文档库 最新最全的文档下载
当前位置:文档库 › 过两点有且只有一条直线

过两点有且只有一条直线

过两点有且只有一条直线
过两点有且只有一条直线

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边

17 三角形内角和定理三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即

a^2+b^2=c^2

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的

一半L=(a+b)÷2 S=L×h

83 (1)比例的基本性质如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理三条平行线截两条直线,所得的对应

线段成比例

87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交d<r

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离d>R+r ②两圆外切d=R+r

③两圆相交R-r<d<R+r(R>r)

④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理相交两圆的连心线垂直平分两圆的公共弦

137定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类公式表达式

乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+co sA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h

正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r

锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h

斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s*h 圆柱体V=pi*r2h

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积=底×高÷2

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高÷2

直径=半径×2 半径=直径÷2

圆的周长=圆周率×直径=

圆周率×半径×2

圆的面积=圆周率×半径×半径

长方体的表面积=

(长×宽+长×高+宽×高)×2

长方体的体积=长×宽×高

正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3

长方体(正方体、圆柱体)

的体积=底面积×高

平面图形

名称符号周长C和面积S

正方形a—边长C=4a

S=a2

长方形a和b-边长C=2(a+b)

S=ab

三角形a,b,c-三边长

h-a边上的高

s-周长的一半

A,B,C-内角

其中s=(a+b+c)/2 S=ah/2

=ab/2·sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)

四边形d,D-对角线长

α-对角线夹角S=dD/2·sinα

平行四边形a,b-边长

h-a边的高

α-两边夹角S=ah

=absinα

菱形a-边长

α-夹角

D-长对角线长

d-短对角线长S=Dd/2

=a2sinα

梯形a和b-上、下底长

h-高

m-中位线长S=(a+b)h/2

=mh

圆r-半径

d-直径C=πd=2πr

S=πr2

=πd2/4

扇形r—扇形半径

a—圆心角度数

C=2r+2πr×(a/360)

S=πr2×(a/360)

弓形l-弧长

b-弦长

h-矢高

r-半径

α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2

=παr2/360 - b/2·[r2-(b/2)2]1/2

=r(l-b)/2 + bh/2

≈2bh/3

圆环R-外圆半径

r-内圆半径

D-外圆直径

d-内圆直径S=π(R2-r2)

=π(D2-d2)/4

椭圆D-长轴

d-短轴S=πDd/4

立方图形

名称符号面积S和体积V

正方体a-边长S=6a2

V=a3

长方体a-长

b-宽

c-高S=2(ab+ac+bc)

V=abc

棱柱S-底面积

h-高V=Sh

棱锥S-底面积

h-高V=Sh/3

棱台S1和S2-上、下底面积

h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积

S2-下底面积

S0-中截面积

h-高V=h(S1+S2+4S0)/6

圆柱r-底半径

h-高

C—底面周长

S底—底面积

S侧—侧面积

S表—表面积C=2πr

S底=πr2

S侧=Ch

S表=Ch+2S底

V=S底h

=πr2h

空心圆柱R-外圆半径

r-内圆半径

h-高V=πh(R2-r2)

直圆锥r-底半径

h-高V=πr2h/3

圆台r-上底半径

R-下底半径

h-高V=πh(R2+Rr+r2)/3

球r-半径

d-直径V=4/3πr3=πd2/6

球缺h-球缺高

r-球半径

a-球缺底半径V=πh(3a2+h2)/6

=πh2(3r-h)/3

a2=h(2r-h)

球台r1和r2-球台上、下底半径

h-高V=πh[3(r12+r22)+h2]/6

圆环体R-环体半径

D-环体直径

r-环体截面半径

d-环体截面直径V=2π2Rr2

=π2Dd2/4

桶状体D-桶腹直径

d-桶底直径

h-桶高V=πh(2D2+d2)/12

(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15

=======================

添辅助线有二种情况:

(1)按定义添辅助线:

如证明二直线垂直可延长使它们相交后证交角为90°,

证线段倍半关系可倍线段取中点或半线段加倍,

证角的倍半关系也可类似添辅助线

…………

(2)按基本图形添辅助线:

每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:

平行线是个基本图形:

当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

等腰三角形中的重要线段是个重要的基本图形:

出现等腰三角形底边上的中点添底边上的中线;

出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

直角三角形斜边上中线基本图形

出现直角三角形斜边上的中点往往添斜边上的中线

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

三角形中位线基本图形

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形

当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形。

当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

全等三角形:

全等三角形有轴对称形,中心对称形,旋转形与平移形等

如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线

…………

相似三角形:

