文档库 最新最全的文档下载
当前位置:文档库 › tan7.5°和15°、22.5°三角函数值的几何求法

tan7.5°和15°、22.5°三角函数值的几何求法

tan7.5°和15°、22.5°三角函数值的几何求法
tan7.5°和15°、22.5°三角函数值的几何求法

tan7.5°和15°、22.5°

三角函数值的几何求法

江苏省泗阳县李口中学沈正中

一、tan7. 5°的几何求法

在Rt△ABC中,∠C=90°,A=15°,延长CA到D,使AD = AB,

则∠D = 7.5°,且DC = DA + AC,不妨设BC = 1,则AC = 2 + ,

AD = AB = ,

二、求tan22.5°的几何求法

在Rt△ABC中,∠C = 90°,∠A = 45°,延长CA到D,使

AD = AB,则∠D = 22.5°,且DC =

DA + AC,不妨设BC = AC = 1,则

AD = AB = ,所以DC =

BD = 2 ( 2 + ) 。由此可求得:

, , ,

利用下图,用类似的方法可求得:

三、15°三角函数值的几何求法

在Rt△ABC中,∠C = 90°,∠A = 30°,延长CA到D,使

AD = AB,则

∠D = 15°,且

DC = DA + AC,

不妨设BC = 1,则

AD = AB = 2,AC = ,所以DC = 2+ ,BD = 。由此可求得:

sin15°=,cos15°=tan15°=,

cot15°=。

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

三角函数最大值问题

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为 只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+sin(2x+) 当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。

【智博教育原创专题】三角函数求最值的题型大全

三角函数求最值的归类研究 求函数的最大值与最小值是高中数学中的重要内容,也是高考中的常见题型,本文对三角函数的求最值问题进行归类研究,供同学们借鉴。 一、化成sin()y A x ω?=+的形式 例1. 在直角三角形中,两锐角为A 和B ,求sin sin A B 的最大值。 【解析】1sin sin sin sin()sin cos sin 222A B A A A A A π=-==,由02 A π<<,得02A π<<,则当4 A π=时,sin sin A B 有最大值12。 例2. 求函数44()cos 2sin cos sin f x x x x x =--在0,2π?????? 上的最大值和最小值。 【解析】442222()cos 2sin cos sin (cos sin )(cos sin )sin 2cos2sin 2f x x x x x x x x x x x x =--=+--=- )4x π=-,由02 x π≤≤,得32,sin(2)14444x x ππππ-≤-≤≤-≤,得 )14x π-≤,则当0x =时,max ()1f x =;当38 x π=时,min ()f x = 【点评】这类题目解决的思路是把问题化归为()sin()f x A x k ω?=++的形式,一般而言,max min ()()f x A k f x A k =+=-+,,但若附加了x 的取值范围,最好的方法是通过图象加以解决。例2中,令24u x π=-,画出sin u 在3,44ππ??-???? 上的图象(如图1), 图1 不难看出sin 12u ≤≤,即sin(2)124x π≤-≤。应注意此题容易把两个边界的函数值()2f π和(0)f 误认为是最大值和最小值。 二、形如cos sin c x d y a x b +=+的形式 例3. 求函数sin 1cos 2 x y x -=-的最大值和最小值。 【解析】由已知得cos 2sin 1y x y x -=-,即sin cos 12,)12x y x y x y φ-=-+=-,所以 sin()x ?+sin()1x ?+≤≤,即2340y y -≤,解得403 y ≤≤,故max min 4,03 y y ==。 【点评】上述利用正(余)弦函数的有界性,转化为以函数y 为主元的不等式,是解决这类问题的最佳方法。虽然本题可以使用万能公式,也可以利用圆的参数方程和斜率公式去求解,但都不如上述解法简单易行。有兴趣的同学不妨试一试其他解法。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

三角函数值表

三角函数值表一常用三角函数值:

