文档库 最新最全的文档下载
当前位置:文档库 › 高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告

高频实验一

高频小信号调谐放大器实验

一、实验目的

1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。

2.掌握高频小信号调谐放大器的调试方法。

3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。

4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用

二、实验仪器

1.小信号调谐放大器实验板

2.200MHz泰克双踪示波器(Tektronix TDS 2022B)

3. 8808A FLUKE万用表

4.220V市电接口

5.EE1461高频信号源

6.AT6011 频谱分析仪

7.PC一台(附有multisim仿真软件)

三、实验原理

1.小信号调谐放大器的基本原理

小信号调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,由于信号小,从而可以认为放大器工作在晶体管的线性范围内。所谓“调谐”,主

f及附近频率要是指放大器的集电极负载为调谐回路。这种放大器对谐振频率

f的频率信号,放大作用很差。

的信号具有较强的放大作用,而对其它远离

高频小信号调谐放大器是我主要质量指标如下:

1.增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器

放大微弱信号的能力,即

2.通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。

3.选择性:从含有各种不同频率的信号总和(有用和有害的)中选出有用信号排除有害(干扰)信号的能力,称为放大器的选择性。衡量选择性的基本指标一般有两个:矩形系数和抑制比。矩形系数通常用K0.1表示,它定义为

,其中是指放大倍数下降至

0.1处的带宽。且矩形系数越小,选择性越好,其抑制邻近无用信号的能力就越强。抑制比见末尾附录,此处略。

4.稳定性:指放大器的工作状态(直流偏置)、晶体管的参数、电路元件参数等发生可能的变化时,放大器的主要特性的稳定程度。

5.噪声系数:高频放大器由多级组成,降低噪声系数的关键在于减小前级电路的内部噪声。因此,在设计前级放大器时,要求采用低噪声器件,合理地设置工作电流等,使放大器在尽可能高的功率增益下噪声系数最小。其计算表达式为

,越接近1越说明噪声越小,电路的性能越好。

2.实验箱电路图

图2-2 小信号调谐放大器实验电路

说明:我们做实验的时候只要使用IN1连R1经C2再至晶体管放大器后经C4输出这条通路即可,分别测试放大器的放大倍数、通频带以及电路的品质因数对通频带以及幅频特性的影响。

四、实验前的准备:

第一部分:理论计算

该放大电路在高频情况下的等效为如图1-2 所示,晶体管的4 个y 参数yie,yoe,yfe 及yre 分别为

由课本所学的理论知识我们可知:回路的总电导为

回路的谐振频率:

然而由于本题中的值比较小,所以我们不妨就

认为 ,再根据题目要求,所以建立方程 ,再结合实际,

于是我们不妨取L=100nH ,C=2.18nF . 第二部分:仿真

利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真,仿真选取的晶体管的型号的为2N2222A. 仿真电路图如下:

电路的一些细节分析:

电容C2是输入耦合电容,C3是输出耦合电容,滑动变阻器R2和电阻R3、R4是晶体管直流偏置电阻,可通过调节R2的阻值,使得晶体满足:

1.发射极正偏:b e V V >,且0.6be V V >

2.集电极反偏:b c V V <

3.1ce V V >(若ce V 过小,将导致晶体管饱和导通,此时小信号放大器没有放大倍数)

电阻R6是射极交流负反馈电阻,电阻R1是射极直流负反馈电阻,它决定了晶体管射极的直流电流Ie ,在本电路中应Ie 控制在1-10mA 左右。

电容C1是射极旁路电路,在高频的情况下其相当于短路。集电极回路由电容C4和电感L1组成,是一个并联的LC 谐振回路,起到选频的作用。在实际的电路中,电容有一个可变电容可以改变回路总的电容值,电感由初级回路和次级

回路组成,中间有铁芯耦合,实验箱上电感的初级回路和次级回路封装在中周中,调节中周里的铁芯位置可以改变电感值和耦合强度,从而改变LC谐振回路的谐振频率。滑动变阻器RW1是阻尼电阻,可以改变回路的品质因素和电压增益。根据晶体管工作在甲类放大时的电压的要求,我们再确定分压电阻R2、R3、R4 的阻值(如仿真图),选择Ie=2mA,又可进一步算出R1的阻值。

我们取输入信号的参数为 f=10.7MHz,幅值为50mV ,按照上面的仿真图,仿真出来的结果为

由游标示数我们可以知道此电路的放大倍数

为其他各表的示数如下:注:红线代表输入信号;

黄线代表输出信号;

基极电压Vb射极电压Ve集射电压Vce

射极电流:,由这些参数我们可知三级管处于正常的甲类放大

状态。

另外我们还测得的幅频特性如下:

通过测量,可得到通频带约为10.819MHz-10.655MHz =0.164MHz。

对照着仿真要求我们一步步进行仿真:

1.改变直流电流Ie,研究Ie逐渐增大时小信号放大器电压增益的变化

由此说明Ie逐渐增大时小信号放大器的电压增益也逐渐的增大,当然这样的增大也是有一定范围的,如果Ie过大,将会导致输出波形的失真。

2.改变谐振回路的中心频率,观察小信号放大器电压增益的变化情况

注:对于改变谐振频率,只要改变C的值就可以了,所以我们此处用C值的改变来表示谐振频率的改变

通过观察我们发现,谐振频率偏离中心频率越远,其电压增益越小。

3.改变集电极回路中阻尼电阻的阻值,观察小信号放大器电压增益的变化情况,通频带的变化情况。

由此可知,当集电极回路中阻尼电阻的阻值逐渐增大,也即回路的品质因数逐渐变大时,小信号放大器的电压增益也在小幅度增大,而通频带则小幅度变小,这也从而说明了一个问题就是电路的“增益带宽积=增益*通频带”并没有改变,符合理论推导。

4.改变交流负反馈电阻阻值,观察小信号放大器电压增益的变化情况,通频带的变化情况

由此可见,随着交流负反馈电阻阻值的增大,小信号放大器的电压增益在逐渐减小,相反通频带则是随之逐渐变大。

原因解释:该电路属于串联负反馈,引入这样的反馈后电路的电压增益表达式

就变为 ,当反馈电阻的阻值越大时,反馈系数F就越大,由公式表明,随着F的增大,是逐渐减小的,此即解释了随着R6的增大,电压

增益是减小的,再由增益带宽积是恒定的这一概念,我们显然可以知道同频带会增加。

仿真过程中对问题的一些思考:

问题一:在仿真的过程中我们发现输出波形不那么稳定,总是在不停的变大然后再变小再变大,需要经过比较长的一段时间它才会稳定下来。

解决方案:①将输入和输出耦合电容该小,都改为了100pF.

②改变谐振电路的L和C的值(只要保证两者乘积不变)

原因分析:①可能是由于耦合电容的分布电感之类的影响。高频放大器的耦合电容C in和C out主要作用就是隔离直流,且不宜过大,否则放大电路将对信号源或上级电路产生反射。在高频电路中它们的值一般取1nF以下。而我们之前的电路中取的是100nF ,取的过大了,放大电路对信号源产生了反射,从而导致输出不稳定,需要进一步减小偶合电容值以降低放大器与信号源之间的耦合程度。

②可能是由于负反馈放大电路产生了自激;由于电路的LC取得不合理,使电路的稳定裕度(稳定裕度的概念见文末补充知识)离稳定电路的要求差别比较大,从而产生自激,因此只要调整下L、C的值就可以。

问题二:这个此次仿真的电路的通频带较小,应如何修改参数使得电路的通频带变大些?

法一:显然,由带宽增益积不变的关系,我们知道降低电路的增益可以实现增大通频带的目的,根据增益的计算公式

,我们只要将G的变大即可,即将分压电阻的阻值变小。

法二:通过推导,我们可以得到电路的带宽增益积的表达式如下:

,我们可以在保持不变的情况下通过降低谐振电容的容值来提高通频带,通过仿真,我们将C从2.18nF改成了100nF (当然相应的电感值也应同时改为2.18uF),通频带随即就从0.164MHz变成了1.139MHz,可见此方法比较简单可行。

五、实验内容及步骤

仿真做完后,就应该把理论用于实践了,下面是运用实验箱进行的实验步骤及数据记录

1.静态工作点与谐振回路的调整

⑴在实验箱主板上插上小信号调谐放大器实验电路模块。接通实验箱上电源开

关,指标灯点亮。用高频信号源产生10.7MHz 信号由IN1端接入小信号调谐放大器实验电路,幅度在50 mV 左右。

⑵ 在OUT 端用示波器观测到放大后的输入信号,调整电位器RW2和微调电容CV2,和中周铁芯的位置,使输出信号幅度最大且失真最小,也即使电路达到谐振状态。

2.放大器的放大倍数及通频带的测试。 ⑴空载放大倍数测试

断开J2,J3,连接J1,用示波器分别测出IN1端电压Ui 和OUT 端电压Uo ,放大倍数为:0i U A U =

此时将输出输入信号接示波器两探头,使用示波器直接测量显示,可得空载时的放大倍数:

(2)有载放大倍数测试

断开J2,连接J1,J3,用示波器分别测出IN1端电压Ui 和OUT 端电压Uo ,放大倍数为:0

i

U A U =

此时将输出输入信号接示波器两探头,使用示波器直接测量显示,可得空载时的放大倍数:

数据分析:由测量结果我们可以知道,加了负载之后电路的放大倍数略微的降低,这是什么原因?

