪声:短时噪声是信号在有限的范围内较迅速的偏移。长时噪声是较长的时间内信号逐惭地偏移。 (2)灵敏度:可用相当于单位量的被测成分的峰面积表示灵敏度。 iii. 浓度型检测器 iv. 质量型检测器 (3)检测限(亦称检测度或敏感度): 噪声水平是噪声连续存在时的平均值,而检测限D 则是能区别于这个噪声水平N 的最小检测量,通常它相当于噪 声水平的2倍。 (4)选择性: 21 1212R R t t R Y Y (-)=(+)S 峰面积载气流量= 成分量S 峰面积 =成分的量 2N D S =

相关文档
相关文档 最新文档