二反三角函数值

同角三角函数的基本关系式 1,倒数关系: 1csc sin =?x x 1sec cos =?x x 1cot tan =?x x 2,商数关系: x x x cos sin tan = x x x sin cos cot = 3,平方关系 1cos sin 22=+x x x x 22sec tan 1=+ x x 22csc cot 1=+ 倍角公式:

x x x cos sin 22sin = 2 cos 2sin 2sin x x x = x x x 22sin cos 2cos -= 2 sin 2cos cos 2 2 x x x -= 1cos 22 -=x 12 cos 22 -=x x 2 sin 21-= 2 sin 212 x -= x x x 2tan 1tan 22tan -= 2 tan 12tan 2tan 2x x x -= 半角公式: 2cos 12sin x x -±= 22cos 1sin 2x x -= 2cos 12cos x x +±= 2 2cos 1cos 2x x += x x x x x x x cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 万能公式: 2 tan 12tan 2sin 2x x x +=

2 tan 12tan 1cos 22 x x x +-= 2 tan 12tan 2tan 2x x x -= 奉送直线有关 1,斜截式 斜率K 和在Y 轴的截距是b b kx y += 2点截式 点()111,y x P 和斜率k ()11x x k y y -=- 3,两点式 点()()222111,,y x P y x P 和 1 21 121x x x x y y y y --=-- 4,截距式 在x 轴上截距是a 1=+b x a x 在y 轴上截距是b 两条直线平行的充要条件:21k k = 两条直线垂直的充要条件:121-=?k k 圆: 圆心在圆点,半径为r 的圆的方程是: 222r y x =+ 圆心在点()b a C ,,半径为r 的圆的方程是: ()()22 2 r b y a x =-+-

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

三角函数研究性学习

研究性学习 班级: 小组: 组长: 组员: 开题报告 三角学的起源与发展 三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具

一、课题提出的背景 运用数学知识解决现实生活中的实际问题是一项很重要的数学能力,也是新课程标准对学生能力的基本要求。九年级下册锐角三角函数内容不仅是初中数学教学的重点,而且是培养学生运用能力的理想材料,锐角三角函数解实际问题渗透了数形结合的数学思想,通过测量,工程技术等问题,转化为解直角三角形的应用题和数学活动,有助于培养学生的空间想象能力和运用数学的能力,更好地培养学生理论和实践相结合的意识。学生在学习本部分内容时,对概念的形成难以理解,更不能把实际问题抽象成数学模型,造成对实际问题的解决无所适从,学生作业练习中更出现严重错误,利用数学知识解决实际问题的能力欠缺,导致学生对数学学习没有乐趣和积极性,因此,本人把锐角三角函数解决实际问题作为课题进行研究,培养学生数学运用能力。 二、所要解决的主要问题 1、通过实际问题培养学生经历概念的形成能力。 2、研究如何培养学生数形结合的数学思想。 3、研究如何培养学生对实际问题的分析和解决能力。 4、培养学生良好的解决问题的数学思想和方法,使学生对实际问题的探索充满乐趣。

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

常用三角函数值

高中数学常用公式一常用三角函数值:

二反三角函数值 同角三角函数的基本关系式 1,倒数关系: 1c s c s i n =?x x 1s e c c o s =?x x 1c o t t a n =?x x 2,商数关系: x x x c o s s i n t a n = x x x s i n c o s c o t = 3,平方关系 1c o s s i n 2 2 =+x x x x 2 2 s e c t a n 1=+

x x 2 2c s c c o t 1=+ 倍角公式: x x x c o s s i n 22s i n = 2 c o s 2 s i n 2s i n x x x = x x x 2 2s i n c o s 2c o s -= 2 s i n 2 c o s c o s 2 2 x x x -= 1c o s 22 -=x 12 c o s 22 -=x x 2 s i n 21-= 2 s i n 212 x -= x x x 2 t a n 1t a n 22t a n -= 2 t a n 12 t a n 2t a n 2 x x x -= 半角公式: 2 c o s 12s i n x x -± = 2 2c o s 1s i n 2 x x -= 2c o s 12c o s x x +±= 22c o s 1c o s 2 x x += x x x x x x x c o s 1s i n s i n c o s 1c o s 1c o s 12t a n +=-=+-±= 万能公式: 2 t a n 12 t a n 2s i n 2 x x x += 2 t a n 12t a n 1c o s 2 2 x x x +-=

