文档库 最新最全的文档下载
当前位置:文档库 › 泛函分析第四章习题第二部分(19-30)

泛函分析第四章习题第二部分(19-30)

泛函分析第四章习题第二部分(19-30)
泛函分析第四章习题第二部分(19-30)

第四章习题第二部分(19-30)

19. 证明:)1(∞<

1)存在0>K ,使得对任意的A x i ∈=)(ξ有K i p i <∑∞

=1

||ξ,

2)对任意的0>ε,存在自然数N ,使得对任意的A x i ∈=)(ξ有p

N i p i

ε

ξ

<∑∞

+=1

||.

[证明] 若A 是列紧集,则A 是全有界集,第一个条件显然成立.

设}1|)({)(m n x n i n ≤≤=ξ是A 的有限-2ε

网,

则存在自然数N 使

p

N i p

n i

)

2

(||1

)

ξ<∑

+=,对m n ,,2,1 =?.

对A x i ∈=?)(ξ,存在m n n ≤≤001:,使得2

),(0

ε

那么εεξ

ξ

ξ

ξ

<+

<+-≤∑∑∑∞

+=∞

+=∞

+=2),()

||(

)

||(

)

||(

0001

1

)

(1

1

)(1

1

x x d n p

N i p i

n p

N i p n i

i

p

N i p i

从而第二个条件成立.

反过来,假设集合A 满足这两个条件,

设},2,1|)({)( ==n x n i n ξ是A 中任意一个点列, 由第一个条件,对任意的 ,2,1=i ,数集}{)(n i ξ有界,

存在自然数列的子列}{1k

n 使}{)

(11k

n ξ收敛于1ξ. 又存在}{1k

n 的子列}{2k n 使}{)

(11

k

n ξ收敛于2ξ,等等如此下去. 令)()

(j

j j j

n i

n x ξ=,利用第二个条件容易证明}{j j

n x 是基本列.

令)(i x ξ=,利用第一个条件可以证明p l x ∈,并且}{j j

n x 收敛于x .

即可在},2,1|)({)( ==n x n i n ξ中选出收敛子列,所以集合A 是列紧集.

20. 证明:s 中的集合A 是列紧集的充要条件是:对任意自然数i ,存在0>i c 使得,对任意的A x i ∈=)(ξ有i i c ≤||ξ.

[证明] 若存在自然数i ,对任意的0>M ,存在A x i ∈=)(ξ使得M i >||ξ. 这样就可以做一个A 中的序列)()(n i n x ξ=使得n n i >||)

(ξ. 若}{n x 有子列}{k

n x 收敛,设其极限为)(i y η=,

则因

02

1|

|1||2

1)

()

(≠→

-+-?

i

i n i

i n i

i

k k ηξηξ,所以),(y x d k

n 不收敛于零,得到矛盾,

所以}{n x 没有收敛子列,即A 不是列紧集,必要性得证.

下面证明充分性.

设对任意自然数i ,存在0>i c 使得,对任意的A x i ∈=)(ξ有i i c ≤||ξ. 设}{n x 是A 中任一序列,存在}{n x 的子列)}({)1,(1,n i n x ξ=使1)1,(1ηξ→n , 下一步,存在}{1,n x 的子列)}({)2,(2,n i n x ξ=使得2)2,(2ηξ→n ,依次做下去; 然后考虑}{n x 的子列}{,n n x ,则它的第i 个坐标收敛于i η.

令}{i y η=,显然}{,n n x 收敛于s y ∈.所以A 是列紧集.

21. 设(X , d )是距离空间,A ? X ,令f (x ) = A

y ∈inf d (x , y ),?x ∈X .证明f 是连续函数.

[证明] ?x 1, x 2∈X ,?ε > 0,? y 1, y 2∈A ,使得

d (x 1, y 1) - ε < f (x 1),d (x 2, y 2) - ε < f (x 2).

由于d (x 1, y 1) - ε < f (x 1) ≤ d (x 1, y 2),d (x 2, y 2) - ε < f (x 2) ≤ d (x 2, y 1),我们有

f (x 1) - f (x 2) < d (x 1, y 2) - ( d (x 2, y 2) - ε ) ≤ | d (x 1, y 2) - d (x 2, y 2) | + ε ≤ d (x 1, x 2) + ε, f (x 2) - f (x 1) < d (x 2, y 1) - ( d (x 1, y 1) - ε ) ≤ | d (x 2, y 1) - d (x 1, y 1) | + ε ≤ d (x 1, x 2) + ε, 所以| f (x 2) - f (x 1) | ≤ d (x 1, x 2) + ε,由ε的任意性,| f (x 2) - f (x 1) | ≤ d (x 1, x 2). 所以f 是(X , d )上的连续函数.(由证明可见,实际上是一致连续函数).

