文档库 最新最全的文档下载
当前位置:文档库 › 通信电子电路 实验二

通信电子电路 实验二

通信电子电路 实验二
通信电子电路 实验二

一、实验目的

1、掌握高频小信号调谐放大器的工作原理;

2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容

1、测量各放大器的电压增益;

2、测量放大器的通频带与矩形系数(选做);

3、测试放大器的频率特性曲线(选做)。

三、实验仪器

1、BT-3扫频仪(选做)一台

2、20MHz示波器一台

3、数字式万用表一块

4、调试工具一套

四、实验基本原理

1、单级单调谐放大器

C17

R28

Q2

R30C18

C19

R31 CC2

R27 W3T2

+12V

TT2

TP5

图1-1 单级单调谐放大器实验原理图

实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。信号从TP5处输入,从TP10处输出。调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。

2、单级双调谐放大器

C17

R28Q2

R30C18

C19R31

CC2R27

C21

C22CC3C20

W3

T2+12V T3

TT2

TP5

TP7

TP11

TP12

图1-2 单级双调谐放大器实验原理图

实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。两个谐振回路通过电容C20(1nF )或C21(10 nF )耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。

3、双级单调谐放大器

C17

R28Q2

R30C18C19CC2

R27

R33Q3

R35C24

C25CC4R32

W3

C23

FL3TT2

R31

T2

T4W4

+12V

TP5

TP14

TP15TP16

图1-3 双级单调谐放大器实验原理图

实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。所以在第一级与第二级放大器之间又加了一个陶瓷滤波器(FL3),一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。

实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级放大器输出信号的幅度满足第二级放大器的输入要求,则第一级与第二级放大器之间可不用再经过FL3。

4、双级双调谐放大器

C17

R28

Q2

R30

C18

C19CC2R27

C20

C22CC3

C21

R33

Q3

R35

C24

C25CC4

R32

C26C27CC5

W3

C23

FL3

TT2

R31

T2

T3

T4

T5

W4+12V

TP5

TP7TP11

TP12

TP14

TP15

TP16

图1-4 双级双调谐放大器实验原理图

实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容(C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为C26,1nF ),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

五、实验步骤

1、计算选频回路的谐振频率范围

若谐振回路的电感量L=1.8uH ~2.4uH ,回路总电容C=105 pF ~125pF (分布电容包括在内),根据公式LC

f π210=

计算谐振回路谐振频率0f 的范围。

2、单级单调谐放大器 (1)连接实验电路

在主板上正确插好小信号放大器模块,开关K1、K2、K3、K5向左拨,主板GND 接模块GND ,主板+12V 接模块+12V 。TP9接地,TP8接TP10。检查连线正确无误后,打开实验箱右侧的船形开关,K5向右拨。若正确连接,则模块上的电源指示灯LED4亮。 (2)静态工作点调节

K5向左拨(即关闭电路电源),TP5接地,然后K5向右拨。用万用表测三极管Q2发射极对地的直流电压,调节W3使此电压为5V 。

说明:本实验箱的所有实验,改接线的操作均要在断电的情况下进行,以后关于断电改接线的操作步骤不再重复说明。

(3)测量放大器电压增益

去掉TP5与地的连线,由正弦波振荡器模块或高频信号源提供输入信号V i 。

1)输入信号V i 由正弦波振荡器模块提供,参考实验九产生10.7MHz 的正弦波信号V i ,操作步骤如下:

①在主板上正确插好正弦波振荡器模块,该模块开关K1、K9、K10、K11、K12向左拨, K2、K3、K5、K7、K8向下拨,K4、K6向上拨。主板GND 接该模块GND ,主板+12V 接该模块+12V ,检查连线正确无误后,开关K1向右拨。若正确连接,则该模块上的电源指示灯LED1亮。

②用示波器在正弦波振荡器模块的TP5处测量,输出信号应为正弦波,频率为10.7MHz 。调节该模块的W2可改变TT1处信号的幅度(注意W2不要调到两个最底端)。此信号即为

本实验的输入信号V i,从TP5处引出。

③正弦波振荡器模块的TP5接小信号放大器模块的TP5,调节正弦波振荡器模块的W2使小信号放大器模块TP5处信号V i的峰峰值V ip-p为400mV左右。

④用示波器在小信号放大器模块的TP10处观察,调节小信号放大器模块的T2、CC2,适当调节该模块的W3,使TP10处信号V o的峰峰值V op-p最大不失真。记录各数据,填表1-1。

2)输入信号V i由高频信号源提供,参考高频信号源的使用方法,用高频信号源产生频率为10.7MHz,峰峰值约400mV的正弦信号,将此信号输入到小信号放大器模块的TP5。

用示波器在小信号放大器模块的TP10处观察,调节小信号放大器模块的T2、CC2,适当调节该模块的W3,使TP10处信号V o的峰峰值V op-p最大不失真。记录各数据,填表1-1。

表1-1

V ip-p(V)V op-p(V)电压放大倍数

150mv 250mv 1.667

用高频信号源产生频率为10.7MHz,峰峰值约400mV的正弦信号:

输入信号:

输出信号:

峰峰值约250mV

实验八 三点式LC 振荡器及压控振荡器 一、实验目的

1、掌握三点式LC 振荡器的基本原理;

2、掌握反馈系数对起振和波形的影响;

3、掌握压控振荡器的工作原理;

4、掌握三点式LC 振荡器和压控振荡器的设计方法。

二、实验内容

1、测量振荡器的频率变化范围;

2、观察反馈系数对起振和输出波形的影响;