三角函数值表及记忆方法

角度 sin cos tan cot sec csc 函数 0 0 1 0 \ 1 \ 15 30 2 45 1 1 60 2 75 90 1 0 \ 0 \ 1 105 120 -2 135 -1 -1 150 2 165 -1 \ 180 0 -1 0 \

195 210 -2 225 1 1 240 -2 255 0 \ -1 270 -1 0 \ 285 300 2 315 -1 -1 330 -2 345

常用三角函数 角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 只想上传这一个表 下面的都是无用的话 不用看了。 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 2 1 sin45°=cos45°= 2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2、列表法: 值 角 函 数 0° 30° 45° 60° 90° sin α 20 21 22 23 24 cos α 2 4 2 3 2 2 2 1 2 tan α 3 3 1或 3 9 √3或 3 27 不存在 cot α 不存在 √3或 3 27 1或3 9 3 3 30? 1 2 3 1 45? 1 2 1 2 60? 3

高中三角函数最值问题的一些求法

高中三角函数最值问题的一些求法 关于()f x ω?+型三角函数式的最值,可以由三角函数的性质直接求出,如 sin(),11y x y y ω?=+==-最大最小,; cos(),11y x y y ω?=+==-最大最小,; tan y x =与cot y x =在定义域内无最值。 一、直接应用三角函数的定义及三角函数值的符号规律解题 例1:求函数y = x x x x x x x x cot | cot ||tan |tan cos |cos ||sin |sin +++的最值 分析:解决本题时要注意三角函数值的符号规律,分四个象限讨论。 解: (1)当x 在第一象限时,有sin cos tan cot 4sin cos tan cot x x x x y x x x x = +++= (2)当x 在第二象限时,有sin cos tan cot 2sin cos tan cot x x x x y x x x x =+++=---- (3)当x 在第三象限时,有sin cos tan cot 0sin cos tan cot x x x x y x x x x =+++=-- (4)当x 在第四象限时,sin cos tan cot 2sin cos tan cot x x x x y x x x x =+++=---- 综上可得此函数的最大值为4,最小值为-2. 二、直接应用三角函数的有界性(sin 1,cos 1x x ≤≤)解题 例1:(2003北京春季高考试题)设M 和m 分别表示函数cos 13 x -1 y=的最大值和最小值,则M m +等于( ) (A ) 32 (B )32-(C ) 3 4-(D )-2 解析:由于cos y x =的最大值与最小值分别为1,-1,所以,函数cos 13 x -1 y=的最大值与最小值分别为 32-,34-,即M m +=32-+(3 4 -)=-2,选D. 例2:求3sin 1 sin 2 x y x +=+的最值(值域) 分析:此式是关于sin x 的函数式,通过对式子变形使出现12sin 3 y x y -=-的形式,再根据sin 1x ≤来求解。 解:3sin 1 sin 2 x y x += +,即有sin 23sin 1sin 3sin 12y x y x y x x y +=+?-=-

求三角函数最值的四种方法

求三角函数最值的四种方法 解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性 如有界性等 ,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数 二次函数等 最值问题.下面介绍几种常见的三角函数最值的求解策略 1.配方转化策略 对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2 x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决. [典例1] 求函数y =5sin x +cos 2x 的最值. [解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2? ????sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4. [题后悟道] 这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1]. 2.有界转化策略 对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一. [典例2] 设函数f (x )=4cos ? ????ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值. [解] f (x )=4? ?? ??32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx =3sin 2ωx +1, 因为-1≤sin 2ωx ≤1, 所以函数y =f (x )的最大值为3+1,最小值为1- 3.