22. 设(X , d )是距离空间,F 1, F 2? X ,F 1, F 2是闭集且F 1?F 2= ?.证明存在开集G 1, G 2? X ,使得F 1? G 1,F 2? G 2且G 1?G 2= ?. [证明] 对任意闭集F ,定义f F (x ) = inf y ∈F d (x , y ), 由21题结果知f F 是(X , d )上的连续函数.

显然当x ∈F 时,f F (x ) = 0,而当x ?F 时,f F (x ) > 0. 令)

()()()(211x f x f x f x g F F F +=

则g 是(X , d )上的连续函数,且g (F 1) = 0,g (F 2) = 1.

令G 1 = g -1(-∞, 1/2),G 2 = g -1(1/2, +∞),则容易看出它们就是满足条件的开集.

23. 举例说明全有界集不一定是列紧的.

[例] 最为熟悉的例子是考虑 1中的开区间I = (0, 1);

作为 1的子空间,显然它是全有界的距离空间,但不是列紧的距离空间.

24. 证明距离空间(X , d )中紧集的闭子集也是紧集

[证明] 设E 为(X , d )中紧集,F 是(X , d )中闭集,F ? E .

设A = {A α | α∈Λ }是F 的一个开覆盖,则B = A ?{X \ F }是E 的一个开覆盖. 由E 紧,B 有有限子覆盖C ,则可得到F 的有限覆盖C \{X \ F }, 实际上它也是A 的一个有限子覆盖.所以F 是紧集.

25. 证明:距离空间(X , d )中列紧集F 的闭包是紧集.

[证明] 由F 列紧,知F 自列紧,因此F 是紧集.

26. 设(X , d )为紧距离空间,{ F n }是闭集列,F 1 ? F 2 ? ... ? F n ? ...,并且F n ≠ ?.证明:?n F n ≠ ?.这个结论在一般的距离空间是否成立?

[证明] 若?n F n = ?,则{ F n c }是X 的一个开覆盖,它存在有限的子覆盖. 由于F 1c ? F 2c ? ... ? F n c ? ...,故存在自然数N 使得F N c = X ,此即F N = ?. 这与题目假设相矛盾.

在一般的距离空间显然没有这样的结论.

例如,在 1上考虑闭集列{ F n },其中F n = [ n , +∞).

27. 设(X , d )为距离空间,F 是X 中的紧集,f : F → 1连续.证明f 一致连续. [证明] 若不然,存在0>ε,及F 中的序列}{n x ,}{n y ,使得

n

y x d n n 1

),(<,但ε≥-|)()(|n n y f x f .

由于F 是X 中的紧集,故也是自列紧集;

存在自然数列的一个子列}{k n 使得}{k

n x ,}{k

n y 皆收敛于F 中点.

设x x k

n →,y y k

n →,由k

n n n y x d k

k 1

),(<,ε≥-|)()(|k

k

n n y f x f ,

知y x =,但ε≥-|)()(|y f x f ,此为不可能.

28. 设]1,0[C f ∈,求证方程?+=t

ds s x t f t x 0)()()(λ,]1,0[∈t 有连续解.

[解] 因0=λ时方程是平凡的,不妨设0≠λ,记n a 1=,n 满足||2λ>n .

考虑映射],0[],0[:a C a C T →,?+=t

dt s x t f t Tx 0)()()(λ.注意到

),(2

1),(|||)()(|m a x ||),(0

]

1,0[y x d y x ad ds s y s x Ty Tx d t

t ≤

≤-=?∈λλ,

所以T 为压缩映射,故有唯一不动点],0[1a C x ∈,此x 即为方程的局部解. 同理方程??++=t

a

a

dt s x dt s x t f t Tx )()()()(0

λλ有解]2,[2a a C x ∈,

如此下去,直到],)1[(na a n C x n -∈.

则)()(t x t x i =,],)1[(ia a i C t -∈即为所求的整体的连续解.

29. 设A = (a ij )n ?n 为实矩阵,满足

1)(1

,12

<-∑==n

j i ij ij

a

δ.证明:对?b = (b 1, b 2, ..., b n )T

方程组Ax = b 有唯一解.