相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型

当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。

…………

特殊角直角三角形

当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明

半圆上的圆周角

出现直径与半圆上的点,添90度的圆周角

出现90度的圆周角则添它所对弦---直径

直线中的对称问题—4类对称题型

直线中的对称问题—4类对称题型 直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨: 一、点关于点对称问题 解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础. 例1.求点(1)关于点的对称点的坐标, (2),关于点对称,求点坐标. 解:由题意知点是线段的中点, 所以易求(1) (2). 因此,平面内点关于对称点坐标为 平面内点,关于点对称 二、点关于线对称问题 求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得. 例2.已知点直线:,求点关于直线的对称点的坐标 解:法(一)解:设,则中点坐标为且满足直线的方程 ① 又与垂直,且斜率都存在即有② 由①②解得, 法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出的直线方程进而求与的交点坐标,再利用中点坐标公式建立方程求坐标. 三、线关于点对称问题 求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题. 例3.求直线:关于点的对称直线的方程. 解:法(一)直线:与两坐标轴交点为, 点关于对称点 点关于对称点 过的直线方程为,故所求直线方程为. 法(二)由两直线关于点对称,易知两直线平行,则对称点到两直线的距离相等,可以建立等式,求出直线方程. 四、线关于线的对称问题 求直线关于直线的对称问题,一般转化为点关于直线对称问题:即在已知直线上任取两不同点,求出这两点关于直线的对称点再求出直线方程. 例4.求已知直线:关于直线对称的直线方程. 解:在:上任取一点 直线的斜率为3

直线关于直线对称问题的常用方法与技巧

直线关于直线对称问题的常用方法与技巧 对称问题是高中数学的比较重要内容,它的一般解题步骤是:1. 在所求曲线上选一点),(y x M ;2. 求出这点关于中心或轴的对称点),(00/y x M 与),(y x M 之间的关系;3. 利用0),(00=y x f 求出曲线0),(=y x g 。直线关于直线的对称问题是对称问题中的较难的习题,但它的解法很多,现以一道典型习题为例给出几种常见解法,供大家参考。 例题:试求直线01:1=-+y x l 关于直线033:2=--y x l 对称的直线l 的方程。 解法1:(动点转移法) 在1l 上任取点))(,(2/ /l P y x P ?,设点P 关于2l 的对称点为),(y x Q ,则 ?????-+=++-=???? ????-=--=-+-+534359343103223//////y x y y x x x x y y y y x x 又点P 在1l 上运动,所以01=-+y x ,所以015 3435934=--++++-y x y x 。即017=--y x 。所以直线l 的方程是017=--y x 。 解法2:(到角公式法) 解方程组? ??==????=--=-+0103301y x y x y x 所以直线21,l l 的交点为A(1,0) 设所求直线l 的方程为)1(-=x k y ,即0=--k y kx ,由题意知,1l 到2l 与2l 到l 的角相等,则7 131313113=?+-=?-+k k k .所以直线l 的方程是017=--y x 。 解法3:(取特殊点法) 由解法2知,直线21,l l 的交点为A(1,0)。在1l 上取点P (2,1),设点P 关于2l 的对称点 的坐标为),(//y x Q ,则?????==???? ????-=--=-+-+575431210321223//////y x x y y x 而点A ,Q 在直线l 上,由两点式可求直线l 的方程是017=--y x 。 解法4:(两点对称法)

直线中的几类典型问题(学)

直线中的几类典型问题 一.求倾斜角的范围 1.直线x sin π7+y cos π 7=0的倾斜角是( ) A .-π 7 B.π7 C.5π7 D.6π 7 2.直线2x cos α-y -3=0(α∈???? π6,π3)的倾斜角的变化范围是( ) A.????π6,π3 B.????π4,π3 C.??? ?π4,π 2 D.???? π4,2π3 3.直线023cos =++y x θ的倾斜角的取值范围是_______ 分析:将直线的方程化为斜截式,得出直线的斜率,再由斜率和倾斜角的关系,得出关 于θ的一个三角不等式即可. 说明:解题易得出错误的结果?? ? ???-∈6,6ππα,其原因是没有注意到倾斜角的取值范围. 二.求直线的方程 4.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________. 5.直线l 过点P (-1,3),倾斜角的正弦是 5 4 ,求直线l 的方程 分析:根据倾斜角的正弦求出倾斜角的正切,注意有两解. 说明:此题是直接考查直线的点斜式方程,在计算中,要注意当不能判断倾斜角α的正切时,要保留斜率的两个值,从而满足条件的解有两个. 6.求经过两点A (2,m )和B (n ,3)的直线方程. 分析:本题有两种解法,一是利用直线的两点式;二是利用直线的点斜式.在解答中如果选用点斜式,只涉及到n 与2的分类;如果选用两点式,还要涉及m 与3的分类. 说明:本题的目的在于使学生理解点斜式和两点式的限制条件,并体会分类讨论的思想方法. 7.直线过点(3,2),且在两坐标轴上的截距相等的直线方程。 分析:借助点斜式求解,或利用截距式求解. 说明:对本例,常见有以下两种误解: 误解一:如下图,由于直线l 的截距相等,故直线l 的斜率的值为1±.若1=k ,则直线方程为32-=-x y ;若1-=k ,则直线方程为)3(2--=-x y .故直线方程为0 1=-+y x

直线中的几类对称问题(推荐)