三角函数最值问题的十种常见解法

- - 总结 三角函数最值问题的十种常见解法 福州高级中学 陈锦平 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法: 一.转化一次函数 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法. 例1.求函数2cos 1y x =-的值域 [分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈- 二. 转化sin()y A x b ω?=++(辅助角法) 观察三角函数名和角,先化简,使三角函数的名和角统一. 例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为 . [分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ω?=++的形式,再借助三角函数图象研究性质,解题时注意 观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +求最值. ()f x ≤ 三. 转化二次函数(配方法) 若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.

例谈三角函数值域(最值)的几种求法

例谈三角函数值域(最值)的几种求法 南县一中 肖胜军 有关三角函数的值域(最值)的问题是各级各类考试考察的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等重常用方法。掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。 一、合理转化,利用有界性求值域 例1、求下列函数的值域: (1)1sin cos y x x =+ (2)cos 3 cos 3 x y x -= + (3)2 2 sin 2sin cos 3cos y x x x x =++ (4)3sin()4cos()44 y x x π π =+ ++解析: (1)根据11sin cos sin 222x x x ≤ ≤可知:13 22 y ≤≤ (2)将原函数的解析式化为:3(1)cos 1y x y += -,由cos 1x ≤可得:1 22 y -≤≤- (3) 原函数解析式可化为:2 1sin 22cos 2sin 2cos 22)4 y x x x x x π =++=++=++ 可得: 22y ≤≤+ (4)根据sin cos )a x b x x φ?+=+∈?可得:55y -≤≤ 二、单调性开路,定义回归 例2、求下列函数的值域: (1)y = (2)y = (3)2cos ,63y x x x ππ?? ??=+∈ ?? ????? (4)y 1sin 02x ≤≤≤解析:(1)由-1知: 1sin 1,cos1cos sin 1 2 2 x x π π ≤-≤≤≤ ≤≤≤≤(2)由- 有()125sin()663366 x x x ππππππ +≤≤≤+≤≤≤(3)y=2由知:由正弦函数的单调性:1y 2 [](4)0,2y == 三、抓住结构特征,巧用均值不等式

高中数学学案:三角函数的最值问题

高中数学学案:三角函数的最值问题 1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域. 2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题. 1. 阅读:必修4第24~33页、第103~116页、第119~122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解? 3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. 基础诊断 1. 函数f(x)=sin x,x ∈? ????π6,2π3的值域为? ?? ??12,1__. 2. 函数f(x)=sin x -cos ? ?? ??x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6),所 以函数f(x)=sin x -cos (x +π6)的值域为[-3,3]. 3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__. 解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ? ????x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ? ????x +π6∈???? ??12,1, 所以当sin ? ?? ??x +π6=1时,f(x)有最大值2. 4. 函数y =2sin 2x -3sin 2x 范例导航 考向? 形如y =a sin 2x +b cos x +c 的三角函数的最值

(精心整理)如何求三角函数的最值

三角函数的最值问题 三角函数的最值问题是三角函数基础知识的综合应用,也是高中数学中经常涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这类问题不仅需要用到三角函数的定义域、值域、单调性、图像和三角函数的恒等变形,而且还常涉及到函数、不等式、方程、几何等众多知识,其概念性强,具有一定的综合性和灵活性。而解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面就介绍几种常见的求三角函数最值的方法: 一、 配方法: 形如y=asin 2x+bcosx+c 型的函数 特点是含有sinx, cosx ,并且其中一个是二次,处理方式是应用sin 2x+cos 2x=1,使函数式只含有一种三角函数,再应用配方或换元法,转化成二次函数来求解。 例1 函数3cos 3sin 2+--=x x y 的最小值为( ). A . 2 B . 0 C . 4 1- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则 ,23,112+-=≤≤-t t y t 配方,得41232-?? ? ??-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B. 例2 求函数y=5sinx+cos2x 的最值 [分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 () 48331612,,221sin 68 3316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+?-=∈+=∴=-=+?-=∈-=-=∴≤≤-+??? ? ?--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二、 引入辅助角法: 形如y=asinx+bcosx 型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。应用课本中现成的公式即可:y=