[证明] 定义T : n → n 为Tx = x - Ax + b .则x ∈ n 为方程组的解等价于x 是T 的不动点,实际上,||))((||),(y x A I Ty Tx d --=

21

121))))((((∑∑==--=n

i n

j j j ij ij y x a δ

21

112

12

)))()()(((∑∑∑===--≤n

i n

j j j n

j ij ij y x a δ

∑∑∑===--=n

i n

j j j n

j ij ij y x a 12

11

2

211

2

)

)(())((δ

),()

)((

2

1

1

,12

y x d a n j i ij ij

∑==-=δ

所以T : n → n 为压缩映射,故有唯一不动点x ,此x 即为方程组的唯一解.

30. 设(X , d )为完备距离空间,T : X → X 满足1)

,(),(sup

inf 0<=≠y x d y T x T d n

n y

x n

α.证明T

有唯一不动点.

[证明] 存在自然数N 使得2

1)

,()

,(sup

α+<

≠y x d y T

x T

d N

N

y

x ,

因此对?x , y ∈X ,有d (T N x , T N y ) ≤

2

10

α+d (x , y ).

所以T N为压缩映射,故T N有唯一不动点x∈X.

因为T N(Tx) = T (T N x) = Tx,所以Tx也是T N的不动点.

由于T N的不动点是唯一的,所以Tx = x,即x∈X是T的不动点.因为T的不动点必是T N的不动点,所以T的不动点是唯一的.

(完整word版)泛函分析习题标准答案

第二章 度量空间 作业题答案提示 1、 试问在R 上,()()2,x y x y ρ=- 能定义度量吗? 答:不能,因为三角不等式不成立。如取 则有(),4x y ρ=,而(),1x z ρ=,(),1z x ρ= 2、 试证明:(1)()1 2 ,x y x y ρ= -;(2)(),1x y x y x y ρ-= +-在R 上都定 义了度量。 证:(1)仅证明三角不等式。注意到 2 11 22x y x z z y x z z y ?? -≤-+-≤-+- ? ?? 故有1 112 22 x y x z z y -≤-+- (2)仅证明三角不等式 易证函数()1x x x ?=+在R +上是单调增加的, 所 以 有 ()() a b a b ??+≤+,从而有 1111a b a b a b a b a b a b ++≤≤+ ++++++ 令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y z y x z x y z ---≤+ +-+-+-

4.试证明在[]b a C ,1 上,)12.3.2()()(),(?-=b a dt t y t x y x ρ 定义了度量。 证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成立。 []) ,(),()()()()()()()()()()(),()2(y z z x dt t y t z dt t z t x dt t y t z dt t z t x dt t y t x y x b a b a b a b a ρρρ+≤-+-≤-+-≤-=???? 5.试由Cauchy-Schwarz 不等式证明 ∑∑==≤?? ? ??n i i n i i x n x 12 2 1 证:∑∑∑∑=====?≤?? ? ??n i i n i n i i n i i x n x x 12 12 122 11 8.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积 21R R R ?=上定义了度量 {}2 12/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三角不等式。(1)略。 (2) 设12(,)x x x =,12(,)y y y =12R R ∈?,则

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

(完整版)《实变函数与泛函分析基础》试卷及答案要点

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

泛函分析试题B

泛函分析试题B PTU院期末考试试卷 (B)卷 2010 ——2011 学年第 1 学期课程名称: 泛函分析适用年级/专业 07 数学试卷类别:开卷(?)闭卷( ) 学历层次: 本科考试用时: 120 分钟 《考生注意:答案要全部抄到答题纸上,做在试卷上不给分》(((((((((((((((((((((((((((一、填空题(每小题3分,共15分) (,)Xdx1.设=是度量空间,是中点列,如果____________________________, XX,,n x则称是中的收敛点列。 X,,n ffNf2. 设是赋范线性空间,是上线性泛函,那么的零空间是中的闭子空XXX,,间的充要条件为_____________________________。 3. 为赋范线性空间到赋范线性空间中的线性算子,如果_________________, TXY 则称T是同构映射。 xyX,,4. 设是实Hilbert空间,对中任何两个向量满足的极化恒等式公式 为:XX ___________________________________________。 ,,5. 设是赋范线性空间,是的共轭空间,泛函列,如果XXXfXn,,(1,2,)Ln ff_______________________________________________,则称点列强收敛 于。 ,,n二、计算题(共20分) ppl叙述空间的定义,并求的共轭空间。 lp(1),,,, 三、证明题(共65分) p1、(12分)叙述并证明空间中的Holder不等式。 lp(1),