3、观察温度变化对振荡器频率稳定度的影响(选做)。

三、实验仪器

1、20MHz 示波器 一台

2、数字式万用表 一块

3、调试工具 一套

四、实验原理

1、三点式LC 振荡器

三点式LC 振荡器的实验原理图如图8-1所示。

C4

C6

R7

R8

R6

Q1

C9

R9C10

Q2

R10

R5

C11

R15

Q3

R17

R14C5

K5

C8

C7

K6

K7R12

C12R16

W2

TP5

TT1

TP4

C40

K8T2

+12V

图 8-1 三点式LC 振荡器实验原理图

图中,T2为可调电感,Q1组成振荡器,Q2组成隔离器,Q3组成放大器。C6=100pF ,C7=200pF ,C8=330pF ,C40=1nF 。通过改变K6、K7、K8的拨动方向,可改变振荡器的反馈系数。设C7、C8、C40的组合电容为C ∑,则振荡器的反馈系数F =C6/ C ∑。

反馈电路不仅把输出电压的一部分送回输入端产生振荡,而且把晶体管的输入电阻也反映到LC 回路两端。F 大,使等效负载电阻减小,放大倍数下降,不易起振。另外,F 的大小还影响波形的好坏,F 过大会使振荡波形的非线性失真变得严重。通常F 约在0.01~0.5之间。

同时,为减小晶体管输入输出电容对回路振荡频率的影响,C6和C ∑取值要大。当振荡频率较高时,有时可不加C6和C ∑,直接利用晶体管的输入输出电容构成振荡电容,使电路振荡。忽略三极管输入输出电容的影响,则三点式LC 振荡器的交流等效电路图如图8-2所示。

C4

C6

Q1

C5C∑

T2

图8-2 三点式LC 振荡器交流等效电路图

图8-2中,C5=33pF ,由于C6和C ∑均比C5大的多,则回路总电容C 0可近似为:

450C C C += (8-

1)

则振荡器的频率f 0可近似为:

)

(21

214520

20C C T C T f +=

=

ππ (8-

2)

调节T2则振荡器的振荡频率变化,当T2变大时,f 0将变小,振荡回路的品质因素变小,振荡输出波形的非线性失真也变大。实际中C6和C ∑也往往不是远远大于C5,且由于三极管输入输出电容的影响,在改变C ∑,即改变反馈系数的时候,振荡器的频率也会变化。

本模块的实际实验电路在C11与Q3之间还有一级10.7MHz 陶瓷滤波器电路,用来滤除石英晶体振荡器输出信号中的二次、三次谐波分量,以给其它模块提供载波信号。由于受到模块大小的限制,故没有在模块上画出这部分电路图。若LC 振荡所产生信号的频率不在陶瓷滤波器的通带内,则在TP5处将不会有波形输出或输出信号幅度较小。若想利用LC 振荡器所产生的信号来进行二次开发,则可在TP4处取信号。三点式LC 振荡器实验电路只涉及到振荡器和隔离器部分。

2、压控振荡器

压控振荡器的实验原理图如图8-3所示。

C4

C6

R7

R8

R6

Q1

C9

R9C10

Q2

R10

R5

C11

R15

Q3

R17

R14C5

K5

C8

C7

K6

K7R12

C12

R16

W2

TP5

TT1

TP4

C40

K8T2

+12V

K3

C3

K2

C2

R4

R2

R3W1

L1

TP1

C1

D1

TP2

TP3

图8-3 压控振荡器实验原理图

Q1、Q2、Q3的作用与三点式LC 振荡器相同,TP2和TP3是为自动频率控制实验二次开发留出的接口,在做压控振荡器实验的时候,连接TP2与TP3。TP1是为实验二十一(变容二极管调频)留出的调制信号输入接口,C1、L1为调制信号耦合隔离电路,压控振荡器实验不涉及此部分电路。

R2、R3、W1为变容二极管D1提供直流反偏压V D 。C2、C3为变容二极管的接入电容(C2=5pF ,C3=10pF),设C2、C3的组合电容为C N ,C7、C8、C40的组合电容为C M ,忽略三极管输入输出电容的影响,则压控振荡器的交流等效电路如图8-4所示。图中,C5=33pF ,由于C6和C M 均比C5大的多,则回路总电容C 0可近似为:

j

N j N C C C C C C C ++

+=450 (8-

3)

则振荡器的频率f 0可近似为:

2021C T f π=

(8-

4)

由图8-3可得,变容二极管的接入系数P 为:

jQ

N N

C C C P +=

(8-

5)

其中,C jQ 是直流反偏压为V D 时变容二极管的容量。调节W1,则V D 变化,C jQ 也变化。由式8-5可知,C N 越大,变容二极管的接入系数P 也越大,单位直流反偏压变化所引起的频偏也越大。但为了减小高频电压对D1的作用和中心频率的漂移,常将C N 取的较小。

C4

C6

Q1

C5

CM

T2

CN

Cj

图8-4 压控振荡器的交流等效电路图

五、实验步骤

1、三点式LC 振荡器 (1)连接实验电路

在主板上正确插好正弦波振荡器模块,开关K1、K9、K10、K11、K12向左拨,K2、K3、K4、K7、K8向下拨,K5、K6向上拨。主板GND 接模块GND ,主板+12V 接模块+12V 。检查连线正确无误后,打开实验箱右侧的船形开关,K1向右拨。若正确连接,则模块上的电源指示灯LED1亮。

(2)测量LC 振荡器的频率变化范围

用示波器在三极管Q2的发射极(军品插座处)观察反馈输出信号的波形,调节T2,记录输出信号频率f 0的变化范围,比较波形的非线性失真情况,填表8-1。

表8-1

f 0(MHz )