直线中的几类对称问题 对称问题,是解析几何中比较典型,高考中常考的热点问题. 对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称. 本文通过几道典型例题,来介绍这几类对称问题的求解策略. 一、点关于点的对称问题 点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解. 熟练掌握和灵活运用中点坐标公式是处理这类问题的关键. 例1 求点A (2,4)关于点B (3,5)对称的点C 的坐标. 分析 易知B 是线段AC 的中点,由此我们可以由中点坐标公式,构造方程求解. 解 由题意知,B 是线段AC 的中点,设点C (x ,y ),由中点坐标公式有???????+=+=2 45223x x , 解得???==6 4y x ,故C (4,6). 点评 解决点关于点的对称问题,我们借助中点坐标公式进行求解. 另外此题有可以利用中点的性质AB=BC ,以及A ,B ,C 三点共线的性质去列方程来求解. 二、点关于直线的对称问题 点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上. 例2 求点A (1,3)关于直线l :x+2y-3=0的对称点A ′的坐标. 分析 因为A ,A ′关于直线对称,所以直线l 是线段AA ′的垂直平分线. 这就找到了解题的突破口. 解 据分析,直线l 与直线AA ′垂直,并且平分线段AA ′,设A ′的坐标为(x ,y ),则AA ′的中点B 的坐标为133,,.2 21AA x y y k x '++-??= ?-?? 由题意可知,???????-=?? ? ??-?--=-+?++121130323221x y y x , 解得??? ????-=-=51 53y x . 故所求点A ′的坐标为31,.55??-- ???

直线中的对称问题

直线中的对称问题 学习目标: 直线中的对称问题主要有:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称。下面谈谈各类对称问题的具体求解方法。 新知自学: 1、点关于点的对称 例1:已知点A (-2,3),求关于点P (1,1)的对称点B (00y ,x )。 2、直线关于点的对称 例2:求直线04y x 3=--关于点P (2,-1)对称的直线l 的方程。 3、点关于直线的对称 例3:求点A (2,2)关于直线09y 4x 2=+-的对称点坐标。 特别地: 点(),P a b 关于x 轴的对称点的坐标为 ;关于y 轴的对称点的为 ; 关于y x =的对称点的坐标为 ;关于y x =-的对称点的坐标为 . 关于x=m 的对称点的坐标为 ;关于y=n 的对称点的坐标为 . 关于x+y+c=0的对称点的坐标为 ;关于x-y+c=0的对称点的坐标为 . 4、直线关于直线的对称 例4:求直线02y x :l 1=--关于直线03y x 3:l 2=+-对称的直线l 的方程。 变式:求直线02y x :l 1=--关于直线03:2=+-y x l 对称的直线l 的方程。 特别地:直线Ax+By+C=0 关于x 轴的对称直线为 ;关于y 轴的对称直线为 ; 关于y x =的对称直线为 ;关于y x =-的对称直线为 . 关于x=m 的对称直线为 ;关于y=n 的对称直线为 . 关于x+y+c=0的对称直线为 关于x-y+c=0的对称直线为 . 例5:已知点A(4,1),B(0,4),C(2,0)直线l :3x-y-1=0 (1)试在直线l 上找一点P ,使CP AP +最小,并求出最小值. (2)试在直线l 上找一点Q ,使BQ AQ -最大,并求出最大值. 变式: 1、求5213422+--++=x x x x y 的最大值。 2、求5213422+-+++=x x x x y 的最小值。 例6: 一条光线经过点()2,3P ,射在直线l :10x y ++=上, 反射后穿过点()1,1Q .()1求入射光线的方程;()2求这条光线从点P 到点Q 的长度. 例7:已知ABC △的顶点为()1,4A --,,B C ∠∠的平分线所在直线的方程分别是1l :10y +=与2l :10x y ++=,求BC 边所在直线的方程.

知识点231 直线的性质、两点确定一条直线(填空)