,,MM,2、(15分)设是Hilbert空间的闭子空间,证明。 MX 试卷第 1 页共 2 页 3、(14分)Hilbert空间是可分的,证明任何规范正交系至多为可数集。 XX 4、(12分) 证明Banach空间自反的充要条件是的共轭空间自反。 XX ,,ll5、(12分)叙述空间的定义,并证明空间是不可分的。 试卷第 2 页共 2 页

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

泛函分析习题解答

第一章 练习题 1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下: (,)|()()|,,([,])b a f g f x g x dx f g C a b ρ=-?∈?, (1)([,])C a b 按ρ是否完备? (2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2, n =,定义 ,01, ():1,1 2. n n x x f x x ?≤<=? ≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为 1 11 (,)|()()|110,(,).11 n m n m n m f f f x f x dx x dx x dx m n n m ρ=-≤+= +→→∞++??? 另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有 0,[0,1) ()()1,[1,2].n x f x g x x ∈?→=? ∈? 因此, 根据Lebesgue 有界收敛定理, 可以得到 1 1 1 00(,)|()()|1 |0|0.1 n n n n f g f x g x dx x dx x dx n ρ=-=-==→+??? 但()([0,2])g x C ?. (2) ([,])C a b 的完备化空间是1 ([,])L a b . 因为 (i) 在距离ρ的意义下, ([,])C a b 是1 ([,])L a b 的稠密子集. 事实上, 任意取定一个 1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得 [,] (,)|()()|a b f g f x g x dx ρε=-, 使得当[,]E a b ?, 只要mE δ<, 就有

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

电子科技大学 泛函分析(江泽坚) 作业题答案

P46: 第一章习题: 1.验证(),()d m 满足距离定义。 解:设{}i x ξ=,{}i y η=属于X ,α是数,()1 ,sup .j j j d x y ξη≥=- (1)对j ?,有0j j ξη-≥,所以1 sup j j j ξη≥-,(),0d x y ≥, 且1 sup 00j j j j j j j ξηξηξη≥-=? -=?=,即(),0d x y =当且仅当.x y = (2) ()()1 1 ,sup sup ,j j j j j j d x y d y x ξηηξ≥≥=-=-=; (3)设{}i z ζ= ()()1 1 1 1 ,sup sup ()()sup sup ,(,) j j j j j j j j j j j j j j d x z d x y d y z ξζηξξζηξξζ≥≥≥≥=-≤-+-≤-+-=+综上(1),(2),(3),(),d 满足距离定义。 3.试证明:在空间()s 中的收敛等价于坐标收敛。 证:设{}()(),1,2, n n j x s n ξ= ∈=,{}()(0)0j x s ξ= ∈, ()?若0n x x →,则必有()(0)lim ,1,2,n j j n j ξξ→∞ ==, 否则,j N + ?∈,00ε>,与正整数列的子序列{}1k k n ∞ =,使()(0) 0,1,2, k n j j k ξξε-≥=, 因为()1t f t t = +是单调递增, 所以() ()(0)0 0()(0)011,,1,2,2211k k k n j j n j j n j j d x x k ξξεεξξ-≥?≥?=++-, 这与() 0,0k n d x x →矛盾, 故()s 中的收敛可推出坐标收敛。 ()?若()(0)lim ,1,2,n j j n j ξξ→∞==,则对j ?,0ε?>,0N N + ?∈,0n N ?>, ()(0)2 n j j ε ξξ-<, ()() (0) 0()(0) 1111,,1,2,22 11n j j n j j n j j j j d x x k ξξε εξξ∞ ∞==-=?

泛函分析复习题

泛函分析期末复习题(2005-2006年度) (1)所有n n 矩阵可以构成一个线性空间。试问这个线性空间中的零元素是什么? (2)什么是线性空间的子空间?子空间是否一定包含零元素?为什么? (3)什么是线性流形? (4)什么是线性空间中的凸集? (5)如果一个度量能够成为一个线性空间上定义的距离,那么这个度量必须满足什么条件?试给出几个在n维欧几里德空间上常用的距离定义 (6)距离空间) X上的收敛是如何定义的? , (d

