文档库 最新最全的文档下载
当前位置:文档库 › 电磁学—(5)

电磁学—(5)

Xi’an Jiaotong University Prof. Wang Xiaoli

2017. 5. 5

回顾

Capacitor

1. 电容的定义u

q

C =R

C 04πε=孤立导体球的电容2. 电容器的电容

B

A u u q

C -=

(1) Parallel-plate capacitor

d

S

C 0ε=

(2) A spherical capacitor

)

R R R R (C 1

22

104-=πε(3) A long cylindrical capacitor

)

/ln('a b u L C C 0

2πελ

=

?=

=

求解电容器电容的基本思路:? 确定电极,设

q

±求出极板间的电场强度E

求出极板间的电势差

u

?由定义式求电容C

例设有两根半径都为R 的平行直导线,它们中心的距离为d ,且d >> R 。求单位长度的电容?

U

解:2R

x

x

d x

-P

o

λ

-P 点的场强

01

()2E x d x

λλ

πε=

+-E

导线之间的电势差:

01d ()d 2d R R U E l x x d x

λλ

πε-=?=+-?

? 0ln d R R λπε-=

单位长度上的电容为

01ln C d R

U R

πελ

=≈

-d R

>>01ln C d

U R

πελ=≈

三. Electric –Field Energy ? 点电荷之间的相互作用能

1

q

2

q

r P 外力反抗电场力作功

)

u

u(

q

A

P∞

-

=

2

取无穷远处

为电势零点

场的保守性引入电势能

P

u

q

2

=

——两点电荷之间的相互作用能

P

W

=

r

q

q

W

P

2

1

4πε

=

电势能

r

q

q

r

q

q

W

P

1

2

2

1

4

2

4

2πε

πε

+

=

2

2

1

1

2

2

u

q

u

q

+

=

推广到点电

荷系情况:

=

i

i

u

q

W

2

1不同带电体上电荷相

互作用贡献的静电能量

——互能

? 带电系统的能量

dq

q

u

外力反抗电场力作功

Q q =初态:0

=u 0=q

任一时刻:q q =u u =末态:U

u =在移动电荷过程中,

)

u u (dq dA ∞-=外力反抗电场力作的总功

??==Q

Q

dq )q (u dA A 0

W

=电荷系统的静电能等于将电荷中各个电荷元从无穷远处移来的过程中外力做的功

例:一半径为R 的孤立导体球,电量为Q ,求W

?=Q

udq W 0

?=Q

dq R

q 0

04πεR

Q

02

8πε=

思考:如何用求电荷元的相互作用能的方法求得上述结果?

Q

? Energy Storage in Capacitors S

d

dq

充电中的任一时刻:

C

)t (q u AB

=

A

B

dq

C

q

dq u dA AB ==静电能的归属问题?

===Q

C

Q dq C q W A 0

2

2AB QU 2

1=公式也适用于球面或柱面等电容器,即与电容器具体构造无关

? 电场能量:外力反抗静电场力做功

结论静电能分布于电场空间中

? 近代理论研究:场具有能量,是场具有物质性的直接表现

用场量描述

AB

CU 221=Q

-Q

? 以平行板电容器为例,建立电场能量密度

d

/S C 0ε=Ed

U AB =AB CU W 2

2

1=22021d E d S ε=

电容值

极板间电势差

2021SdE ε=平行板之间体积为V

2

2

1E V W ε=e w =—Energy density ——求电场能量密度的普遍公式,不论电场均匀与否,也不论

是静电场还是非静电场都是适用的。

? 对于非均匀电场??==V

V e dV

E dV w W 2

021ε——能量密度为空间坐标的函数积分遍及电场所

占的空间体积V

dV

w dV E 2

1dW e 2

0==ε)

,,(z y x w w e e

=

dV E W R

2

00

2

1ε?

=内外W dr r r Q

R 22

2004

4

2

πε

ε???

? ?

?=?∞

dr r R Qr R 2

2

30004421ππεε???

? ??=?R Q 0240πε=R Q 02

8πε=R

Q

02203πε=21W W W +=总带电球体的静电能静电场能量的一般计算方法:求场强分布

定能量密度

选体积元

遍及电场空间

例1 计算一半径为R ,带电量为Q 的均匀带电球体的电场能量?R

高斯定理——确定电场强度——计算场能

解:3

04R

Qr E πε=2

04r

Q E πε=

R r

r >Q

例2 一平行板空气电容器,极板面积为S ,板间距为d ,充电至带电Q 后与电源断开。然后用外力缓慢地将两极板间距拉到2d ,求:? 电容器能量的改变? 外力在作用过程中所做的功

解:极板间距为d 时

极板间距为d 2时d

S

C 202ε=

S

d Q C Q W 02

2222ε=

=电容器的能量变化

S

/d Q W W W 02

122ε=-=?0

>外力在作用中所做的功

d F A 外外=QE F =S

/d Q 02

2ε=外力对电容器作的功等于电容器能量的增量外

A W =?d

S

C 01ε=S

d Q C Q W 02

12122ε=

=思考:若保持极板间电压不变,结果如何?