高考数学大招:三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法: 一.转化一次函数 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法. 例1.求函数2cos 1y x =-的值域 [分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈- 二. 转化sin()y A x b ω?=++(辅助角法) 观察三角函数名和角,先化简,使三角函数的名和角统一. 例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为 . [分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ω?=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一 般可利用 |sin cos |a x b x +≤求最值. ()f x ≤ 三. 转化二次函数(配方法) 若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理. 例3. 求函数3cos 3sin 2+--=x x y 的最小值. [分析]利用22sin cos 1x x +=将原函数转化为2 cos 3cos 2+-=x x y 令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232 -?? ? ??-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y 四. 引入参数转化(换元法) 对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2 x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围. 例4. 求函数sin cos sin .cos y x x x x =++的最大值. [分析]解:令().cos sin 21cos sin 2 x x x x +=+,设sin cos .t x x =+ 则[]() t t y t t x x +-=∴-∈-=21,2,221cos sin 22, 其中[] 2,2-∈t 当.221,14sin ,2max +=∴=??? ? ?+=y x t π 五. 利用基本不等式法 利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.

高三数学求三角函数最小正周期的五种方法

求三角函数最小正周期的五种方法 spacetzs 关于求三角函数最小正周期的问题,是三角函数的重点和难点,教科书和各种教参中虽有讲解,但其涉及到的题目类型及解决方法并不多,学生遇到较为复杂一点的问题时,往往不知从何入手。本文将介绍求三角函数最小正周期常用的五种方法,仅供参考。 一、定义法 直接利用周期函数的定义求出周期。 例1.求函数y m x =-cos( )56π(m ≠0)的最小正周期。 解:因为y m x =-cos()56 π =-+=+-cos( )cos[()]m x m x m 5625106ππππ 所以函数y m x =-cos()56 π(m ≠0)的最小正周期 T m = 10π|| 例2.求函数y x a =cot 的最小正周期。 解:因为y x a x a a x a ==+=+cot cot()cot[()]ππ1 所以函数y x a =cot 的最小正周期为T a =||π。 二、公式法 利用下列公式求解三角函数的最小正周期。

1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最小正周期T =2πω|| 。 2.y A x h y A x h =++=++tan()cot()ωφωφ或的最小正周期T =πω|| 。 3.y x y x ==|sin ||cos |ωω或的最小正周期T =πω|| 。 4.y x y x ==|tan ||cot |ωω或的最小正周期T = πω|| 例3.求函数y x =|tan |3的最小正周期。 解:因为T ==πωω|| 而3 所以函数y x =|tan |3的最小正周期为T = π 3。 例4.求函数y n m x =-cot()3π的最小正周期。 解:因为T n m ==-πωωπ||||而, 所以函数y n m x =-cot()3π的最小正周期为T n m m n =-=ππ||||。 三、转化法 对较复杂的三角函数可通过恒等变形转化为y A x h =++sin()ωφ等类型,再用公式法求解。 例5.求函数y x x =+sin cos 66 的最小正周期。

[三角函数最值求法探究] 几种常见的三角函数值域求法

[三角函数最值求法探究] 几种常见的三角函数 值域求法 2006年第4期 牡丹江教育学院学报 JOURNALOFMUDANJIANGCOLLEGEOFEDUCATION No、4,2006 TotalNo、98 三角函数最值求法探究 宁广祥1 陈 旭2 [摘要]三角函数的曩值问题是对三角函数基础知识的综合应用,也是高考中的一个重点、本文总结了三角函数最值的求法,其中换元法/数形结合是本文的重点,也是解决最值的基本方法、 [关键词]三角函数I最值I换元;数形结合 [中圈分类号]G633、6 [文献标识码]A