(7)线性空间上定义的范数必须满足哪些条件? (8)什么是巴拿赫空间?赋范空间中的基本列一定收敛吗? (9)有限维的线性赋范空间都是巴拿赫空间吗? (10)什么是希尔伯特空间? (11)),(2b L空间是如何构成的?在怎样的内积定义下其可以成为a 一个希尔伯特空间? (12)什么是算子?为什么要求算子T的定义域) D是一个子空 (T 间? (13)算子的范数是如何定义的?从直观角度谈谈对算子范数定义

的理解。 (14)线性算子的零空间一定是值域空间中的子空间吗? (15)什么是有界算子?举一个无界算子的例子。 (16)算子的强收敛是如何定义的? (17)设X为一个线性赋范空间,而Y为一个Banach空间。那么从X到Y的线性算子所构成的空间), L是否构成一个Banach空 (Y X 间? (18)什么是压缩映像原理?它在力学中有什么重要应用? (19)什么是泛函?什么是泛函的范数?

(20) 什么是线性赋泛空间X 的共轭空间?线性赋泛空间X 的共轭 空间是否总是完备的? (21) 什么是弱收敛?弱收敛与强收敛之间是什么关系? (22) 什么是的Gateaux 微分? (23) 什么是泛函的(一阶)变分?它是如何定义的? (24) 形如dt t x t x t g t x J b a ))(),(,())(('?=的泛函,其对应的Euler-Lagrange 方程是什么? (25) 什么是结构的应变能密度?什么是余能密度?二者关系如 何?试画图说明。

泛函分析试题一

泛函分析试题一 一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题. 设)||||,(11?E 和)||||,(22?E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(?E 为一个赋范线性空间. 2 叙述共鸣定理并回答下列问题. 设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈?, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例. 二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分) 1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密. 2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记 ),(),(sup 111 x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞ =n n α1, 则A 在X 中存在唯一不动点. 3. 设H 是内积空间, H N M ?,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L . 三、应用题 (20分) 设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b a )(),())((?=定义的

泛函分析试题

1. 对于积分方程 ()()() 1 t s x t e x t ds y t λ--=?为一给定的函数,λ为 常数,1λ<,求证存在唯一解()[]0,1x t ∈。 2. 设s 为一切实(或复)数列组成的集合,在s 中定义距离为 ()11,21+k k k k k k x y ξηρξη=-=-∑,其中, ()() 11,,,=,,n n x y ξξηη=??????。求证s 为 一完备的距离空间。 3. 在完备的度量空间(),x ρ中给定点列{}n x ,如果任意的0ε>, 存在基本列{}n y ,使(),0n n x y ρ<。求证{}n x 收敛。 4. 证明内积空间()(),,x 是严格凸的* B 空间 5. 为了()F C M ?使一个列紧集,必须且仅需F 是一致有界的 且等度连续的函数族。 6. 设 () ,A x y ?∈,求证(1). 1 sup x A AX ≤=,(2 ) 1 sup x A AX <=。 7. 设X 是一个Hilbert 空间,(),a x y 是X 上的共轭双线性函数, 并存在0M >,使得( ),a x y M x y ≤,则存在唯一的()A x ?∈, 使得 ()() ,,a x y x Ay =且 ()(),0,0 ,sup x y X X x y a x y A x y ∈?≠≠=。 8. 求证()2f L ?∈Ω,方程() 0u f u ?Ω?-?=Ω?? =??在内若解存在唯一。 9. 设X 是复线性空间,P 是X 上的半模,()00,0x X x ρ?∈≠。求 证存在X 上的线性泛函f 满足()()01.1f x =,()()() ()02.x f x x ρρ≤ 。 10. 叙述开映象定理并给出证明。 11. 叙述共鸣定理并给出证明。

泛函分析答案

泛函分析题1_3列紧集p19 1.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网. 证明:(1) 若子集A是列紧的,由Hausdorff定理, ?ε > 0,存在A的有限ε网N. 而有限集是列紧的,故存在A的列紧的ε网N. (2) 若?ε > 0,存在A的列紧的ε/2网B. 因B列紧,由Hausdorff定理,存在B的有限ε/2网C. 因C ?B ?A,故C为A的有限ε网. 因空间是完备的,再用Hausdorff定理,知A是列紧的. 1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界. 证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数. (1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n. 因D是紧集,故D是自列紧的. 所以{x n}存在收敛子列x n(k) →x0∈D (k→∞). 由f的连续性,f (x n(k))→f (x0) (k→∞). 但由f (x n) > 1/n知f (x n)→ +∞(n→∞), 所以 f (x n(k))→ +∞ (k→∞),矛盾. 故f有上界.同理,故f有下界. (2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n. {y n}存在子列y n(k) →y0∈D (k→∞). 因此f ( y0 ) ≥M. 而根据M的定义,又有f ( y0 ) ≤M. 所以f ( y0 ) = M.因此f能达到它的上确界. 同理,f能达到它的下确界. 1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的. 证明:(1) 若A是度量空间(X, ρ)中的完全有界集. 则存在A的有限1-网N = { x0, x1, x2, ..., x n }. 令R = ∑1 ≤j≤nρ(x0, x j) + 1. 则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1. 因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R. 所以A是度量空间(X, ρ)中的有界集. (2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ), 故E中任意点列都不是Cauchy列. 所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).