S Q 0εS

Q

Q

02ε=

1 —7 静电场中的电介质

不善于传导电流的物质称为绝缘体(Insulator),绝缘体又称为电介质,其电阻率极高。

定义——不导电的物体称为绝缘体

电介质——绝缘体——内部没有可自由移动的电荷一. 电介质对电场的影响

A B

? 电容内为真空时,

d

S

u

q

C0

ε

=

?

=

? 引入电介质后,

实验结果

r

u

1

u?

=

?

ε

各向同性、均匀电介质

u

q

C

?

=

C

>

E

E

电介质0≠

E

相对介电常数,

随电介质而异

1

>

r

ε

d

S

r

ε

ε

=

推论:电压减低,极板间电场减弱

r

E E ε0

=

Ed

u =?? 各向同性、均匀电介质中,Coulomb Law :

0221041

r r q q F r επε=

02

2141r r

q q

πε=r

εεε0=——Dielectric constant

真空中

1εεε=?=r d

E u 00=?端面出现电荷束缚电荷的电场E ′不能全部抵消E 0,只能削弱原场强。

导体情况:

——“束缚电荷”(bound charge )或称“极化电荷”电介质情况:

++++++++++++

-----------------

+ + + + + + + +

--------0

=内

E

E

++++++++++++-----------------

+ + + + + + + + --------0

≠内E 0

E

电介质与导体构成一对矛盾体:

它们又对立、又依存;

在实际应用中,它们的作用正相反。

因此,研究电介质也是电学中的一个十分重要的问题。

一些典型的电介质的相对介电常数:

空气: ~1.0 纸: ~ 3.5 变压器油: ~ 4.5

普通玻璃: ~ 4.7 云母: ~ 5.4

木材: ~ 2.5~7.0 瓷: ~ 6.5 硅: ~ 12

乙醇: ~ 25 钛酸锶: ~ 310

二. 电介质的极化(Polarization )

根据电介质分子内部结构,可分两类:Polar molecule Nonpolar molecule ——固有电矩l

q p =——无固有电矩——

电荷“重心”不重合

―重心”

重合

―重心”

不重合

p

电介质分子的电结构无极分子

有极分子

±

+

-

l

q p =0

=p H

H

H

H

C

4CH +

+

+

+

-

-

--

104

H

H

O

O

H 2+

+

-

-

(无极分子电介质)

(有极分子电介质)

对外不显电性

(热运动)

无外场作用时

分子HCl 3.43H 2S

5.3HBr 2.60SO 2 5.3HI 1.26NH 3

5.0

CO 0.40

C 2H 5OH 3.66

分子p / (10-30C ?m)p / (10-30C ?m)

H 2O

6. 2

有极分子的电偶极矩

E p

+-+

-+

-

+

-

+-+

-

+-

+-+-+

-0

E p

+-+-+-+-+-+-+-

+-

+

-

+

-(分子)位移极化

(分子)取向极化

束缚电荷σ′束缚电荷σ′?无极分子电介质

?有极分子电介质

外电场E 0↑?极化σ′↑ ?介质内电场E ↑ ?击穿

讨论

如H 2、N 2、O 2、CO 2 …..

如H 2O 、CO 、SO 2、NH 3 …..

介质极化的微观解释:

外场强越大,电矩趋于外场方向一致性越好,电矩的矢量和也越大

说明:电子位移极化效应在任何电介质中都存在,而分子转向极化只是由有极分子构成的电介质所特有的,只不过在有极分子构成的电介质中,转向极化效应比位移极化强得多,因而是主要的。

1)不管是位移极化还是取向极化,其最后的宏观效果都是产生了极化电荷(束缚电荷)。

2)外场越强,电介质极化越厉害,所产生的分子电矩的矢量和也越大。因此,极化程度用分子电矩的集合表述强弱。

3)极化电荷被束缚在介质表面上,不能离开电介质到其它带电体,也不能在电介质内部自由移动。它不象导体中的自由电荷能用传导方法将其引走。

注意:“极化现象”与“感应现象”的本质区别

三. 介质中的电场束缚电荷面密度

以平行板电容器为例:

σ

σ-

ε

σ/

E=

由自由电荷建立的电场

E

由束缚电荷建立的电场

ε

σ/'

'E=

'E

-'σ

σ

σ'

'E

E

E

P

-

=

-

=

电介质内部任意一点的场强:

r

P

E

'

E

ε

ε

σ

σ

=

-

=

实验结果

r

ε

ε

σ

ε

σ??