最小值 最大值 9.89MHZ 13.92MHZ

波形非线性失真(大、小)

f 0 最小值为9.89MHZ 时:

f0 最大值为13.92MHZ时:

(3)观察反馈系数对输出信号的影响

用示波器在三极管Q2的发射极观察反馈输出信号V o的波形,调节T2,使V o的频率f1为10.7MHz左右,改变反馈系数F的大小(通过选择K6、K7、K8的拨动方向来改变),观察V o峰峰值V op-p、振荡器频率的变化情况,填表8-2。

表8-2

反馈系数V op-p(V)振荡器频率(MHz)

F=1/2 1.08V 10.7MHz

F=1/3 0.72V 11.15MHz

F=1/5 0.6V 10.76MHz

F=1/10 0.3V 10.68MHz

调试时,先使反馈系数F=1/2,调节T2使Q2发射极处信号的频率为10.7MHz左右,记录Q2发射极处信号的频率和峰峰值。然后,不再调节T2,改变反馈系数的大小,记录Q2发射极处信号的频率和峰峰值,直至F=1/2、F=1/3、F=1/5、F=1/10的情况都做完。

F=1/2

V op-p(V):1.08V 振荡器频率(MHz):10.7MHz

F=1/3

F=1/5

V op-p(V):0.6V 振荡器频率(MHz):10.76MHz

F=1/10

V op-p(V):0.3V 振荡器频率(MHz):10.68MHz

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号:

年月日 实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个

平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图:

五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

《模拟电子线路实验》实验报告

网络高等教育《模拟电子线路》实验报告 学习中心:浙江建设职业技术学院奥鹏学习中心层次:高中起点专科 专业:电力系统自动化技术 年级:12 年秋季 学号:121213228188 学生姓名:

实验一常用电子仪器的使用 一、实验目的 1.了解并掌握模拟电子技术实验箱的主要功能及使用方法。 2.了解并掌握数字万用表的主要功能及使用方法。 3.学习并掌握TDS1002型数字存储示波器和信号源的基本操作方法。 二、基本知识 1.简述模拟电子技术实验箱布线区的结构及导电机制。 布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。 2.试述NEEL-03A型信号源的主要技术特性。 ①输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号; ②输出频率:10Hz~1MHz连续可调; ③幅值调节范围:0~10V P-P连续可调; ④波形衰减:20dB、40dB; ⑤带有6位数字频率计,既可作为信号源的输出监视仪表,也可以作外侧频率计用。 注意:信号源输出端不能短路。 3.试述使用万用表时应注意的问题。 使用万用表进行测量时,应先确定所需测量功能和量程。 确定量程的原则: ①若已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。 ②如果被测参数的范围未知,则先选择所需功能的最大量程测量,根据初测结果逐步把量程下调到最接近于被测值的量程,以便测量出更加准确的数值。 如屏幕显示“1”,表明已超过量程范围,须将量程开关转至相应档位上。 4.试述TDS1002型示波器进行自动测量的方法。

按下“测量”按钮可以进行自动测量。共有十一种测量类型。一次最多可显示五种。 按下顶部的选项按钮可以显示“测量1”菜单。可以在“信源”中选择在其上进行测量的通道。可以在“类型”中选择测量类型。 测量类型有:频率、周期、平均值、峰-峰值、均方根值、最小值、最大值、上升时间、下降时间、正频宽、负频宽。 三、预习题 1.正弦交流信号的峰-峰值=_2__×峰值,峰值=__根号2__×有效值。 2.交流信号的周期和频率是什么关系? 两者是倒数关系。 周期大也就是频率小,频率大也就是周期长 四、实验内容 1.电阻阻值的测量 表一 2.直流电压和交流电压的测量 表二 3.测试9V交流电压的波形及参数

通信电子电路实验测试题

通信电子电路实验测试卷 题目:单调谐回路谐振放大器 1.静态工作点测量和计算 测试条件:ΩΩ,测量并计算下表中的电压电流值。确定三极管的工作状态,并说明理由。 实测() 计算() 晶体管工作区域和理由 2.测试条件:ΩΩ。用五点法测量并计算放大器的性能指标,测试数据填入下表。 信号发生器接入电路后,的实测值为.根据测试数据计算增益(),带宽,矩形系数和值。写出计算过程。 () 3.思考题:为什么用示波器对的实测值比信号发生器显示输出值有大约一倍的 误差? 题目:单调谐回路谐振放大器 4.静态工作点测量和计算 测试条件:ΩΩ,测量并计算下表中的电压电流值。确定三极管的工作状态,并说明理由。 实测() 计算() 晶体管工作区域和理由 5.测试条件:ΩΩ。用五点法测量并计算放大器的性能指标,测试数据填入下表。

信号发生器接入电路后,的实测值为.根据测试数据计算增益(),带宽,矩形系数和值。写出计算过程。 () 6.思考题:为什么用示波器对的实测值比信号发生器显示输出值有大约一倍的 误差? 题目:高频谐振功率放大器 1.测试条件:电源电压,输入信号。当负载电阻分别为ΩΩ时,测量功放管基 极电压,集电极电压和集电极平均电流,计算功放管的集电极电流基波分量,电源功率,集电极输出功率,功放管消耗功率和效率η. 1m 2.自己设计表格记录测试和计算数据。写出至少一组数据的计算和处理过程。 3.分析实验结果和理论计算是否一致,如不一致,说明可能存在的原因。 思考题:高频谐振功放的效率和工作状态有何关系?当负载为Ω时,本实验电路工作在什么状态,说明原因。 题目:高频谐振功率放大器 . 测试条件:电源电压,输入信号。当负载电阻分别为ΩΩ时,测量功放管基极电压,集电极电压和集电极平均电流,计算功放管的集电极电流基波分量1m,电源功率,集电极输出功率,功放管消耗功率和效率η. .自己设计表格记录测试和计算数据。写出至少一组数据的计算和处理过程。3.分析实验结果和理论计算是否一致,如不一致,说明可能存在的原因。 思考题:高频谐振功放的效率和工作状态有何关系?当负载为Ω时,本实验电路