知识点231:直线的性质、两点确定一条直线(填空) 一.填空题 1.(2010?洛阳)要在墙上钉牢一根木条,至少要钉2颗钉子,根据是:过两点有且只有一条直线或两点确定一条直线. 考点:直线的性质:两点确定一条直线。 专题:推理填空题。 分析:因为经过两点有且只有一条直线,所以固定一根木条,至少需要2个钉子. 解答:解:在墙上固定一根木条至少需,2颗钉子,依据的数学道理是过两点有且只有一条直线或两点确定一条直线. 故答案分别为:2,过两点有且只有一条直线或两点确定一条直线. 点评:当我们将一根细木条固定在墙上时,我们至少需要两个钉子;在建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙;当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定在直线上,才能射中目标等等;它们都是运用了“两点确定一条直线”的直线的性质. 2.将一根细木条固定在墙上,只需两个钉子,其依据是两点确定一条直线. 考点:直线的性质:两点确定一条直线。 分析:根据直线公理解答. 解答:解:根据两点确定一条直线. 点评:相关链接:直线:是点在空间内沿相同或相反方向运动的轨迹,向两个方向无限延伸.公理:两点确定一条直线. 3.植树时只要先定两个树坑的位置,就能确定一行树所在的位置,其根据是两点确定一条直线. 考点:直线的性质:两点确定一条直线。 分析:本题要根据过平面上的两点有且只有一条直线的性质解答. 解答:解:根据是两点确定一条直线. 点评:本题考查了“两点确定一条直线”的公理,是中学阶段常考的问题. 4.要把木条固定在墙上至少要钉两颗钉子,这是因为两点确定一条直线. 考点:直线的性质:两点确定一条直线。 专题:应用题。 分析:此题考查几何的基本公理,注意对已知条件的把握. 解答:解:要把木条固定在墙上至少要钉两颗钉子,那么木条就不会再转动,因为两点可确定一条直线. 点评:掌握好几何的基本定理,利用基本定理,解决实际问题. 5.要在墙上固定一根木条,至少需要两根钉子,理由是:两点确定一条直线. 考点:直线的性质:两点确定一条直线。 分析:根据直线的性质求解即可. 解答:解:根据直线的性质,要在墙上固定一根木条,至少需要两根钉子,理由是:两点确定一条直线. 点评:考查直线的性质.经过两点有一条直线,并且只有一条直线,即两点确定一条直线. 6.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为两点确定一条直线. 考点:直线的性质:两点确定一条直线。 专题:应用题。 分析:根据直线的确定方法,易得答案. 解答:解:两点确定一条直线. 点评:本题考查直线的确定:两点确定一条直线.

高中数学直线中对称问题归类解析

直线中对称问题归类解析 直线中的对称问题主要有:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称。下面谈谈各类对称问题的具体求解方法。 1、点关于点的对称 例1已知点A (-2,3),求关于点P (1,1)的对称点B (o x ,o y )。 分析:利用点关于点对称的几何特性,直接应用中点坐标公式求解。 解:设点A (-2,3)关于点P (1,1)的对称点为B (o x ,o y ),则由中点坐标公式得 ?????=+=+-12 3122o o y x 解得???-==14o o y x 所以点A 关于点P (1,1)的对称点为B (4,-1)。评注:利用中点坐标公式求解完之后,要返回去验证,以确保答案的准确性。 2、直线关于点的对称 例2求直线043:1=--y x l 关于点P (2,-1)对称的直线2l 的方程。 解法1:(用点到直线距离公式) 分析:由已知条件可得出所求直线与已知直线平行,所以可设所求直线方程为03=+-b y x 。 解:由直线2l 与043:1=--y x l 平行,故设直线2l 方程为03=+-b y x 。 由已知可得,点P 到两条直线距离相等,得1 316134 1622+++=+-+b 解得10-=b ,或4-=b (舍)。则直线2l 的方程为0 103=--y x 评注:充分利用直线关于点对称的特性:对称直线与已知直线平行且点P 到两条直线的距离相等。几何图形特性的灵活运用,可为解题寻找一些简捷途径。 解法2:(利用中点坐标法) 分析:设已知直线1l 上任意点A (a ,b ),对称点P(x 0,y 0)即为中点坐标,则对称点A ’(a x -02,b y -02)在与已知1l 的对称直线2l 上,两直线平行,可设为03=+-b y x ,带入即可求出2 l 解:设A (1,-1)在直线043:1=--y x l 上,关于点P (2,-1)的对称点A ’(3,-1) 把点A ‘(3,-1)带入直线03=+-b y x 得b=-10.则直线2l 为0 103=--y x 解法3:(利用图像平移法) 分析:取已知直线上与对称点P 相同的横坐标或纵坐标,求出点A 坐标,根据AP 之间距离可得AA ‘之间距离’,已知两直线平行,可让原直线根据方向平移既得直线

高中数学点线对称问题

对称问题专题 【知识要点】 1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下: 设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有 x x y y -'-'·k =-1, 2 y y +'=k ·20x x +'+b , 特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0). 3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0. (2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(x ,y ),则由(2)知,P 与P ′的坐标满足 x x y y --·k =-1, 2 0y y +=k ·20x x ++b , 代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0.利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程. 4.两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x ). 【典型例题】 【例1】 求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程. 剖析:由平面几何知识可知若直线a 、b 关于直线l 对称,它们具有下列几何性质:(1)若a 、b 相交,则l 是a 、b 交角的平分线;(2)若点A 在直线a 上,那么A 关于直线l 的对称点B 一定在直线b 上,这时AB ⊥l ,并且AB 的中点D 在l 上;(3)a 以l 为轴旋转180°,一定与b 重合.使用这些性质,可以找出直线b 的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程. 2x +y -4=0, 3x +4y -1=0, 可求出x ′、y ′. 从中解出x 0、y 0, 解:由 解得a 与l 的交点E (3,-2),E 点也在b 上

直线方程的对称问题及最值恒过定点问题

一、点关于点的对称问题 例1求点A(2,4)关于点B(3,5)对称的点C的坐标. 练习:1求点A(-3,6)关于点B(2,3)对称的点C的坐标. 2已知点A(5,8),B(4,1),试求A点关于B点的对称点C的坐标. 二、点关于直线的对称问题 这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上. 例2求点A(1,3)关于直线l:x+2y-3=0的对称点A′的坐标. 练习:3求A(4,0)关于直线5x+4y+21=0的对称点是______.