?

?

?

?

-

=

r

'

1

1

四. 含电介质的高斯定理电位移矢量

电介质在电场中产生束缚电荷影响原电场分布

?

∑=?S

i

q

S d E 0

ε 真空中的

高斯定理

引入电介质:

介质

σ

σ

-0

E '

E 'σ-'

σS ??S

S d E 做一圆柱

形高斯面

()S '?-=σσε01S r ????

? ?????? ?

?--=εσσε1110r S εεσ0?=自由

电荷

∑?

=?内)S q S d E i S

r (0 εε∑?

=?内)S q S d D i S

( 定义:电位移( electric displacement )

E

D r εε0=含电介质的高斯定理

Gauss’s Law in Dielectrics

∑?

=?内)S q S d D i S

( E

E D r εεε==0Electric displacement

? 计算各向同性、均匀介质中电场强度的基本方法: D

∑?

=?内)S q S d D i S

( 分析自由电荷分布

通过任意封闭曲面的电位

移通量=该封闭面包围自由电荷的代数和

单位: E

2

m

/C 通常情况,电介质不导电强电场破坏电介质的绝缘性介质的击穿(Breakdown )

击穿场强( KV/mm )

空气:3云母:80~200

玻璃:10~25纸:16瓷:6~20电木:10~20变压器油:14

聚四氟乙烯:35

计算电磁学作业_二)

计算电磁学课程作业(二) 1. 电磁场的线性系统(满足标量亥姆霍兹方程的系统)与一般电 子线性系统有何异同点? 2. 试阐述格林函数对工程电磁场计算和求解的意义。 3. 任何源函数都可很方便地表示为基本函数(一般为函数)的线 性组合。任何波函数都可很方便地表示为基本函数(各种谐函 数)的线性组合。利用电磁场线性系统的函数和格林函数, 对于矢量磁位的亥姆霍兹方程: ,其在自由空间的解为 试写出两个有关矢量磁位的结论。 4. 对于无源区,电场、磁场、矢量磁位、标量电位、矢量电 位、标量磁位以及德拜位、赫兹矢量位等波函数,在时 域均可以写成矢量达朗伯方程的形式: 或标量达朗伯方程的形式。 对于矢量达朗伯方程,也常常只对标量达朗伯方程进行讨论和求解。这是因为:一方面矢量方程可以通过分离变量法后看做各个坐标分量标量方程的叠加;另一方面不同的波函数(平面波、柱面波、球面波)之间可以相互转换表达或相互展开表示(通过广义傅里叶变换)。 试写出无源区标量达朗伯方程的一个通解形式及其推导过程,并阐述通解的物理含义。 5. 类似地,在无源区,频域中波函数的波动方程可以表达为标量 亥姆霍兹方程(谐方程): () 其解在为谐函数(正弦函数、余弦函数、指数函数或柱谐函数、 球谐函数)。 电磁波在无限空间传播与存在的是连续谱;而电磁波在有限空 间传播与存在的是分立谱。试分别写出无源区的标量亥姆霍兹方程在直

角坐标、柱坐标和球坐标下的的一般解(通解)形式。 以下题目需提交作业: 6. 当矢量位为 (1),; (2),; 时,分别推导由矢量位计算电磁场各直角坐标和圆柱坐标分量的关系式,并且讨论其电磁场特点。 7. 对于TEM 波(横电磁波),标量电位函数满足拉普拉斯方 程:,即在横街面上具有静电场的行为特征,这种特征给电磁场 的数值计算带来很大的方便,试证明之。 电场E和磁场H满足此关系吗? TE波(横电波)和TM 波(横磁波)的情况如何呢? 8. 电磁场中的标量格林函数满足亥姆霍兹方程: 对于无界空间,标量格林函数是关于源点球对称的,标量格林函数对应的亥姆霍兹方程可以变化为: 其中。其通解为:,试将通解代入上式求出。注意到一般边值问题的特解是将通解代入到边界条件(时域还需知道初始条件)中得到的,此问题的另外一个边界在无限远。能不能利用索莫菲辐射条件求出?为什么? 下题选做: 9. 试说明准静态场的概念,并分别推导磁准静态场和电准静态场的场波动方程及其通过矢量磁位求解的过程。