北航电子电路设计数字部分实验报告

电子电路设计数字部分实验报告 学院: 姓名:

实验一简单组合逻辑设计 实验内容 描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0。 实验仿真结果 实验代码 主程序 module compare(equal,a,b); input[7:0] a,b; output equal; assign equal=(a>b)1:0; endmodule 测试程序

module t; reg[7:0] a,b; reg clock,k; wire equal; initial begin a=0; b=0; clock=0; k=0; end always #50 clock = ~clock; always @ (posedge clock) begin a[0]={$random}%2; a[1]={$random}%2; a[2]={$random}%2; a[3]={$random}%2; a[4]={$random}%2; a[5]={$random}%2; a[6]={$random}%2; a[7]={$random}%2; b[0]={$random}%2; b[1]={$random}%2; b[2]={$random}%2; b[3]={$random}%2; b[4]={$random}%2;

b[5]={$random}%2; b[6]={$random}%2; b[7]={$random}%2; end initial begin #100000 $stop;end compare m(.equal(equal),.a(a),.b(b)); endmodule 实验二简单分频时序逻辑电路的设计 实验内容 用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果。 实验仿真结果

高频单级、两级小信号单、双调谐放大器通信电子电路硬件实验报告

实验一高频(单级、两级)小信号(单、双)调谐放大器 一、实验目的 1、掌握高频小信号调谐放大器的工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。 二、实验内容 1、测量各放大器的电压增益; 三、实验仪器 BT-3扫频仪(选做)一台、20MHz示波器一台、数字式万用表一块、调试工具一套 四、实验基本原理 1、单级单调谐放大器 图1-1 单级单调谐放大器实验原理图 实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。信号从TP5处输入,从TP10处输出。调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。 2、单级双调谐放大器 图1-2 单级双调谐放大器实验原理图 实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。两个谐振回路通过电容C20(1nF)或C21(10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。 3、双级单调谐放大器 图1-3 双级单调谐放大器实验原理图 实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。所以在第一级与第二级放大器之间又加了一个陶瓷滤波器(FL3),一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。 实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级放大器输出信号的幅度满足第二级放大器的输入要求,则第一级与第二级放大器之间可不用再经过FL3。 4、双级双调谐放大器 图1-4 双级双调谐放大器实验原理图 实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容(C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为C26,1nF),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

模拟电路实验报告.doc

模拟电路实验报告 实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚 学院名称:专业:年级: 实验时间:实验室: 一.实验目的: 1.熟悉电子器件和模拟电路试验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影 响; 3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特 性; 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.三极管及单管放大电路工作原理: 2.放大电路的静态和动态测量方法:

四.实验内容和步骤 1.按图连接好电路: (1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容 C1,C2的极性和好坏。 (2)按图连接好电路,将Rp的阻值调到最大位置。(注:接线前先 测量电源+12V,关掉电源后再连接) 2.静态测量与调试 按图接好线,调整Rp,使得Ve=1.8V,计算并填表 心得体会:

3.动态研究 (一)、按图连接好电路 (二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。观察Vi和V o端的波形,并比较相位。 (三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表: 基本结论及心得: Q点至关重要,找到Q点是实验的关键, (四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:

实验总结和体会: 输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。 (1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。 (2)、连在三极管集电极的电阻越大,电压的放大倍数越大。 (五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中: 实验总结和心得体会: 信号失真的时候找到合适Rp是产生输出较好信号关键。 (1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被

通信电子电路实验

实验1 单调谐回路谐振放大器 1.单调谐回路谐振放大器幅频特性测量 测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。步骤如下: (1)1K 02置“off“位,即断开集电极电阻1R3,调整1W 01 使1Q 01 的基极直流电压 为2.5V左右,这样放大器工作于放大状态。高频信号源输出连接到单调谐放大器的输入端(1V01)。示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为200mv(示波器CH1监测),注意如果高频信号源减不到200mv时,需将高频信号源开关K208往下拨。调整单调谐放大器的电容1C 2 ,使放大器的输出为最大值(示波器CH2监测)。此时回路谐振于6.3MHZ。比较此时输入输出幅度大小,并算出放大倍数。 Vi=200mV Vo=1.5V 放大倍数为7.5倍 (2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。 表1-2 (3)以横轴为频率,纵轴为电压幅值,画出单调谐放大器的幅频特性曲线。对上述数据进行差值拟合,运用不同的差值类型进行数据拟合,得到如下的幅频特性曲线Matlab程序: clc;close all;clf;clear x=5.4:0.1:7.1; y=[0.3,0.32,0.34,0.44,0.54,0.64,0.8,1.00,1.4,2.0,1.9,1.42,1,1,0.8,0. 7,0.62,0.52]; x1=5.4:0.005:7.1; y1=interp1(x,y,x1); y2=interp1(x,y,x1,'cubic');