4:330,(4,5)l x y p l -+=已知直线求关于的对称点。 三、直线关于某点对称的问题 直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意到的是两对称直线是平行的. 我们往往利用平行直线系去求解. 例3 求直线2x+11y+16=0关于点P (0,1)对称的直线方程. 练习:2若直线1l :3x-y-4=0关于点P (2,-1)对称的直线方程2l .求2l 的方程 四、直线关于直线的对称问题 直线关于直线对称问题,包含有两种情形:①两直线平行,②两直线相交. 对于①,我们可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再用“到角”,或是转化为点关于直线对称问题. 例4 求直线l 1:x-y-1=0关于直线l 2:x-y+1=0对称的直线l 的方程.

例5试求直线l1:x-y-2=0关于直线l2:3x-y+3=0对称的直线l的方程. 练习:5求直线m: x-y-2=0关于直线l: 3x-y+3=0对称的直线n的方程 五最值问题 的面积最小时直线l 1.过点P(2,1)作直线l分别交x轴、y轴的正半轴于点A、B.求AOB 的方程; 2. 若直线l过点(1,1),且与两坐标轴所围成的三角形的面积为2,则这样的直线l有()条 A 1 B 2 C 3 D 4 (变式题:若面积为5呢,面积为1呢?) 3. 已知点A(2,5),B(4,-7),试在y轴上求一点P,使得|PA|+|PB|的值最小。 4.过点P(2,1) 作直线l分别交x轴、y轴于点A、B,求|PA|·|PB|取最小值时直线l的方程.

四年级数学上册 两点确定一条直线教案 冀教版

两点确定一条直线 教学目标: 1.在实验和画直线的实践操作中,让学生经历认识两点确定一条直线的过程。 2.了解两点确定一条直线,会经过一点或两点画直线。 3.使学生能积极参加实验和动手操作活动,体验数学在日常生活中的广泛应用。课前准备: 长40厘米、宽8厘米的木板一块;每组准备图钉、硬纸板、硬纸条。 教学方案:

让学生猜一猜,在 以小组为单位进行 实验。提出实验要 求并提醒学生注意 安全。 学生边实验,教师边巡视参与并指导。 3.全班交流。提出汇报各组实验过程和结果的要求,先交流讨论钉一个钉的情况;再交流讨论钉两个钉子的情况;最后,讨论钉三个钉子、四个钉子全是什么样?使学生达成共识:把一块木板固定在墙壁上只用两个钉子就可以了。 师:刚才同学们就像一个个小科学家一样十分投入地进行了实验。现在各组汇报一下实验的过程和结果。先来说一说钉一个钉子情况。你们怎么做,结果怎么样? 学生可能回答: ●我们在木板的一头钉了一个钉子,马上硬纸板就倒下来了。 ●我们在硬纸板中间钉一个钉子也不行,用手一动就来回转动。 师:通过刚才钉一个钉子的实验大家得出一个什么结论呢? 生:在木板上钉一个钉子,无论钉在什么位置,木板都可以转动,不能固定。 师:现在说一说钉两个钉子的情况。 生1:我们这样做的,把两个钉子钉在了两端,硬纸板就固定了。 生2:我们不是钉在两端,钉两个钉子也把硬纸板固定了。 师:通过刚才的实验,我们得出:在木板上钉两个钉子,就可以把木板固定在墙壁一定的位置上。那如果钉三个钉子呢?结果会怎样?对木板的位置有什么影

响? 生:钉三个钉子只会增加木板的牢固程度,对木板的位置没有作用。 师:同学们说的对!现在就把木板固定在墙壁至少需要几个钉子的问题我们可以得出一个什么结论呢? 生:把木板固定在墙壁上,有两个钉子就可以了。 师:大家再思考一下至少需要几个钉子?怎么理解? 生:“至少”就是最少的意思,通过实验最少用2个钉子就可以将木板固定了。 师:通过实验和讨论我们都知道了,把一块木板固定在墙壁上至少要2个钉子。也就是说,把一块木板固 定在墙壁上,只用两个钉子就可以了。 二、解决问题 1.教师提出素材38页试一试的内容,要学生自己在书上画出来。 师:通过实验,我们知道了,要把一块木板固定在墙上,只用两个钉子旧可以,现在请同学打开书看38页试一试下面的图,要把这根木板固定在墙上,请你画出钉子的位置。 师生一起画。教师在木板上画出来。 2.交流学生画的结果。给学生充分的交流不同位置的时间,让学生说一说怎样画的怎样提的。最后教师交 师:把你画的结果给大家展示一下。说一说怎样画的,用了几个钉子? 学生交流,教师给适当的评价,最后介绍老师钉的结果。