电磁学第六次作业解答教学文案

电磁学第六次作业解 答

电磁学第六次作业解答 第八章 真空中的稳恒磁场 8-2 如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角=60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(0 =4×10-7 H ·m -1) 解:P 处的B 可以看作是两载流直导线所产生的,1B 与2 B 的方向相同. 21B B B += r I π=40μ+?--?)]90sin(60[sin r I π40μ)]60sin(90[sin ?--? r I π=420μ=?+?)60sin 90(sin 3.73×10-3 T 方向垂直纸面向上. 8-4 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B 的大小. 解:其中3/4圆环在D 处的场 )8/(301a I B μ= AB 段在D 处的磁感强度 )221 ()]4/([02?π=b I B μ BC 段在D 处的磁感强度 )221 ()]4/([03?π=b I B μ 1B 、2B 、3B 方向相同,可知D 处总的B 为 )223( 40b a I B + π π= μ 8-12 如图所示,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间.求此螺旋线中心O 处的磁感强度. 解:以O 为圆心,在线圈所在处作一半径为r 的圆.则在r 到r + d r 的圈数为 r R R N d 1 2- 由圆电流公式得 ) (2d d 120R R r r NI B -=μ ?= -= 2 1 ) (2d 12 0R R R R r r NI B μ1 2 120ln ) (2R R R R NI -μ D b A B C a I b O R 1 R 2 I r r P θ

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? = ?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。 a 题4.1图

上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? 根据条件①和②,可设2(,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=00 22121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞ -=+∑ 题 4.2图

电磁学第八次作业解答

电磁学第八次作业解答 8-24 质子和电子以相同的速度垂直飞入磁感强度为B 的匀强磁场中,试求 质子轨道半径R 1与电子轨道半径R 2的比值. 解:洛伦兹力的大小 B q f v = 对质子: 1211/R m B q v v = 对电子: 2222/R m B q v v = ∵ 21q q = ∴ 2121//m m R R = 8-30 在xOy 平面内有一圆心在O 点的圆线圈,通以顺时针绕向的电流I 1另有一无限长直导线与y 轴重合,通以电流I 2,方向向上,如图所示.求此时圆线圈所受的磁力. 解:设圆半径为R ,选一微分元d l ,它所受磁力大小为 B l I F ?=d d 1 由于对称性,y 轴方向的合力为零。 ∴ θcos d d F F x = θθμθ c o s c o s 2 d 2 01R I R I π= θμd 22 10π= I I ∴ ?π==π 20 210d 2θμI I F F x 210I I μ= 8-32 一平面线圈由半径为0.2 m 的1/4圆弧和相互垂直的二直线组成,通以电流2 A ,把它放在磁感强度为0.5 T 的均匀磁 场中,求: (1) 线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2) 线圈平面与磁场成60°角时,线圈所受的磁力矩. 解:(1) 圆弧AC 所受的磁力:在均匀磁场中AC 电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有 F AC =283.02==RB I F AC N 方向:与AC 直线垂直,与OC 夹角45°,如图. (2) 磁力矩:线圈的磁矩为 n n IS p m 2102-?π== I 1 I 1 B ? F

电磁学作业及解答

电磁学习题 1 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大 小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对? 2 如题图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线, 其半径为R .若通以电流I ,求O 点的磁感应强度. 图 3 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 4 如图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力. 图 5 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点的一个竖直轴自由转动.现在线圈中通有电流I ,并把线圈放在均匀的水平

外磁场B 中,线圈对其转轴的转动惯量为J .求线圈绕其平衡位置作微小振动时 的振动周期T . 6 电子在B =70×10-4 T 的匀强磁场中作圆周运动,圆周半径r =3.0cm .已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如图. (1) 试画出这电子运动的轨道; (2) 求这电子速度v 的大小; (3)求这电子的动能k E . 图 7 在霍耳效应实验中,一宽1.0cm ,长4.0cm ,厚1.0×10-3cm 的导体,沿长度 方向载有3.0A 的电流,当磁感应强度大小为B =1.5T 的磁场垂直地通过该导体时,产生1.0×10-5V 的横向电压.试求: (1) 载流子的漂移速度; (2) 每立方米的载流子数目. 8 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U . 图 9 如图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12 C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷 相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有 一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通 量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2 ·N -1 ·m -2 ) 11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分 布. 12. 如图所示,在电矩为p ? 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之 间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. ( 41επ=9.00×109 Nm 2 /C 2 ) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2 ,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2 .试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2 ·N -1 ·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度. 17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB R ,试求圆心O 点的场强. E ? q L d q O x z y a a a a A B R ? Ⅰ Ⅱ Ⅲ d b a 45?c E ? σA σB A B O a θ0 q A R ∞ ∞ O