电子科技大学 模拟电路实验报告01

模拟电路实验报告 实验一常用电子测量仪器的使用 1.实验目的 (1)了解双踪示波器、函数信号发生器、晶体管毫伏表、直流稳压电源的工作原 理和主要技术指标。 (2)掌握双踪示波器、晶体管毫伏表、直流稳压电源的正确使用方法。 2.实验原理 示波器是电子测量中最常用的一种电子仪器,可以用它来测试和分析时域信号。示波器通常由信号波形显示部分、垂直信道(Y通道)、水平信道(X通道)三部分组成。YB4320G是具有双路的通用示波器,其频率响应为0~20MHz。 为了保证示波器测量的准确性,示波器内部均带有校准信号,其频率一般为1KHz,即周期为1ms,其幅度是恒定的或可以步级调整,其波形一般为矩形波。在使用示波器测量波形参数之前,应把校准信号接入Y轴,以校正示波器的Y轴偏转灵敏度刻度以及扫描速度刻度是否正确,然后再来测量被测信号。 函数信号发生器能产生正弦波、三角波、方波、斜波、脉冲波以及扫描波等信号。由于用数字LED显示输出频率,读数方便且精确。 晶体管毫伏表是测量正弦信号有效值比较理想的仪器,其表盘用正弦有效值刻度,因此只有当测量正弦电压有效值时读数才是正确的。晶体管毫伏表在小量程档位(小于1V)时,打开电源开关后,输入端不允许开路,以免外界干扰电压从输入端进入造成打表针的现象,且易损坏仪表。在使用完毕将仪表复位时,应将量程开关放在300V挡,当电缆的两个测试端接地,将表垂直放置。 直流稳压电源是给电路提供能源的设备,通常直流电源是把市电220V的交流电转换成各种电路所需要的直流电压或直流电流。一般一个直流稳压电源可输出两组直流电压,电压是可调的,通常为0~30V,最大输出直流电流通常为2A。 输出电压或电流值的大小,可通过电源表面旋钮进行调整,并由表面上的表头或LED显示。每组电源有3个端子,即正极、负极和机壳接地。正极和负极就像我们平时使用的干电池一样,机壳接地是为了防止外部干扰而设置的。 如果某一电路使用的是正、负电源,即双电源,此时要注意的是双电源共地的接法,以免造成短路现象。 数字万用表可用于交、直流电压测量、交、直流电流测量,电阻测量,一般晶体管的测量等。一般的数字万用表交流电压挡的频率相应范围为45Hz~500Hz,用

中南大学通信电子线路实验报告

中南大学 《通信电子线路》实验报告 学院信息科学与工程学院 题目调制与解调实验 学号 专业班级 姓名 指导教师

实验一振幅调制器 一、实验目的: 1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。 二、实验内容: 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 三、基本原理 幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。变化的周期与调制信号周期相同。即振幅变化与调制信号的振幅成正比。通常称高频信号为载波信号。本实验中载波是由晶体振荡产生的10MHZ高频信号。1KHZ的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5与V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图 用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。 四、实验结果 1. ZD.OUT波形: 2. TZXH波形:

完整版模拟电子电路实验报告

. 实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R 和R组成的分压电路,并在发射极中接有电阻R,以稳定放大器的静态工EB1B2作点。当在放大器的输入端加入输入信号u后,在放大器的输出端便可得到一i个与u相位相反,幅值被放大了的输出信号u,从而实现了电压放大。0i 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B2B1基极电流I时(一般5~10倍),则它的静态工作点可用下式估算B教育资料.. R B1U?U CCB R?R B2B1 U?U BEB I??I EC R E

)R+R=UU-I(ECCCCEC电压放大倍数 RR // LCβA??V r be输入电阻 r R/// R=R/beiB1 B2 输出电阻 R R≈CO由于电子器件性能的分散性比较大,因此在设计和制作晶 体管放大电路时, 为电路设计提供必离不开测量和调试技术。在设计前应测量所用元器件的参数,还必须测量和调试放大器的静态工作点和各要的依据,在完成设计和装配以后,因此,一个优质放大器,必定是理论设计与实验调整相结合的产物。项性能指标。除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。消除干扰放大器静态工作点的测量与调试,放大器的测量和调试一般包括:与自激振荡及放大器各项动态参数的测量与调试等。、放大器静态工作点的测量 与调试 1 静态工作点的测量1) 即将放大的情况下进行,=u 测量放大器的静态工作点,应在输入信号0 i教育资料. . 器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位U、U和U。一般实验中,为了避 ECCB免断开集电极,所以采用测量电压U或U,然后算出I的方法,例如,只要 测CEC出U,即可用E UU?U CECC??II?I,由U确定I(也可根据I),算出CCC CEC RR CE同时也能算出U=U-U,U=U-U。EBEECBCE为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I(或U)的调整与测试。 CEC静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u的负半周将被削底,O 如图2-2(a)所示;如工作点偏低则易产生截止失真,即u的正半周被缩顶(一 O般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端 加入一定的输入电压u,检查输出电压u的大小和波形是否满足要求。如不满Oi

电子电路综合设计实验报告

电子电路综合设计实验报告 实验5自动增益控制电路的设计与实现 学号: 班序号:

一. 实验名称: 自动增益控制电路的设计与实现 二.实验摘要: 在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况; 另外,在其他应用中,也经常有多个信号频谱结构和动态围大体相似,而最大波幅却相差甚多的现象。很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。 自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小围变化的特殊功能电路,简称为AGC 电路。本实验采用短路双极晶体管直接进行小信号控制的方法,简单有效地实现AGC功能。 关键词:自动增益控制,直流耦合互补级,可变衰减,反馈电路。 三.设计任务要求 1. 基本要求: 1)设计实现一个AGC电路,设计指标以及给定条件为: 输入信号0.5?50mVrm§ 输出信号:0.5?1.5Vrms; 信号带宽:100?5KHz; 2)设计该电路的电源电路(不要际搭建),用PROTE软件绘制完整的电路原理图(SCH及印制电路板图(PCB 2. 提高要求: 1)设计一种采用其他方式的AGC电路; 2)采用麦克风作为输入,8 Q喇叭作为输出的完整音频系统。 3. 探究要求: 1)如何设计具有更宽输入电压围的AGC电路; 2)测试AGC电路中的总谐波失真(THD及如何有效的降低THD 四.设计思路和总体结构框图 AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放大器(VGA以及检波整流控制组成(如图1),该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。如图2,可变分压器由一个固定电阻R和一个可变电阻构成,控制信号的交流振幅。可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源V REG和大阻值电阻F2组成的直流源直接向短路晶体管注入电流。为防止Rb影响电路的交流电压传输特性。R2的阻值必须远大于R1。

北京交通大学模拟电子电路实验报告

《模拟电子技术》课程实验报告 集成直流稳压电源的设计 语音放大器的设计

集成直流稳压电源的设计 一、实验目的 1、 掌握集成直流稳压电源的设计方法。 2、 焊接电路板,实现设计目标 3、 掌握直流稳压电源的主要性能指标及参数的测试方法。 4、 为下一个综合实验——语音放大电路提供电源。 二、技术指标 1、 设计一个双路直流稳压电源。 2、 输出电压 Uo = ±12V , 最大输出电流 Iomax = 1A 。 3、 输出纹波电压 ΔUop-p ≤ 5mV , 稳压系数 S U ≤ 5×10-3 。 4、 选作:加输出限流保护电路。 三、实验原理与分析 直流稳压电源的基本原理 直流稳压电源一般由电源变压器T 、整流滤波电路及稳压电路所组成。 基本框图如下。各部分作用: 1、电源变压器:降低电压,将220V 或380V 的电网电压降低到所需要的幅值。 2、整流电路:利用二极管的单向导电性将电源变压器输出的交流电压变换成脉动的直流电压,经整流电路输出的电压虽然是直流电压,但有很大的交流分量。 直流稳压电源的原理框图和波形变换 整流 电路 U i U o 滤波 电路 稳压 电路 电源 变压器 ~

3、滤波电路:利用储能元件(电感、电容)将整流电路输出的脉动直流电压中 的交流成分滤出,输出比较平滑的直流电压。负载电流较小的多采用电容滤波电路,负载电流较大的多采用电感滤波电路,对滤波效果要求高的多采用电容、电感和电阻组成的复杂滤波电路。 单向桥式整流滤波电路 不同R L C的输出电压波形 4、稳压电路:利用自动调整的原理,使输出电压在电网电压波动和负载电流变化时保持稳定,即输出电流电压几乎不变。 常用的稳压电路有两种形式:一是稳压管稳压电路,二是串联型稳压电路。二者的工作原理有所不同。稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。它一般适用于负载电流变化较小的场合。串联型稳压电路是利用电压串联负反馈的原理来调节输出电压的。集成稳压电源事实上是串联稳压电源的集成化。实验中为简化电路,我们选择固定输出三端稳压器作为电路的稳压部分。固定输出三端稳压器是指这类集成稳压器只有三个管脚输出电压固定,这类集成稳压器分成两大类。一类是78××系列,78标识为正 输出电压,××表示电压输出值。另一类是79××系列,79表示为负输出电压,××表示 电压输出值。

通信电子电路实验讲义完全版

《通信电子电路实验》实验讲义 2012修正 高频电路实验代前言 本实验讲义是为配合清华大学TPE—GP2型高频电路实验学习机专门编写的。多年前,学校电子技术实验室购买了几十台TPE—GP2学习机供学生做高频实验,但是,始终没有与之配套的实验讲义。结合我校实验室现有实验条件和实验教学时间的需要,特地编写《高频电子线路实验讲义09版》。 实验一高频小信号调谐放大器(实验版G1)、实验二高频谐振功率放大器(实验版G2)是一类、实验三LC振荡和石英晶体振荡(实验版G1)都是单独实验;实验四振幅调制与解调(实验版G3)、实验五变容二极管调频振荡器(G4)、实验六集成电路压控振荡器构成的频率调制与解调(实验版G5),都是含有调制解调内容,是复合实验。这样的实验安排涵盖了高频电路教学的主要内容。本学期(2012秋)新购入扫频仪,所以再次修订实验讲义。 在此,特别感谢06、07、08、09级电子信息科学与技术专业学生。正是通过他们的使用,使本教材得到不断改进与完善。 TPE—GP2型高频电路实验学习机说明 1.技术性能 1.1电源:输入AC220V; 输出DCV+5V、-5V、+12V、-12V,最大输出电流200mA 1.2信号源:(函数信号发生器) 输出波形:有方波、三角波、正弦波 幅值:正弦波V P-P :0~14V(14V为峰—峰值,且正负对称) 方波V P-P :0~24V(24V为峰—峰值,且正负对称) 三角波V P-P :0~24V(24V为峰—峰值,且正负对称) 频率范围:分四档2~20Hz、20~200Hz、200~2KHz、2K~20KHz 1.3电路实验板:备有五块实验板,可完成11项高频电路实验。 2.使用方法 1.1将标有220V的电源线插入市电插座,接通开关,电源指示灯亮。 1.2使用实验专用电导线进行连线。 1.3实验时先阅读实验指导书,然后按照实验电路接好连线,检查无误后再接通主电源。 特别注意:电源极性不可以接反。

电子电路实验三-实验报告

电子电路实验三-实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验三负反馈放大电路 实验报告 一、实验数据处理 1.实验电路图 根据实际的实验电路,利用Multisim得到电路图如下: (1)两级放大电路 (2)两级放大电路(闭环)