答:我们要电路的交流等效模型来解释,其等效模型图中有负载的情况只比没有负载的情况的时候多了一个电导G,如下图:

从而增益的表达式就从

转变成了

,分母中多了一个G,而其它量并未改变大小,所以加了负载后其增益变小了。

(3)通频带以及电路选择性能的测试(即空载情况)

断开J2,J3,连接J1,保持输入信号幅值Ui(此处我们选择的输入信号的幅度为50mV)不变,改变输入信号的频率,输入信号的频率逐渐上升,输出信号的幅度将下降,当输出幅度下降到f0时的输出幅值的0.707时,所对应的输入信号频率计为f1。同样,减小输入信号的频率得到f2,填到下面的表格中;

那么通频带

保持输入信号幅值不变,改变输入信号的频率,输入信号的频率逐渐上升,输出信号的幅度将下降,当输出幅度下降到f0时的输出幅值的0.1时,所对应的输入信号频率计为f3。同样,减小输入信号的频率得到f4,填到下面的表格中:

那么

那么就可得矩形系数:

10.44

在通频带测量的时候遇到的问题:

在测量通频带时,当我们改变输入信号的频率,往高于中心频率的方向调节,在偏离中心频率到了一定程度后我们发现输出波形开始失真(图1),如果再继续增大频率,凹陷的越来越大,但是如果我们减小输入信号的幅度,而不改变输入频率,那么这样的失真现象就不存在,试分析原因。

答:这是由于三极管的高频特性引起的。随着工作频率升高到一定程度,发射极出现了电流会出现负脉冲的情况,而且这负脉冲的高度会随频率的升高而增加, 之所以会出现负脉冲,是由于少数载流子在基区的渡越时间所引起的,或者说

图 1

是由在基区内的空间电荷存储效应所引起的。由于输入信号的幅度相对而言比较大,所以使得三极管有一段时间工作在了丙类放大的状态,即发射极反偏(截止)时,在基区内存储的非平衡少数载流子来不及扩散到集电极,又被方向偏置所形成的电场重新排斥回发射极,从而形成了负脉冲,于是出现了图1的失真。避免这种失真的办法就是减小输入信号幅度。

而向小于中心频率的方向减小频率时,波形也会发生失真,其失真形状图2,试解释产生这些现象的原因。

图2

这是因为输出端回路失谐引起的,因为输入信号频率的在逐渐减小,而集电极回路的谐振频率并未改变,回路失谐了,那么晶体管存在的反向传输导纳的作Array

用就明显了,不能忽略了,即晶体管就不能简单地看作是单向工作,从而整个电路的增益、通频带、选择性以及谐振曲线等都会受到影响,波形发生畸变也就不足为怪了。

(4)改变基极的直流电压,使射极的静态电流Ie发生变化(Ie取两个不同的

数值),测量放大倍数和通频带的变化,并思考原因。

/mA

与实际仿真的结果一致,即射极电流越大,放大倍数越大,通频带越小(原因已

在上文仿真部分说明,此处不再赘述)。

另外需要说明的一点是本电路中射极电流的测量:

测量电流,可以直接用多用表的电流档,但由于电路已连接在实验箱板上,很难断线来测量电流,所以只能通过测量电压和电阻的方法来计算电流

()。

电压的测量小菜一碟,重点是电阻的测量,由于电路已经连接在一起,即使是断电测电阻,但由于其它部分的并联,仍会导致电阻的测量的不准确,所以我采取的是读取色环的方法,读出其阻值为560欧姆。

5.测试品质因数对放大器的幅频特性及通频带的影响(空载)断开J3,连接J1,J2,调整RW1取两个不同的数值(改变品质因素),分别测量谐振时的放大倍数和通频带,测量幅频特性并画图。

RW1较大时

放大倍数:2260/288=7.85

通频带:

RW1变小后

放大倍数:1.82/288=6.32

通频带:

统计整理数据后表格记录:

RW1较大时

幅频特性: Ui:50mV (实际输入电压时28.8mV)

RW1较小时

幅频特性: Ui: 50 mV

数据分析:根据测量的放大倍数和通频带数值,分析阻尼电阻RW1增加时,谐振放大倍数,回路品质因数和通频带是如何变化的。

答:分析数据记录可知RW1增加即并联电阻的阻值变大时,放大倍数变大,通频带变小,与仿真所得的结果一致。

原因解释:因为放大电路的通频带可通过推导得公式

,由于,RW1变大,说明变大,而不变,所以通频带变小,然而由增益带宽积不变的理论知方法倍数自然减小。

六、实验回顾:

1.为什么该放大电路的集电极电路中采用的是自耦变压器而不是直接的电感?

答:LC回路与本级集电极电路的联接采用自耦变压器形式,与下级负载的联接采用变压器耦合。采用这种自耦变压器-变压器耦合形式,可以减弱本级输出导纳与下级晶体管输入导纳对LC回路的影响,同时,适当的选择初级线圈抽头位置与初次级线圈的匝数比,可以使负载导纳与晶体管的输出导纳相匹配,以获得最大的功率增益。

2. 本实验电路中,为什么谐振回路中的是由一个固定电容和一个可调电容并联组成,而且两者的并联值要比计算值取得小些?