电磁学第四章答案全

第四章 习题 2、平行板电容器(面积为S,间距为d)中间两层的厚度各为d 1与d 2(d 1+d 2=d),介电常数各为1ε与2ε的电介质。试求: (1)电容C;(2)当金属板上带电密度为0σ±时,两层介质的分界面上的极化电荷密度'σ;(3)极板间电势差U;(4)两层介质中的电位移D; 解:(1)这个电容器可瞧成就是厚度为d 1与d 2的两个电容器的串联: 1 2210212121d d S C C C C C εεεεε+=+= (2)分界处第一层介质的极化电荷面密度(设与d 1接触的金属板带正电) 1 111011111εσεεεσ)(E )(P '-= -=-=?= 分界处第二层介质的极化电荷面密度: 21 222022211εσεεεσ)(E )(P n P '-- =--=-=?= 所以, 2 10 21211 εεσεεσσσ+-=+=)(' '' 若与d 1接触的金属板带负电,则2 10 21211 εεσεεσσσ+--=+=)(''' (3)2 10 122 1202010102211εεσεεεεσεεσ)d d (d d d E d E U +=+= += (4)01101σεε==E D ,02202σεε==E D 4、平行板电容器两极板相距3、Ocm,其间放有一层02.=ε的介电质,位置与厚度如图所示,已知极板上面电荷密度为21101098m /c .-?=σ,略去边缘效应,求: (1)极板间各处的P 、E 与D 的值; (2)极板间各处的电势(设正极板处00=U ); (3)画出E-x,D-x,U-x 曲线; 解:(1)由高斯定理利用对称性,可给出二极板内: 2111098m /c .D e -?==σ(各区域均相同), 在0与1之间01==P ,r ε,m /V D E 20 101?== ε

电磁学复习计算题(附答案)

《电磁学》计算题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d +q 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 =Ar (r ≤R ) , =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. (0 =8.85× 10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量 =8.85×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. E ? q L d q O x z y a a a a

电磁学第二版答案(DOC)

第一章静电场 §1.1 静电的基本现象和基本规律 思考题: 1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小相等? 答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。本方法不要求两球大小相等。因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。 2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。试解释之。答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。但接触棒后往往带上同种电荷而相互排斥。 3、用手握铜棒与丝绸摩擦,铜棒不能带电。戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。为什么两种情况有不同结果? 答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。 7、两个点电荷带电2q 和q,相距l,第三个点电荷放在何处所受的合力为零? 解:设所放的点电荷电量为Q。若Q与q同号,则三者互相排斥,不可能达到平衡;故Q 只能与q异号。当Q在2q和q联线之外的任何地方,也不可能达到平衡。由此可知,只有Q与q异号,且处于两点荷之间的联线上,才有可能达到平衡。设Q到q的距离为x. 8、三个相同的点电荷放置在等边三角形的各顶点上。在此三角形的中心应放置怎样的电荷,才能使作用在每一点电荷上的合力为零? 解:设所放电荷为Q,Q应与顶点上电荷q异号。中心Q所受合力总是为零,只需考虑q 受力平衡。 平衡与三角形边长无关,是不稳定平衡。 9、电量都是Q的两个点电荷相距为l,联线中点为O;有另一点电荷q,在联线的中垂面上距O为r处。(1)求q所受的力;(2)若q开始时是静止的,然后让它自己运动,它将如何运动?分别就q与Q同号和异号两种情况加以讨论。 解: (1) (2)q与Q同号时,F背离O点,q将沿两Q的中垂线加速地趋向无穷远处。 q与Q异号时,F指向O点,q将以O为中心作周期性振动,振幅为r . <讨论>:设q 是质量为m的粒子,粒子的加速度为 因此,在r<

电磁学练习题积累(含部分答案)

一.选择题(本大题15小题,每题2分) 第一章、第二章 1.在静电场中,下列说法中哪一个是正确的 [ ] (A)带正电荷的导体,其电位一定是正值 (B)等位面上各点的场强一定相等 (C)场强为零处,电位也一定为零 (D)场强相等处,电位梯度矢量一定相等 2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[] (A)通过封闭曲面的电通量仅是面内电荷提供的 (B) 封闭曲面上各点的场强是面内电荷激发的 (C) 应用高斯定理求得的场强仅是由面内电荷所激发的 (D) 应用高斯定理求得的场强仅是由面外电荷所激发的 3.关于静电场下列说法中正确的是 [ ] (A)电场和试探电荷同时存在和消失 (B)由E=F/q知道,电场强度与试探电荷成反比 (C)电场强度的存在与试探电荷无关 (D)电场是试探电荷和场源电荷共同产生的 4.下列几个说法中正确的是: [ ] (A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同 (C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负, F为试验电荷所受的电场力 (D)以上说法全不对。 5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。已知介 质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电 场强度的大小为 [ ]