(3)电流并联负反馈放大电路 2.数据处理 (1)两级放大电路的调试 第一级电路:调整电阻参数,使得静态工作点满足:IDQ约为2mA,UGDQ<-4V。记录并计算电路参数及静态工作点的相关数据(IDQ,UGSQ,UA,US、UGDQ)。 IDQ UGSQ UA US UGDQ 2.014mA-1.28V 5.77V7.05V-6.06V 第二级电路:通过调节Rb2,使得静态工作点满足:ICQ约为2mA,UCEQ=2~3V。记录电路参数及静态工作点的相关数据(ICQ,UCEQ)。 ICQ UCEQ 2.003mA 2.958V 输入正弦信号Us,幅度为10mV,频率为10kHz,测量并记录电路的电压放大倍数 A u1=U o1 U s 、A u= U o U s 及输入电阻Ri和输出电阻Ro。 Au1Au Ri Ro 0.783-152.790.75kΩ 3227.2Ω (2)两级放大电路闭环测试 在上述两级放大电路中,引入电压并联负反馈。合理选取电阻R的阻值,使得闭环电压放大

倍数的数值约为10。 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。 Ausf Rif Rof -9.94638.2Ω232.9Ω(3)电流并联负反馈放大电路 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。 Ausf Rif Rof 8.26335.0Ω3280.0Ω 3.误差分析 利用相对误差公式: 相对误差=仿真值?实测值 实测值 ×100% 得各组数据的相对误差如下表: 仿真值实测值相对误差 /% IDQ/mA 2.077 2.014 3.13 UA/V 5.994 5.770 3.88 UGDQ/V-5.994-6.060-1.09 ICQ/mA 2.018 2.0030.75 UCEQ/V 2.908 2.958-1.69 Au10.7960.783 1.66 Au-154.2-152.70.98 Ri/ kΩ90.7690.750.01

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真

目录 一、综述 .......................... 错误!未定义书签。 二、实验内容 ...................... 错误!未定义书签。 1.常规调幅AM ................... 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 (3)结论: ...................... 错误!未定义书签。 2.双边带调制DSB ................ 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 3.单边带调制SSB ................ 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 4.调频电路FM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 5.调相电路PM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图............ 错误!未定义书签。 三、实验感想 ...................... 错误!未定义书签。

模拟电子线路实验实验报告

模拟电子线路实验实验 报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

网络高等教育 《模拟电子线路》实验报告 学习中心:浙江建设职业技术学院奥鹏学习中心层次:高中起点专科 专业:电力系统自动化技术 年级: 12 年秋季 学号: 学生姓名:

实验一常用电子仪器的使用 一、实验目的 1.了解并掌握模拟电子技术实验箱的主要功能及使用方法。 2.了解并掌握数字万用表的主要功能及使用方法。 3.学习并掌握TDS1002型数字存储示波器和信号源的基本操作方 法。 二、基本知识 1.简述模拟电子技术实验箱布线区的结构及导电机制。 布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。 2.试述NEEL-03A型信号源的主要技术特性。 ①输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号; ②输出频率:10Hz~1MHz连续可调; ③幅值调节范围:0~10V P-P连续可调; ④波形衰减:20dB、40dB; ⑤带有6位数字频率计,既可作为信号源的输出监视仪表,也可以作外侧频率计用。 注意:信号源输出端不能短路。 3.试述使用万用表时应注意的问题。

使用万用表进行测量时,应先确定所需测量功能和量程。 确定量程的原则: ①若已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。 ②如果被测参数的范围未知,则先选择所需功能的最大量程测量,根据初测结果逐步把量程下调到最接近于被测值的量程,以便测量出更加准确的数值。 如屏幕显示“1”,表明已超过量程范围,须将量程开关转至相应档位上。 4.试述TDS1002型示波器进行自动测量的方法。 按下“测量”按钮可以进行自动测量。共有十一种测量类型。一次最多可显示五种。 按下顶部的选项按钮可以显示“测量1”菜单。可以在“信源”中选择在其上进行测量的通道。可以在“类型”中选择测量类型。 测量类型有:频率、周期、平均值、峰-峰值、均方根值、最小值、最大值、上升时间、下降时间、正频宽、负频宽。 三、预习题 1.正弦交流信号的峰-峰值=_2__×峰值,峰值=__根号2__×有效值。 2.交流信号的周期和频率是什么关系 两者是倒数关系。 周期大也就是频率小,频率大也就是周期长

北邮通信电子电路实验指导书.pdf

通信电子电路实验指导书 电路实验中心 2016 年 4 月

目录 实验1单调谐回路谐振放大器 (2) 实验2双调谐回路谐振放大器 (8) 实验3集成乘法器幅度调制电路 (15) 实验4振幅解调器(包络检波) (23) 实验5振幅解调器(同步检波) (28) 附录高频信号发生器使用简介 (32)

实验1单调谐回路谐振放大器 —、实验准备 1.本实验时应具备的知识点 (1)放大器静态工作点 (2)LC并联谐振回路 (3)单调谐放大器幅频特性 2.本实验时所用到的仪器 (1)①号实验板《小信号调谐放大器电路》板 (2)⑤号实验板《元件库》板及库元件。 注意:元件库板与库元件一一对应,实验结束后,请对应放好,便于实验后 检查。 (3)双踪示波器(模拟) (4)电源 (5)高频信号发生器 (6)万用表 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法; 4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响; 5.掌握测量放大器幅频特性的方法。 三、实验内容 1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点; 2.用示波器测量单调谐放大器的幅频特性; 3.用示波器观察静态工作点对单调谐放大器幅频特性的影响; 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理 1.单调谐回路谐振放大器原理 小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性 放大和选频。单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E 用以保证晶 体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦 合电容,L 、C 是谐振回路,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。为了减轻 晶体管集电极电阻对回路Q 值的影响,采用了部分回路接入方式。 Ec Cc Rc L OUT Rb1 C Cb IN Q Rb2 Re Ce 图1-1 单调谐回路放大器原理电路