目的要求知道两点确定一条直线

6.1线段、射线、直线2 一、目的要求:知道“两点确定一条直线”,了解线段中点的概念,会画一条线段等于已知线段。 二、教学过程: 1、问题:(1)如果你想将一根木条固定在墙上,至少需要几根钉子? (2)工人师傅在用方砖铺地时,常在地上打两个木桩,然后沿着拉紧的线铺砖,这样 砖就铺的整齐,这是什么道理? 2、讨论:如图(1)经过点A 可以画几条直线? (2)经过A 、B 两点可以画几条直线? 结论: 。 3、做一做:已知A 、B 两点,(1)画线段AB ;(2)延长线段AB 到C ,使BC=AB 线段的中点: 。 讨论:如果B 为线段AC 的中点,那么线段AB 、BC 、AC 之间有怎样的关系? 练习:课本P150:1、2、3 4、例题 (1)如图线段AB =8cm ,C 是AB 的中点, 点D 在CB 上,DB =1.5cm ,求线段CD 的长 练习:①如图,B 是线段AD 上的一点,C 是线段BD 的中点,AD =10,BC =3,求线段CD 、AB 的长。 ②如图,线段AD =8,AB=CD=3,E 、F 分别是AB 、 CD 的中点,求线段EF 的长。 ③已知,如图,B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 的中点,CD=6,求线段MC 的长。 B A B A D C B A D B A F E D C B A D B

★④已知线段AB =10cm ,画线段BC =3cm ,且使A 、B 、C 三点在同一直线上,求线段AC 的长。 (2)如图所示,用几何语言表述下列图形 ; ; ; 练习: 1、下列图形中,可以比较大小的是( ) A 、两条射线 B 、两条直线 C 、直线与射线 D 、两条线段 2、已知点C 是线段AB 上的一点,不能确定C 是AB 的中点的条件是( ) A 、AC=C B B 、AC=AB C 、AB=2CB D 、AC+CB=AB 3、根据图中的点与线,线与线的位置关系,各写出1-2句话来 ; ; 。 4、已知线段AB =5cm ,线段BC =3cm ,则线段AC 的范围是 。 5、(1)已知平面内有四个点A 、B 、C 、D ,过其中两点画直线,可以画几条? (2)一张圆饼(非常薄)上切10刀(不重复,),最多可以得到多少块小饼? 6、如图,(1)点C 在线段AB 上,且AC=6cm , BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长 (2)若AC 和BC 的长度变化,其它条件不变,你能举出一个求MN 长的公式吗?能用简洁的语言表述它吗? (3)若将(1)中的条件改为“点C 在直线AB 上”,其它条件不变,你还能求线段MN 的长吗? m A c b a C A B M C B A

高中数学论文解析几何直线方程中四类对称问题及应用

四类对称问题及其应用 我们所谓的四类对称问题大致上有以下四种:点关于点对称;点关于线对称;线关于点对称;线关于线对称。 一、点关于点的对称 如果点P )(00y x ,与P '关于点M (a ,b )对称,则M 是线段P P '的中点, P )(00y x ,???????→?)的对称点 ,(关于点 b a M P '()2200y b x a --,( 依据中点坐标公式)特别的P )(00y x ,?????→?关于坐标原点对称 P '(00y x --,) 二、点关于直线对称 求一点P 0(x 0,y 0)关于一条直线Ax+By+C=0的对称点P 的坐标的问题。 (1) 直线Ax+By+C=0为特殊直线y=x 、y=-x 、 x 轴、y 轴、x=a 、y=b 时,对称点的坐标分别为P 1(y 0,x 0)、P 2(-y 0,-x 0)、P 3(x 0,-y 0)、P 4(-x 0,y 0)、P 5(2a-x 0,y 0)、P 6(x 0,2b-y 0)。 (2) 直线Ax+By+C=0为一般直线时,可设P 1的坐标为(x 1,y 1),则PP 1的中点满足直线方程Ax+By+C=0,并且PP 1的斜率与直线Ax+By+C=0的斜率之积为-1,可以得到关于x 1、y 1的一个二元一次方程组,从而可以解出x 1、y 1。 (3)公式法. 设P 1的坐标为(x 1,y 1),由公式 ?? ??? +++- =+++-=220001220001 ) (2)(2B A C By Ax B y y B A C By Ax A x x 求出x 1、y 1的值。 三、直线和直线关于点对称 求直线A 1x+B 1y+C 1=0关于点P(x 0,y 0)对称的直线方程。根据对称性,只需将直线方程A 1x+B 1y+C 1=0中的x 换为2x 0-x 、y 换为2y 0-y ,即可求出要求直线的方程。 四、直线关于直线对称 求一直线A 1x+B 1y+C 1=0关于直线A 0x+B 0y+C 0=0对称的直线方程。 (1) 直线A 0x+B 0y+C 0=0为特殊的直线x 轴、y 轴、y=x 、y=-x 时,直线A 1x+B 1y+C 1=0关于直线A 0x+B 0y+C 0=0对称的直线方程分别为A 1x-B 1y+C 1=0、-A 1x+B 1y+C 1=0、A 1y+B 1x+C 1=0、-A 1y-B 1x+C 1=0。 (2) 直线A 0x+B 0y+C 0=0为一般直线时: 1>直线A 0x+B 0y+C 0=0与直线A 1x+B 1y+C 1=0平行时,则只需用两平行直线距离公式即可求出要求直线。 2>若直线A 0x+B 0y+C 0=0与直线A 1x+B 1y+C 1=0相交于一A 点时,利用到角公式就可以求得直线A 1x+B 1y+C 1=0关于直线A 0x+B 0y+C 0=0对称的直线的斜率k,再利用直线的点斜式方程即可求出要求直线的方程。