(A) 0εσ' (B) 02εσ' (C) 0εεσ' (D) ε σ' 6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、 E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同 (D) E 与P 方向一致,与D 方向相反 7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分 布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变 8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过 图中一半径为R 的半球面的电场强度通量为 [ ] (A) 2R E π;(B) 21 2 R E π; (C) 22R E π;(D ) 0。 9. 在静电场中,电力线为均匀分布的平行 直线的区域内,在电力线方向上任意两点的电场强度E 和电势U 相比较 [ ] (A) E 相同,U 不同 (B) E 不同,U 相同 (C) E 不同,U 不同 (D) E 相同,U 相同

电磁学第五章

四川师范大学教案电磁学物理与电子工程学院

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

第五章恒定电流的磁场 §5.1 磁现象及其与电现象的联系人类对磁现象的研究早于对电现象的研究,早期对磁现象的观察(研究)是从天然磁体(永磁体)之间的相互作用开始的。 一、永磁体(早期的永磁体指天然磁体) 天然磁铁和人造磁铁统称永磁体(永磁铁)。人类对磁现象的认识和研究就开始于永磁体之间的相互作用。通过观察发现,永磁体的基本现象归结为: (1)永磁体:具有吸引铁、钴、镍等物质的性质(具有磁性); (2)永磁体有两个磁性最强的区域,叫做磁极,分别叫做南北两极(南S,北N); (3)两磁铁的磁极之间有相互作用力,同性极相斥,异性极相吸; (4)磁极不能单独存在。 二、电磁相互作用(电流具有磁效应) 十九世纪初,人们从一系列重要的实验中开始认识到电(现象)与磁(现象)之间有着不可分割的联系。 (1)1819年:丹麦科学家奥斯特发现:通电导线附近的磁针会发生偏转; 说明:电流具有磁效应电流→磁体 (2)1820年:安培发现:放在磁铁附近的载流导线或载流线圈受到磁力的作用而发生运动; 说明:磁体→电流

(3)同时期发现:两平行直导线间有相互作用力:电流同向,相吸;电流反向,相斥。 说明:电流→电流 一系列实验现象都说明磁现象与电流有密切的联系,迫使人们去探索磁现象的本质,并使人们想象磁现象是否就起源于电流(或电荷的运动)呢? 三、磁现象的本质:安培的分子电流假说 1、“磁荷”观点 由于有些磁现象与电现象有类似之处(如同性相斥,异性相吸等),因此人们最早参照电荷提出了“磁荷”的说法。人们认为磁性起源于“磁荷”,大量“磁荷”集中在磁极处而显磁性。磁铁之间的相互作用起源于“磁荷”之间的相互作用。但这个观点不能解释磁棒被无限分小后仍有N、S极、N、S极不能单独存在这种现象(因正负电荷可以单独存在)。 2、分子电流观点(假说) 奥斯特的电流磁效应实验以后,特别发现了通电螺线管与一条形磁铁的外部磁性相似。由此1822年安培提出了分子电流假说。他认为:磁性物质的分子中存在圆形电流,称为分子电流。分子电流相当于一个基元磁体,当物质不呈现磁性时,分子电流无规则排列,它们对外界所产生的磁效应互相抵消,使整个物体不显磁性。在外磁场作用下,圆形电流受力矩作用,其轴线沿一定方向排列起来,在宏观上显示出N、S极来,呈现磁性。安培的假说很容易解释为什么磁体的N、S两种磁极不能单独存在。因为基元磁体的两个极对应于圆形电流的两个面,显然这两个面是不能单独存在的。 电子的轨道运动和自旋运动构成了等效的分子电流,这就是物质磁性

电磁学作业及解答

电磁学习题 1 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大小在沿 磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的) (2)若存在电流,上述结论是否还对 2 如题图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度. 图 3 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 4 如图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力. 图 5 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点

的一个竖直轴自由转动.现在线圈中通有电流I ,并把线圈放在均匀的水平外磁场B 中,线圈对其转轴的转动惯量为J .求线圈绕其平衡位置作微小振动时的振动周期T . 6 电子在B =70×10-4 T 的匀强磁场中作圆周运动,圆周半径r =.已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如图. (1) 试画出这电子运动的轨道; (2) 求这电子速度v 的大小; (3)求这电子的动能k E . 图 7 在霍耳效应实验中,一宽,长,厚×10-3 cm 的导体,沿长度方向载有的电流,当磁 感应强度大小为B =的磁场垂直地通过该导体时,产生×10-5 V 的横向电压.试求: (1) 载流子的漂移速度; (2) 每立方米的载流子数目. 8 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U . 图 9 如图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.