答:这是因为实际的电感、电容元件值和标称值之间是有误差的,并且晶体管极与极之间存在分布电容,所以在实际电路中,这里的电容应该有一个固定电容和一个可调电容并联组成。两者并联后的电容值接近计算得到的电容

值,但要比它小,因为实际电路中的总电容值是等于并联电容值与晶体管极与极之间存在的分布电容之和,所以。

附录:

补充知识:

抑制比:或称抗拒比,通常说明某些特定频率,如中频、象频等选择性的好坏。例如,谐振点的放大倍数,若有一干扰,其频率为

,则电路对此干扰的放大倍数为,我们就用表示放大器对该干扰的抑制能力。

稳定裕度:为使电路具有足够的稳定性,必须让它远离自激振荡状态,其远离程度可用稳定裕度表示。稳定裕度包括增益裕度和相位裕度。增益裕度的表达式 ,稳定的负反馈放大电路的

,一般要求,保证电路有足够的增益裕度。相位裕度的表达式,稳定的负反馈放大电路的,一般要求

,保证电路有足够的相位裕度。

增益带宽积:英文:Gain Bandwidth Product(简称GBP)。

这是用来简单衡量放大器的性能的一个参数。就像它的名字一样,这个参数表示增益和带宽的乘积。按照放大器的定义,这个乘积是一定的。它是用来表征在外接负反馈网络控制增益的电路中使用一个运算放大器时、增益与有效带宽之间的协调关系。在宽量程内,增益与带宽(单位为赫兹)的乘积基本保持不变。通过使用增益带宽积,设计人员可以无需进行详细计算,就能凭经验快速判断出给定的运算放大器所能达到的最高性能

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

实验一 高频小信号调谐放大器实验.doc

实验一高频小信号调谐放大器实验 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 1、谐振频率的调整与测定。 2、主要技术性能指标的测定:谐振频率、谐振放大增益Avo及动态范围、通频带 BW0.7、矩形系数Kr0.1。 三、实验仪器 1、高频信号发生器1台 2、2号板小信号放大模块1块 3、频率计1台 4、双踪示波器1台 5、万用表1台 6、扫频仪(可选)1台 四、实验原理 (一)单调谐小信号放大器

图1-1 单调谐小信号放大电路图 小信号谐振放大器是接收机的前端电路,主要用于高频小信号或微弱信号的线形放大。图1-1为单调谐回路小信号谐振放大器的原理电路,实验单元电路由晶体管N1和选频回路T1组成,不仅对高频小信号放大,而且还有选频作用。其中W1,R5,R6,R7为直流偏置电阻(因与C3并联相接,所以C3仅有直流负反馈作用),同时调节W1可为放大器选择合适的静态工作点。C5为输入信号的耦合电容,E4,C3,C5为旁路滤波电容,R1为中周初级负载。C1与电感L 组成并联谐振回路,调节C1或改变中周T1磁芯的位置可以使回路谐振在信号中心频率上。本实验中单调谐小信号放大的谐振频率为fs=10.7MHz 。因此频率为10.7的小信号自C5耦合输入,经选频、放大后,中周次级将获得最大输出。 放大器各项性能指标及测量方法如下: 1、谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量;

单调谐高频小信号放大器

实验一单调谐高频小信号放大器 一、实验目的 1.熟悉电子元器件和高频电路实验箱。 2.熟悉谐振回路的幅频特性分析--通频带与选择性。 3.熟悉和了解放大器的动态范围及测试方法。 4.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 二、实验仪器 1.双踪示波器SS-7804 2.扫频仪PD1250 3.高频信号发生器WY1052 4.万用表 5.实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍 数、动态范围、通频带及选择性相互 之间的关系。 3、实验电路中,若电感量L=1uh, 回 路总电容C=220pf (分布电容包括在 内),计算回路中心频率f。 四、实验内容及步骤 图1-1 单调谐回路谐振放大器原理图(一)单调谐回路谐振放大器。 1.实验电路见图1-1 (1)按图1-1所示连接电路(注意接线前先测量+12 V电源电压,无误后,关断电源再接线) (2)接线后仔细检查,确认无误后接通电源。 2.静态测量 实验电路中选Re=1K 测量各静态工作点,计算并填表1.1

表 1.1 实测实测计算根据V CE判断V是否工作 在放大区 原因 V B V E I C V CE 是否 * V B , V E是三极管的基极和发射极对地电压。 3. 动态研究 (1)测放大器的动态范围V i~V O(在谐振点) 选R=10K , Re=1k 。把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压V i, 调节频率f 使其为10.7MH Z, 调节C T使回路谐振,使输出电压幅度为最大。此时调节V i由0.02伏变到0.8伏,逐点记录Vo电压,并填入表1.2 。Vi的各点测量值可根据(各自)实测情况来确定。 表 1.2 V i(v) (峰值)0.02 0.8 V0(v) Re =1KΩRe =500ΩRe =2KΩ (2)用扫频仪调回路谐振曲线。 仍选R=10K, Re=1K。将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来选择适当的位置,如30dB),调回路电容C T, 使f 0 = 10 .7 MHz 。 (3)测量放大器的频率特性 当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出端接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大,此时的回路谐振频率为f0=10.7MHZ 为中心频率,然后保持输入电压Vi 不变,改变频率f由中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1-3。频率偏离范围可根据(各自)实测情况来确定。 f(MHz) 10.7 V0 R=10KΩR=2KΩR=470Ω