泛函分析习题

泛函分析复习资料 一、判断题(每小题4分,共20分) 1、设X 是线性赋范空间,X 中的单位球是列紧集,则X 必为有限维。 ( ) 2、 距离空间中的列紧集都是可分的。( ) 3、 若范数满足平行四边形法则,范数可以诱导内积。( ) 4、 任何一个Hilbert 空间都有正交基。( ) 5、设X 是线性赋范空间,T 是X X 的有界线性算子,若T 既是单射又是满射,则T 有逆算子。( ) 二、选择题(每小题5分,共25分) 1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ). A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件 不是应满足的条件:( ). A. 0等价于0且,0==≥x x x B.()数复为任意实,αααx x = C. y x y x +≤+ D. y x xy +≤ 3、下列关于距离空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列

4、巴拿赫空间X的子集空间Y为完备的充要条件是(). A.集X是开的 B.集Y是开的 C.集X是闭的 D.集Y是闭的 5、设(1) p l p <<+∞的共轭空间为q l,则有11 p q +的值为(). A.1- B.1 2C.1 D.1 2 - 三、填空题(每小题5分,共25分) 1、距离空间中的每一个收敛点列都是()。 2、任何赋范线性空间的共轭空间是()。 3、1l的共轭空间是()。 4、设X按内积空间成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。 5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。 四、证明题(每小题15分,共15分) 1、若T为Banach 空间X上的无界闭算子,证明T的定义域至多只能在X中稠密。

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

应用泛函分析习题解答

1 泛函分析与应用-国防科技大学 第 一 章 第 一 节 3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞?ε,0N ?,当0,N n m >时,有εε<-?<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。取0N m =,则有 0 ,0N n x x N n >+<ε, 令},,,,max{0021ε+=N N x x x x c ,则 1 ,≥?ε,总0N ?,当0,N p n ≥时,有 ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必 存在E ∈x ,使得∑∑∞ ==∞ →==1 1 lim k k n k k n x x x 。 9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。通常用E dim 表示 E 的维数, 并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。证明酉空间n C 的维数为n ,并问当视n C 为实线性空间时,其维数是多少? 证明:设n y x C ∈,,C ∈βα,, 则有n y x C ∈+βα。令)0,0,1,0,0( 项 共项 第n k k =e ,则对任意的),,(21n x x x x =,必有∑==n k k k x x 1 e ,因此},,,{21n e e e 是空间n C 的基,则n n =C dim 。 当视n C 为实线性空间时,可令基为},,,,,{11n n i i e e e e ,则对任意的 ) ,,(21n x x x x =,有 ∑∑==+=n k k k n k k k i x g x x 1 1 ) )((Im )Re(e e ,所以 n n 2dim =C 。 10.证明∞=],[dim b a C ,这里b a <。 证明:取],[,0,)(b a t k t t x k k ∈≥=,只需证},,{10 x x 线性无关。为此对 0≥?n ,令01 =∑=n k k k x c 。则00!01 =?=?=∑=n n n n k k k c c n x c 次求导 。因此必有 01 1 =∑-=n k k k x c ,求该式求1-n 导后有00)!1(11=?=---n n c c n 。依次类推,有 001====-c c c n n ,所以对任意的0≥n ,都有},,{10n x x x 线性无关,即∞=],[dim b a C 。 第 二 节 2.(点到集合的距离)设A 是E 的非空子集,E ∈x 。定义x 到A 的距离为: }|inf{),(A A ∈-=y x y x d 证明: 1) x 是A 的内点?0),(>c x d A ; 2) x 是A 的孤立点?A ∈x ,且0}){\,(>x x d A ; 3) x 是A 的外点?0),(>A x d 。 解: 1)必要性: x 是 A 的内点 内点的定义 ?ε ?,使得

相关文档