电磁场第四章习题测验解答

第四章习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。 解 根据题意,电位满足的边界条件为 ① ② ③ 根据条件①和②,电位的通解应取为 由条件③,有 两边同乘以,并从0到对积分,得到 故得到槽内的电位分布 4.2 两平行无限大导体平面,距离为,其间有一极薄的导体片由到 。上板和薄片保持电位 ,下板保持零电位,求板间电位的解。设在薄片平面上,从到,电位线性变化,。 解 应用叠 加原理,设板间的电位为 0U (,)x y ?(0,)(,)0y a y ??==(,0)0x ?=0(,)x b U ?=(,)x y ?1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑sin( )n x a πa x 002sin()d sinh()a n U n x A x a n b a a ππ==?0 2(1cos )sinh() U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =???=? ,0 1,3,5, 41(,)sinh()sin()sinh()n U n y n x x y n n b a a a ππ?π π== ∑ b d y =b y =)(∞<<-∞x 0U 0=y d y =0(0,)y U y d ?=(,)x y ?= 12(,)(,)x y x y ??+ 题4.1图 y o y bo y d y 题 4.2图

电磁学复习练习题作业(答案)

电磁学复习练习题作业(答案) 第一次作业一选择题[ C ]1下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向. ???(C) 场强可E?F/q定出,其中q为试验电荷,q可正、可负,F为(B) 在以点电荷为中心的球面上,该点电荷所产生的场强处处相同.试验电荷所受的电场力.(D) 以上说法都不正确.[ C ]2 在边长为a的正方体中心处放置一电荷为Q的点电荷,则正方体顶角处的电场强度的大小为:(A) QQ.(B) .12??0a26??0a2Q 3??0a2.(D) (C) Q.??0a2 [ B ]3图中所示为一沿x轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+??(x<0)

和-? (x>0),则Oxy坐标平面上点(0,a)处的场强E为y??(0, a)??????i?j?.(A) 0.(B) i.(C) i.(D) 2??0a4??0a4??0a?(sin?2?sin?1) 【提示】根据Ex?4??0a?Ey?(cos?1?cos?2) 4??0a?对+?均匀带电直线?1?0,?2? 2?对—?均匀带电直线?1?,?2?0 2+?-?Ox 在点的场强是4个场强的矢量和[ A ]4电荷面密度分别为+?和-?的两块“无限大”均匀带电的平行平板,如图放置,则其周围空间各点电场强度随位置坐标x变化的关 系曲线为:(设场强方向向右为正、向左为负)yE -?+?E ?/?0 ?/2?0(B)(A) -a O +a x -aO+ax-aO a x E(C) E?/2?0-aO+a-?/2?0x(D)?/2?0?/?0+ax -aO??/2?0 1 【提示】依据E??及场强叠加2?0二.填空题--5. 电

大学物理习题电磁学。

第五章 电磁感应 电磁场 习 题 1. 如图所示,矩形区域为均匀稳恒磁 场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆 心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图 (A)-(D)的?--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动 势? [ ] 2. 一块铜板垂直于磁场方向放在磁感 强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加. (C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ] 3.半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直, 线圈电阻为R ;当把线圈转动使其法向与B 的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是 (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比. (D) 与线圈面积成反比,与时间无关. [ ] 4. 磁场B 中,另一半位于磁场之外,如图所示.磁场B 应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱.

5. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos ω t |. (B) ω abB (C) t abB ωωcos 21 . (D) ω abB | cos ω t |. (E) ω abB | sin ω t |. [ ] 6. 在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时 (A) 螺线管线圈中感生电流方向如A 点处箭 头所示. (B) 螺线管右端感应呈S 极. (C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转. (D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ ] 7. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ′ 转动(角速度ω 与B 同方 向),BC 的长度为棒长的31 ,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ ] 8. 势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻). (D) 把铁芯从螺线管中抽出. 9. 用导线制成一半径为r =10 cm 的闭合圆形线圈,其电阻R =10 ?,均匀磁场

电磁学作业及解答精选文档

电磁学作业及解答精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

电磁学习题 1 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对? 2 如题图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线, 其半径为R .若通以电流I ,求O 点的磁感应强度. 图 3 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 4 如图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力.