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

高频小信号单调谐与双调谐放大器实验报告

高频小信号单调谐与双调谐放大器 实验报告 14044012 孙胤邦 14 级电子一班

?输出电压幅值U/mV 1 \ j \ J____ ■ 实验表格及图像 单调谐放大器的电压幅值 输入信号频率f/fHz 5. 4 5. 5 5. 6 5. 7 5. 8 5. 9 6 6. 1 6. 2 6. 3 6. 4 6. 5 6. 6 6. 7 6. 8 6. 9 输出电压幅值 U/m V 1. 6 1. 76 2 2. 16 2. 4 2. 7 3. 12 3. 84 4. 8 6. 32 7. 92 8. 08 7. 52 6. 08 4. 8 3. 84 单调谐放大器幅频特性 输入信号频率 9 8 7 2 1

如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )单调谐的峰值为8.08mV , 下降到0.707倍时的值为5.71mv 。 输入 信号 频率 f/MHz 4 8 5 5 2 5 4 5 6 5 7 5 8 5 9 6 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 7 1 输出 电压 幅值 U/mV 0 6 1 1 4 2 5 7 4 6 8 5 8 5 4 5 6 6 4 7 2 7 4 6 2 4 4 3 6 2 2 8 1 6 8 1 4 1 1 2 双调谐回路幅频特性 如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )双调谐的峰值为7.40mV 和7.40mv 下降到0.707倍时的值为5.23mV 和5.23mV 。 这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。 双调谐放大器具有良好的选择性、 较宽的通频带。而且由图可以看出双调谐的选 择性明显优于单调谐放大器。 值幅压电岀输 2 3 4 5 输入信号频率 6 7 8 8 7 6 5 4 3 2 1 0

小信号放大器实验报告

实验设计报告 (模拟电子技术基础实践) 学院:电气工程与自动化学院 题目:小信号放大器的设计 专业班级:自动化131班 学号:2420132905 学生姓名:吴亚敏 指导老师:曾璐 2014年10月20日

第一章理论设计 1.设计目标与技术要求 1.1 设计目标:设计一个放大倍数约为10倍的小信号交流放大器 1.2 技术要求: (1)保证电路要有较大的输入电阻,主要是为了增大获取输入信号的能力。 (2)电路要有较小的输出电阻,主要是为了增大信号输出的能力。 (3)设计该放大电路,通过测试相应的参数,理解该放大电路的工作原理,掌握一些参数(输入阻抗、输出阻抗、放大倍数)的测量和计算方法。 2.设计方法(电路、元器件选择与参数计算) 2.1 实验原理图如下:

2.2 元件的选择: 电阻:需要33KΩ、16KΩ、3.9KΩ、2KΩ、1.2KΩ、390Ω的电阻各一个; 电容:需要47uF的4个,0.1uF的一个; 三极管:需要NPN型通用小信号晶体管2SC2458两个; 2.3 参数的计算: (1)基极的直流电位Ve是用R1和R2对电源电压Vcc分压后的电位,则 Vb=(R2/(R1+R2))*Vcc (2)发射机的直流电位Ve,则 Ve=Vb-Vbe (3)发射极上流过的直流电流Ie,则 Ie=Ve/Re=(Vb-Vbe)/Re (4)集电极的直流电压Vc等于电源电压减去Rc的压降而得到的值,则 Vc=Vcc-Ic*Rc (5)由于基极电流很小,我们在计算的时候可以省去, 则 Ic=Ie,Vc=Vcc-Ie*Rc (6)交流电压的放大倍数,则 Av=Rc/Re (7)确定耦合电容C1,C2和C3,C4的阻值 因为C1和C2是将基极或集电极的直流电压截止,仅让交流成分进行输入输出的耦合电容,电路中C1和输入阻抗,C2和连接在输出端的负载电阻分别形成高通滤波器--也就是让高频通过的滤波器,所以C1=C2=10uF,而C3和C4是电源的耦合电容应该是降低电源对GND交流阻抗的电容,如果没有这个电容的话,电路中可能产生振荡。所以要在电源上并联连接好小容量的C3=0.1uF电容器和大容量的C4=10uF电容器,能在宽频范围降低电源对GND的阻抗。 (8)静态工作点: Vbq=5*(R2/(R1+R2))=5*(33/(33+16))=3.44V Ieq=Ve/Re=(Vb-Vbe)/Re=Icq=0.5mA Vceq=Vcc-Ieq*Rc-Icq*Re=2.8V Ibq=Icq/(1+β)=0.05mA (9)动态工作点: Av=Rc/Re=3.9K/(2K//390)=10 Ri=Rb1//Rb2=33K//16K=0.093KΩ Ro=Rc=0Ω