点和直线的有关对称问题

点和直线的有关对称问题 摘要:对称问题是中学数学的一个重要知识点,也是近几年高考中的热点,主要有点、直线、曲线关于点和直线对称两种。中点坐标公式或两条直线垂直的条件是解决对称问题的重要工具。解析几何中的中心对称和轴对称问题最终都可以归结为关于点的对称问题加以解决。 关键词:点;直线;中心对称;轴对称 对称思想是近几年高考中的热点,它主要分为中心对称和轴对称两种,解对称问题要把握对称的实质,掌握其解题方法,提高解题的准确性和解题的速度,它主要有以下几种情况: (一)中心对称 ⒈点关于点对称 ⒉直线关于点对称 例1:求直线x+y-2=0 关于点P(a,b)对称的直线方程. 分析一:在已知直线上z任取两点A、B,再分别求出A、B关于P点的对称点A′、B′,然后由两点式可得所求直线方程. 解:在直线x+y-2=0上取两点A(0,2)、B(1,1),则它们关于P(a,b)对称的点分别为A′(2a,2b-2)、B(2a-1,2b-1),由两点式得所求直线为:

分析二:中心对称的两条直线是互相平行的,并且这两条直线与对称中心的距离相等. 解:设所求直线方程为x+y+λ=0,则 点评:方法三为相关点法,是求曲线方程的一种常用方法,可进一步推广:曲线C:f(x,y)=0关于点P(a,b)对称的曲线C′的方程为f(2a-x,2b-y)=0.特别的, 曲线f(x,y)=0关于原点对称的曲线方程为: f(-x,-y)=0. (二)轴对称 ⒈点关于直线对称 例2:M(-1,3)关于直线:x+y-1=0的对称点M′的坐标. 解二:过点M(-1,3)与直线l 垂直的直线的斜率k=1,则直线方程为x-y+4=0. 设M关于直线l 的对称点为M′,则E为线段MM′的中点,由中点坐标公式知:M′的坐标为(-2,2) 解三:设M′(a,b), 线段MM′的垂直平分线上的任意一点为A(x,y). ∵MA=M′A , ∴(x+1)2+(y-3)2=(x-a)2+(y-b)2 这就是已知直线l的方程 故点M′的坐标为(-2,2) ⒉直线关于直线对称 例3:⑴求直线a:2x+y-4=0关于直线

对称问题=直线中的几类对称问题=高考数学专题讲座讲义.doc

学习好资料 欢迎下载 学法点拔( 9) ( 9)直线中的几类对称问题 对称问题,是解析几何中比较典型,高考中常考的热点问题 . 对于直线中的对称问题, 我们可以分为: 点关于点的对称;点关于直线的对称;直线关于点的对称, 直线关于直线的 对称 . 本文通过几道典型例题,来介绍这几类对称问题的求解策略 . 一、点关于点的对称问题 点关于点的对称问题, 是对称问题中最基础最重要的一类, 其余几类对称问题均可以化 归为点关于点的对称进行求解 . 熟练掌握和灵活运用中点坐标公式是处理这类问题的关键 . 例 1 求点 A ( 2, 4)关于点 B ( 3, 5)对称的点 C 的坐标 . 分析 易知 B 是线段 AC 的中点,由此我们可以由中点坐标公式,构造方程求解 . 2 x 3 2 解 由题意知, B 是线段 AC 的中点,设点 C ( x ,y ),由中点坐标公式有 , x 4 5 2 x 4 解得 ,故 C (4, 6) . y 6 点评 解决点关于点的对称问题,我们借助中点坐标公式进行求解 . 另外此题有可以 利用中点的性质 AB=BC ,以及 A , B , C 三点共线的性质去列方程来求解 . 二、点关于直线的对称问题 点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方 面:①两点连线与已知直线斜率乘积等于 -1,②两点的中点在已知直线上 . 例 2 求点 A ( 1, 3)关于直线 l :x+2y-3=0 的对称点 A ′的坐标 . 分析 因为 A , A ′关于直线对称,所以直线 l 是线段 AA ′的垂直平分线 . 这就找到 了解题的突破口 . 解 据分析, 直线 l 与直线 AA ′垂直, 并且平分线段 AA ′,设 A ′的坐标为 ( x ,y ), 1 x 3 y ???k y 3 ??. 则 AA ′的中点 B 的坐标为 ?? 2 , 2 , A A x 1 1 x 2 3 y 3 2 2 由题意可知, , 3 1 y 1 x 1 2 3 x 3 1 解得 5 ??? ?? . 故所求点 A ′的坐标为 1 5 , 5 . y 5