图 5 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点的一个竖直轴自由转动.现在线圈中通有电流I ,并把线圈放在均匀的 水平外磁场B 中,线圈对其转轴的转动惯量为J .求线圈绕其平衡位置作微小振动时的振动周期T . 6 电子在B =70×10-4T 的匀强磁场中作圆周运动,圆周半径r =.已知B 垂直于 纸面向外,某时刻电子在A 点,速度v 向上,如图. (1) (2) 试画出这电子运动的轨道; (3) (4) 求这电子速度v 的大小; (3)求这电子的动能k E . 图 7 在霍耳效应实验中,一宽,长,厚×10-3cm 的导体,沿长度方向载有的电 流,当磁感应强度大小为B =的磁场垂直地通过该导体时,产生×10-5V 的横向电压.试求: (1) (2) 载流子的漂移速度; (3) (4) 每立方米的载流子数目.

电磁学第四章答案全

第四章 习题 2、平行板电容器(面积为S,间距为d )中间两层的厚度各为d 1和d 2(d 1+d 2=d ),介电常数各为1ε和2ε的电介质。试求: (1)电容C ;(2)当金属板上带电密度为0σ±时,两层介质的分界面上的极化电荷密度'σ;(3)极板间电势差U;(4)两层介质中的电位移D ; 解:(1)这个电容器可看成是厚度为d 1和d 2的两个电容器的串联: 1 2210212121d d S C C C C C εεεεε+=+= (2)分界处第一层介质的极化电荷面密度(设与d 1接触的金属板带正电) 1 111011111εσεεεσ)(E )(P '-= -=-=?= 分界处第二层介质的极化电荷面密度: 21 222022211εσεεεσ)(E )(P n P '-- =--=-=?= 所以, 2 10 21211 εεσεεσσσ+-=+=)(' '' 若与d 1接触的金属板带负电,则2 10 21211 εεσεεσσσ+--=+=)(''' (3)2 10 122 1202010102211εεσεεεεσεεσ)d d (d d d E d E U +=+= += (4)01101σεε==E D ,02202σεε==E D 4、平行板电容器两极板相距3.Ocm ,其间放有一层02.=ε的介电质,位置与厚度如图所示,已知极板上面电荷密度为21101098m /c .-?=σ,略去边缘效应,求: (1)极板间各处的P 、E 和D 的值; (2)极板间各处的电势(设正极板处00=U ); (3)画出E-x ,D-x ,U-x 曲线; 解:(1)由高斯定理利用对称性,可给出二极板内: 2111098m /c .D e -?==σ(各区域均相同), 在0与1之间01==P ,r ε,m /V D E 20 101?== ε

电磁学第8、9章作业分析2007

第八章作业分析(2007/05/23) 8.2 三个电量为q-的点电荷各放在边长为r的等边三角形的三个顶点上,点电荷Q(Q>0) Q之值应为多大? q - 解:由题 2 2 2 14 1 r q f f? = = πε , 2 ) 3 2 ( 4h qQ f πε =,而f f3 =,r h 2 3 =,联立解之:q Q 3 3 = 8.5 一个电偶极子的电矩为l P q =,证明此电偶极子轴线上距其中心为r(r>>l)处的 一点的场强为3 4/ 2r P Eπε =。 解:由题 2 4 1 + + ? = r q E πε , 2 4 1 - - ? = r q E πε ,而2 2 2 2 2 r l r r+ ? ? ? ? ? = =- + 由对称性可知 + E、-E的 沿中垂线方向方量相互抵消,只剩平行于l的方向,则: 3 2 1 4 2 cos 2 + + + + ? = ? ? 4 2 = = r ql r l r q E E πε πε θ 而r>>l,即t+≈r ∴ 3 4r p E πε = 8.7 有一长度为L,电荷线密度为λ的均匀带电直线段, 求直线的延长线上距近端为R 的P点处的场强。 x dx x0

解:取线地dx 有:dx dq λ= ∴ 20 41x dx dE λπε? = ∴ ) (44102 L R R L x dx E L R R +? = ? =? +πελλπε 方向沿带电直线 8.9 如图8-43,一个细的带电塑料圆环,半径为R ,所带电荷线密度λ和θ有θλλsin 0=的 关系,求在圆心处的电场强度的方向和大小。 解:取线元dl ,有:θd R dl ?= ∴ )(sin 41410002 R d R R Rd E d -??= ? = θθλπεθ λπε ∴ 0cos sin 420 00 =- =? θθθπελπd R E x R d R E y 00220 004sin 4ελ θθπελπ-=-=? 8.11 如图8-45所示,有宽度为L ,电荷面密度为σ的无限长均匀带电平面,求在与 带电平面共面的P 点处的场强。 dx 解: 取宽度为dx 的无限长,其在P 点的场强为: x a L dx r dE -+??=?= 1 21200πεσπελ

相关文档
相关文档 最新文档