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

高频小信号调谐放大器

高频电子线路课程设计报告 题目: __ 高频小信号谐振放大器 __ 院系:_xxxxxxxxxxxxxxxxxxxxxxxx_ 专业:____电子信息科学与技术 班级: xxxxxxxxxxx 姓名: xxxxxx 学号: _ xxxxxxxxxxxxxxx __ 指导教师: xxxxxxxx 报告成绩: 2016年12月16日

目录 一设计目的 (1) 二设计思路 (1) 2.1 电路的功能 (1) 2.2 设计的基本要求 (1) 三设计过程 (1) 3.1 设计电路 (1) 3.2 测量方法 (4) 3.2.1谐振频率 (4) 3.2.2电压增益 (4) 3.2.3通频带 (5) 3.2.4矩形系数 (5) 四系统调试与结果 (6) 4.1 设置静态工作点 (6) 4.2 计算谐振回路参数 (6) 4.3 利用Multisim 对电路的仿真图 (7) 4.4 设计结果与分析 (8) 五主要元器件与设备 (10) 5.1 元器件与设备 (10) 5.2相关参数 (11) 六课程设计体会与建议 (11) 6.1 设计体会 (11) 6.2 设计建议 (12) 七参考文献 (12)

一设计目的 (1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。 (2)掌握高频单调谐放大器的构成和工作原理。 (3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。 (4)掌握高频单调谐放大器的设计方案和测试方法。 二设计思路 2.1 电路的功能 所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。高频小信号放大器的作用是无失真的放大某一频率围的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 2.2设计的基本要求 (1)通过具体计算,选择器件给出电路设计电路 (2)给出最终实现电路 (3)进行仿真校验 (4)作出设计总结 三设计过程 3.1设计电路

实验一高频小信号调谐放大器实验报告

高频小信号调谐放大器 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

六、数据处理

()f MHz 7 8 9 9.7 9.8 9.9 10 10.1 10.2 10.3 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 19 28 55 120 128 138 143 150 140 130 (/) u o i A u u 1.27 1.87 3.67 8.00 8.53 9.20 9.53 10.00 9.33 8.67 ()f MHz 10.4 10.5 10.6 10.7 11 12 13 14 15 16 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 120 100 90 80 64 39 28 24 20 18 (/) u o i A u u 8.00 6.67 6.00 5.33 4.27 2.60 1.87 1.60 1.33 1.20 78910111213141516 25 50 75 100 125 1 50 f(MHz) 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

高频电子线路实验报告高频小信号调谐放大器

太原理工大学现代科技学院高频电子线路课程实验报告 专业班级测控1001班 学号 姓名 指导教师

实验一高频小信号调谐放大器 一、实验目的 小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。学会小信号调谐放大器的设计方法。 二、实验仪器 1.BT-3(G)型频率特性测试仪(选项)一台 2.20MHz模拟示波器一台 3.数字万用表一块 4.调试工具一套 三、实验原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。 图1 小信号调谐放大器 该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:

输入导纳(1-1) 输出导纳(1-2) 正向传输导纳(1-3) 反向传输导纳(1-4) 图1-2 放大器的高频等效回路 式中,gm——晶体管的跨导,与发射极电流的关系为 (1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关 其关系为(1-6) rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法; Cb’e——发射结电容,一般为几十皮法至几百皮法。 由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为: 如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工

高频小信号放大器实验报告

南京信息工程大学滨江学院高频电子线路实验报告 作者徐飞 学号 20092334925 系部电子工程系 专业班级通信三班

实验一 高频小信号放大器实验 一、实验原理 高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处 理。所谓“小信号” ,主要是强调放大器应工作在线性范围。高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。 高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。 频带放大器最典型的单元电路如图所示, 由单调谐回路做法在构成晶体管调谐放大器。 图电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。调谐回路的作用主要有两个: 晶体管单调谐回路调谐放大器 第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。 第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。 高频小信号频带放大器的主要性能指标有: (1)中心频率 0f :指放大器的工作频率。它是设计放大电路时,选择有源器件、计算 谐振回路元件参数的依据。 (2)增益:指放大器对有用信号的放大能力。通常表示为在中心频率上的电压增益和 功率增益。 电压增益 /VO O i A V V = 功率增益 /PO O i A P P = 式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。增益通常用分贝表示。 (3)通频带:指放大电路增益由最大值下降 3db 时对应的频带宽度。它相当于输入不 变时,输出电压由最大值下降到 0.707 倍或功率下降到一半时对应的频带宽度。

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

单调谐高频小信号放大器

沈阳航空航天大学北方科技学院 课程设计说明书 课设题目单调谐高频小信号放大器设计 专业通信工程 班级 B141211 学号 B14121137 学生姓名杨一凡 指导教师李秀人 日期 2013.12