电子电路实验二 实验报告

实验二单管放大电路 实验报告 一、实验数据处理 1.工作点的调整 调节RW,分别使I =1.0mA,2.0mA,测量VCEQ的值。 CQ 2.工作点对放大电路的动态特性的影响 分别在ICQ=1.0mA,2.0mA情况下,测量放大电路的动态特性(输入信号vi是幅度为5mV,频率为1kHz的正弦电压),包括测量电压增益,输入电阻,输出电阻和幅频特性。 幅频特性:ICQ=1.0mA

得到幅频特性曲线如下图: ICQ=2.0mA 频率f/Hz 28 80 90 200 400 680 电压增益 18.60 47.10 51.69 88.63 116.44 128.31 |Av| 频率 0.4 0.6 0.8 1.2 2.0 2.5 f/MHz 电压增益 138.33 132.58 126.12 111.39 86.87 74.43 |Av| fL 245Hz fH 1.6MHz 得到的幅频特性曲线如下图: (注:电压增益均取绝对值,方便画图) 3.负反馈电阻对动态特性的影响 改接CE与RE2并联,测量此时放大电路在ICQ=1.0mA下的动态特性(输入信号及测试内容同上),与上面测试结果相比较,总结负反馈电阻对电路动态特性的影响。 电压增益Av 输入电阻Ri 输出电阻Ro -6.46 10792Ω3349Ω 幅频特性: 频率f/Hz 10 27 80 230 400 680 电压增益 3.83 5.61 6.25 6.41 6.42 6.43 |Av| 频率 0.1 0.5 0.7 1.0 2.0 2.8 f/MHz 电压增益 5.61 5.56 5.50 5.39 4.83 4.36

电子电工综合实验报告

电工电子综合试验——数字计时器实验报告 学号: 姓名: 学院: 专业:通信工程

目录 一,实验目的及要求 二,设计容简介 四,电路工作原理简述 三,设计电路总体原理框图五,各单元电路原理及逻辑设计 1. 脉冲发生电路 2. 计时电路和显示电路 3. 报时电路 4. 较分电路 六引脚图及真值表

七收获体会及建议 八设计参考资料 一,实验目的及要求 1,掌握常见集成电路实现单元电路的设计过程。 2,了解各单元再次组合新单元的方法。 3,应用所学知识设计可以实现00’00”—59’59”的可整点报时的数字计时器 二,设计容简介: 1,设计实现信号源的单元电路。( KHz F Hz F Hz F Hz F1 4 , 500 3 , 2 2 , 1 1≈ ≈ ≈ ≈ ) 2,设计实现00’00”—59’59”计时器单元电路。 3,设计实现快速校分单元电路。含防抖动电路(开关k1,频率F2,校分时秒计时器停止)。4,加入任意时刻复位单元电路(开关K2)。 5,设计实现整点报时单元电路(产生59’53”,59’55”,59’57”,三低音频率F3,59’59”一高音频率F4)。 三,设计电路总体原理框图 设计框图: 四,电路工作原理简述 电路由振荡器电路、分频器、计数器、译码器、显示器、校时电路和报时电路组成。振荡器产生的脉冲信号经过十二级分频器作为秒脉冲,秒脉冲送入计数器,计数器通过“时”、“分”、“秒”译码器显示时间,将分秒计时器分开,加入快速校分电路与防抖动电路,并控制秒计

时器停止工作。较分电路实现对“分”上数值的控制,而不受秒十位是否进位的影响,在60进制控制上加入任意时刻复位电路。报时电路通过1kHz或2kHz的信号和要报时的时间信号进行“与”的运算来实现的顶点报时的,通过两个不同频率的脉冲信号使得在不同的时间发出不同的声响。 五,各单元电路原理及逻辑设计 (1)脉冲发生电路 脉冲信号发生电路是危机时期提供技术脉冲,此次实验要求产生1HZ的脉冲信号。用NE555集成电路和CD4040构成。555定时器用来构成多谐振荡器,CD4040产生几种频率为后面电路使用。 实验电路如下(自激多谐振荡电路,周期矩形波发生电路) 震荡周期T=0.695(R1+2*R2)C,其中R1=1KΩ,R2=3KΩ,C=0.047uf,计算T=228.67*10-6 s ,f=4373.4Hz产生的脉冲频率为4KHz,脉冲信号发生电路 和CD4040连接成如图所示的电路,则从Q12输出端可以得到212分频信号F1,即1Hz的信号,Q11可以得到F2即2Hz的信号提供给D触发器CP和校分信号,Q3输出分频信号500Hz,Q2输出1KHz提供给报时电路 二,秒计时电路 应用CD4518及74LS00可以设计该电路,CD4518是异步清零,所以在进行分和秒十位计数的时候,需要进行清零,而在个位计数的时候不需要清零。所以Cr2=2QcQb,Cr4=4Qc4QB。当秒个位为1001时,秒十位要实现进位,此时需要EN2=1Qd,同理分的个位时钟EN3=2Qc,分十位时钟端EN4=3Qd。因此,六十进制计数器逻辑电路如下图所示

相关文档
相关文档 最新文档