[文章编号]1009--232304--0120--01 三角函数的最值问题是对三角函数基础知识的综合应用,此类问题在近几年的高考题中经常出现。也是高考的一个重点必考内容、其出现的形式,或者是在小题中单纯地考察三角函数的值域问题,或者是隐含在解答题中,作为解决解答题所用的知识点之一、它既是三角函数知识的延续和再巩固,又是三角公式运用的具体表现,因此,对于学生来说要熟练掌握这些知识点和基本方法确有一定难度、下面笔者将近几年来的教学点滴心得总结如下? 1、Y2asinx+b塑函数例1求y一3cosx+1的最值、解1、、、一1≤cosx≤1、、、一3≤3cosx≤3、、、一2≤3cosx+1≤4 即,、。一4 y_一一2、 率,而点是单位圆上的点,过的直线系方程y一2一k 篆表示的是过点与点的斜 解法2, 1y 由点到直线的距离公式,d一上二宅掣一1 解法3t 解得,量一丁4-t-V/7"故舳一学,№一业3

设t2t+2一y一0, 弋≯ X、<}一 叉 解,原式可化简为y一2sin,由一1≤sin≤1得y一一2,y_、COaX。 解l令sinx+cosx=t, 则1+2sinxcosx=t2,所以2sinxcosx2+警 口1 所以y1+t一一÷ 所以y~一7,y_一警、 此类题型主要是应用了换元法将问题转化为学生熟知的一元二次函数有条件限制的最值问题,体现了化归的重要数学思想的应用、 性。 根据二次函数的图像,解出Y的最大值是1+压 这种问题再次反映出二次函数性质和化归思想的重要 6、y2asin2x+bsinxcosx+cos,?x型的函数 4、y=竺箸掣型的函数 f5ln、Z。1一a

教案 一般角的三角函数值

28.1.4 一般角的三角函数值 一、教学目标 (一)知识与技能 使学生会查“正弦和余弦表”、“正切和余切表”,即由已知锐角求正弦、余弦、正切、余切值.使学生会根据一个锐角的正弦、余弦、正切、余切值,查出这个锐角的大小. (二)过程与方法 逐步培养学生观察、比较、分析、概括等逻辑思维能力. (三)情感态度与价值观 培养学生良好的学习习惯. 二、重、难点 重点:“正弦和余弦表”、“正切和余切表”的查法. 难点:当角度在0°~90°间变化时,正弦值、余弦值、正切值、余切值随角度 变化而变化的规律. 三、教学步骤 (一)明确目标 1.复习提问 1)30°、45°、60°的正弦值和余弦值、正切值和余切值各是多少?请学生口答. 2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?一个之间具有什么关系.)正切(与其余角的余切)余切(锐角的正切. (二)整体感知 我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值、正切值和 余切值,但在生产和科研中还常用到其他锐角的正弦值和余弦值、正切值和余切 值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值、正切值和余切值(一般是含有四位有效数字的近似值),列成表格—— 正弦和余弦表、正切和余切表.本节课我们来研究如何使用正弦和余弦表、正切和余切表. (三)重点、难点的学习与目标完成过程

1.“正弦和余弦表”简介 学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”. (1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角. 2)表中角精确到1′,正弦、余弦值有四位有效数字. 2.请学生观察“正切和余切表”的结构,并用语言加以概括. 答:正切表在76°~90°无修正值,余切表在0°~14°无修正值.其余与正弦和余弦表类似,对于正切值,随角度的增大而增大,随角度的减小而减小,而余切值随角度的增大而减小,随角度的减小而增大. 3.凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示. ′的正弦值.26°37查表求1 例 学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小). 解:sin37°24′=0.6074. 角度增2′值增0.0005 sin37°26′=0.6079. 在查表中,还应引导学生查得: sin0°=0,sin90°=1. 根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0. 可引导学生查得:

相关文档