沈航北方科技学院 课程设计任务书 教学系部信息工程系专业通信工程 课程设计题目单调谐高频小信号放大器设计 班级B141211学号姓名 课程设计时间: 2013 年12 月16 日至2013 年12 月29 日 课程设计的内容及要求: (一)主要内容 本课题旨在根据已有的知识及搜集资料设计一个单调谐高频小信号放大器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容参照课设报告文档模版要求,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析。 技术指标:谐振频率6MHz,谐振增益≥20dB,通频带≥0.5MHz。输入高频小信号(峰-峰值)100mv。Vcc=12V,R L=1KΩ。 (二)基本要求 根据题目及基本要求(技术指标)查阅相关资料和书籍,设计(计算)电路,确定元器件参数(3天)。 待电路设计完成后,上机进行电路仿真(使用Multisim)。仿真过程中用到的仪器、调试方法、排故过程及电路技术指标的测量要做记录,最终写到报告中(4天)。报告正文按目录要求撰写,其他内容见格式说明(3天)。

(三)主要参考书 [1] 高如云等.通信电子线路(第三版). 西安电子科技大学出版社,2007,11 [2] 赵春华等. Multisim9电子技术基础仿真实验. 机械工业出版社,2007,05 [3] 华永平.电子线路课程设计—仿真、设计与制作.东南大学出版社,2002 (四)评语 (五)成绩 指导教师年月日

(一)小信号调谐放大器基本工作原理

实验室 时间段 座位号 同组人翁洁意 电子科技大学 信息工程学院 通信电子线路实验报告 实验名称小信号调谐放大器 姓名王颖 学号 15934104 指导老师建岚

一.实验目的 1.利用实验箱熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器在有负载和无负载的情况下的基本工作原理; 3.掌握用点测法测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态围的概念和测量方法。 二.实验容 1.采用点测法测量单调谐和双调谐放大器的幅频特性; 2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数; 3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响; 4.用示波器观察放大器的动态围; 5.观察集电极负载对放大器幅频特性的影响。 三.实验步骤 1.实验准备 在实验箱主板上插装好无线接收与变频模块,接通实验箱上电源开关,按下模块上白色电源开关(POWER),此时模块上电源指示灯亮。 2.单调谐回路谐振放大器幅频特性测量 我们测量幅频特性使用的是点测法。点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。 点测法,其步骤如下: ①2K1置“OFF”位,即断开集电极电阻2R3。2K2置“单调谐”位,此时2C6被短路,放大器为单调谐回路。高频信号源输出连接到调谐放大器的输入端(2P01)。示波器CH1接放大器的输入端2TP01,示波器CH2接调谐放大器的输出端2TP02,调整高频信号源

实验2__高频小信号调谐放大器

高频电子线路实验报告姓名: 班级:

实验一高频小信号调谐放大器 一、实验目的 1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。 2.掌握信号源内阻及负载对谐振回路Q值的影响。 3.掌握高频小信号放大器动态范围的测试方法。 二、实验内容: 1.调测小信号放大器的静态工作状态。 2.用示波器观察放大器输出与偏置及回路并联电阻的关系。 3.观察放大器输出波形与谐振回路的关系。 4.调测放大器的幅频特性。 5.观察放大器的动态范围。 三、实验仪器设备: 1、高频电子线路实验箱GP-4。 2、数字存储示波器TDS-1002 3、高频信号发生器WY-1052A 4、数字万用表 四、实验步骤: 实验用单调谐回路谐振放大器电路如图1所示。图中,R1、R2、RE用以保证晶体管工作于放大区域,从而放大器工作于

甲类。 C2是RE的旁路电容,C1、C7是输入、输出耦合电容,L、C3、C4是谐振回路,C3用来调谐,K1、K2、K3用以改变集电极回路的阻尼电阻R3,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值) 的影响。K4、K5、K6用 以改变射极偏置电阻R4, 以观察放大器静态工作 点变化对谐振回路 (包括电压增益)的 影响。为了减轻负载 对回路Q值的影响, 输出端采用了(部分 接入方式),即电感 抽头输出方式。

(一):单级单调谐电路 用示波器在小信号放大器的模块的TT2处观察,调节小信号放大器的T2,CC2,适当调节该模块的w3,使TT2处信号V o的峰值V op-p 最大不失真。记录各数据,填表中。 电压增益系数: 放大器的谐振回路对应的电压放大系数Avo 称为谐振放大器的电压增益系数。当电路处于谐振放大状态时,Avo 计算公式如下: Avo = V o / Vi 或Avo = lg(V o / Vi)dB

小信谐振放大电路实验报告

小信号谐振放大电路实验报告 预习报告 一、实验目的 1. 掌握小信号调谐放大器的工作原理; 2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法等。 二、实验仪器 三、实验基本原理和相关知识 小信号调谐放大器广泛用作高频和中频放大器,特别是用在通信接收端的前端电路,其主要目的就是实现对高频小信号的放大。高频小信号放大器按频谱宽度分为窄带放大器和宽带放大器;按电路形式分为单级放大器和级联放大器;按照负载性质:谐振放大器和非谐振放大器。其中,谐振放大器的负载是采用具有放大、滤波和选频作用的谐振回路。非谐振放大器的负载由阻容放大器和各种滤波器组成,结构简单。 由于LC并联谐振回路的阻抗随着频率变化而变化,理论上可以分析得出:并联谐振在谐振频率处呈现纯阻,并达到最大值。即放大器在回路谐振频率上将具有最大的电压增益,若偏离谐振频率,输出增益则减小。总之,调谐放大器不仅具有对特定频率信号的放大作用,同时也起着滤波和选频的作用。

四、实验电路及方法步骤 图1 实验原理图1 图2 实验原理图2 实验步骤如下: 1.由高频信号发生器输出单频信号,调节信号振幅,使峰-峰值Vpp=50mV左右;2.将示波器探头连接在放大器的输出端,调节输入信号频率及示波器观察输出信号波形,先粗测、再细测谐振放大器谐振频率f0;调节中周铁芯观察电感值对谐振频率的影响; 3.测量电压增益A V0 在放大器对输入信号已经谐振的情况下,用示波器分别观测输入和输出信号的幅度大小,计算谐振时的电压增益A V0。 4.测量放大器通频带BW0.7

五、实验准备 (1)电路仿真如下: 仿真结果如下: 谐振频率下输入信号:输出信号:

高频小信号调谐放大器设计-

《高频电子线路》课程设计说明书高频小信号调谐放大器设计与制作 院、部:电气与信息工程学院 学生姓名: 指导教师:职称副教授 专业:通信工程 班级:通信1103班 完成时间:2013年12月16日

摘要 高频小信号调谐放大器是为了对一些幅度比较小的高频信号进行有目的放大,在广播和通信设备中有广泛的应用,通常用于各种发射机的接收端。 本设计围绕高频小信号调谐放大器设计工作进行研究和实现,详细介绍了高频小信号调谐的整体结构,硬件设计,系统方案,单元电路模块和仿真情况的具体实现,介绍了一种利用三极管放大,LC并联谐振选频将特定的信号进行放大和选出相对应频率的信号,达到了设计要求,该设计适用于高频电路发射机的接收端。 关键词高频小信号; LC谐振;放大器;谐振电压放大倍数

ABSTRACT High frequency small signal for some smaller amplitude tuned amplifier is to have a purpose on high frequency signal amplification, widely used in radio and communication equipment. This design around the high frequency small signal tuned amplifier design work for research and implementation, introduces in detail the overall structure of the high frequency small signal tuning, hardware design, system solutions, unit circuit module and the concrete realization of the simulation conditions, the paper introduces a using triode amplifier, LC parallel resonant frequency selective specific signal amplification and to select the corresponding frequency of the signal, meet the design requirements, the design is suitable for hf transmitter circuit at the receiving end. Keywords triode High frequency small signal; LC resonance; Amplifier; Resonant voltage magnification

高频小信号调谐放大器实验报告.docx

高频实验一 高频小信号调谐放大器实验 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim 软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仪器 1.小信号调谐放大器实验板 2.200MHz 泰克双踪示波器(Tektronix TDS 2022B) 3. 8808A FLUKE 万用表 4.220V 市电接口 5.EE1461高频信号源 6.AT6011 频谱分析仪 7.PC 一台(附有multisim 仿真软件) 三、实验原理 1.小信号调谐放大器的基本原理 小信号调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大 。 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,由于信号小,从而可以认为放大器工作在晶体管的线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路。这种放大器对谐振频率 f 及附近频率的信号具有较强的放大作用,而对其它远离 f 的频率信号,放大作用很差。 高频小信号调谐放大器是我主要质量指标如下: 1.增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力 ,即 2.通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B 0.7表示。 3.选择性:从含有各种不同频率的信号总和(有用和有害的)中选出有用信 号排除有害(干扰)信号的能力,称为放大器的选择性。衡量选择性的基本指标 一般有两个:矩形系数和抑制比。矩形系数通常用K 0.1表示,它定义为 ,其中是指放大倍数下降至0.1处的带宽。且矩形系数越小,选择性越好,其抑制邻近无用信号的能力就越强。抑制比见末尾附录,此处略。 4.稳定性:指放大器的工作状态(直流偏置)、晶体管的参数、电路元件参数等发生可能的变化时,放大器的主要特性的稳定程度。 5.噪声系数:高频放大器由多级组成,降低噪声系数的关键在于减小前级电路的内部噪声。因此,在设计前级放大器时,要求采用低噪声器件,合理地设置工作电流等,使放大器在尽可能高的功率增益下噪声系数最小。其计算表达式为 , 越接近1越说明噪声越小,电路的性能越好。 2.实验箱电路图 图2-2 小信号调谐放大器实验电路 说明:我们做实验的时候只要使用IN1连R1经C2再至晶体管放 大器后经C4输出这条通路即可,分别测试放大器的放大倍数、通频带以及电路的品质因数对通频带以及幅频特性的影响。 四、实验前的准备: 第一部分:理论计算 该放大电路在高频情况下的等效为如图1-2 所示,晶体管的 4 个y 参数yie,yoe, yfe 及yre 分别为

相关文档
相关文档 最新文档