直线中的对称问题

例谈直线中的对称问题 直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨: 一、点关于点对称问题 解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础. 例1.求点(1)()1,3A 关于点()3,2P 的对称点A '的坐标, (2)()4,2A ,()2,0A ' 关于点P 对称,求点P 坐标. 解:由题意知点P 是线段A A '的中点, 所以易求(1)()5,1A ' (2)()3,1P . 因此,平面内点()00,y x A 关于()b a P ,对称点坐标为()002,2y b x a -- 平面内点()11,y x A ,()22,y x A '关于点?? ? ??++2,22121y y x x P 对称 二、点关于线对称问题 求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得. 例2.已知点()1,1A 直线 :02=+-x y ,求点A 关于直线 的对称点A '的坐标 解:法(一)解:设()y x A ,',则A A '中点坐标为??? ??++21,21y x 且满足直线 的方程 022 121=++-+∴x y ① 又A A ' 与 垂直,且 ,A A '斜率都存在 1-=?∴ k k AB 即有111 1-=?--x y ② 由①②解得 3=x ,1-=y ()1,3-'∴A 法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出A A '的直线方程进而求与 的交点坐标,再利用中点坐标公式建立方程求A '坐标. 三、线关于点对称问题 求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题. 例3.求直线1 :012=-+y x 关于点()1,2P 的对称直线2 的方程. 解:法(一) 直线1 :012=-+y x 与两坐标轴交点为?? ? ?? 21,0A ,()0,1B

06两点确定一条直线

06 两点确定一条直线 一.选择题(共10 小题)1.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是()A.过一点有且只有一条直线B.两点之间,线段最短 C.连接两点之间的线段叫两点间的距离D.两点确定一条直线2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是() A.1 枚B.2 枚C.3 枚D.任意枚 3.若平面内有点A、B、C,过其中任意两点画直线,则最多可以画的条数是()A.3 条B.4 条C.5 条D.6 条 4.下列说法中正确的是() A.射线AB 和射线BA是同一条射线 B.射线就是直线 C.经过两点有一条直线,并且只有一条直线 D.延长直线AB 5.经过同一平面内A、B、C 三点中的每两点可画出直线的条数为()A.0 条B.1 条C.3 条D.3条或1 条 6.在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着 一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是( A.两点之间线段最短B.两点确定一条直线 C.垂线段最短D.过一点可以作无数条直线 7.下列事实可以用“两点确定一条直线”来解释的有()个

①墙上钉木条至少要两颗钉子才能牢固; ②农民拉绳播秧; ③解放军叔叔打靶瞄准; ④从A地到B地架设电线,总是尽可能沿着线段AB架设. A.1 B.2 C.3 D.4 8.平面上有五个点,其中只有三点共线.经过这些点可以作直线的条数是()A.6 条B.8 条C.10 条D.12 条 9.过两点有且只有()条直线. A.3 B.2 C.1 D.0 10.下列说法正确的是() A.两点确定两条直线B.三点确定一条直线C.过一点只能作一条直线D.过一点可以作无数条直线 二.填空题(共2 小题) 11.下列三个现象:①用两个钉子就可以把一根木条固定在墙上; ②从A地到B地架设电线,只要尽可能沿着线段AB架设,就能节省材料;③植树时,只要定出两棵树的位置,就能使同一行树在一条直线上.其中可用“两点确定一条直线”来解释的现象有(填序号)12.小朋友在用 玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为:. 06 两点确定一条直线 参考答案与试题解析 一.选择题(共10 小题)1.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是()A.过一点有且只有一条直线 B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离 D.两点确定一条直线 【分析】直接利用直线的性质分析得出答案.

知识点231 直线的性质、两点确定一条直线(解答)

知识点231:直线的性质、两点确定一条直线(解答) 一.解答题 1.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“这还不简单,老师上课时不是讲过了吗,过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标的某一位置看成一点,这样不是有三点了吗,既然过两点有且只有一条直线,那弄出第三点又为什么呢?”聪明的你能回答小强的疑问吗? 考点:直线的性质:两点确定一条直线。 分析:根据直线的性质,结合实际意义,易得答案. 解答:解:若将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线,应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即达到看到哪打到哪儿. 换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上. 点评:本题考查直线的性质,无限延伸性即没有端点;同时结合射击时的“三点一线”理论,立意新颖. 2.怎样才能保证一队同学站成一条直线? 考点:直线的性质:两点确定一条直线。 专题:开放型。 分析:根据两点确定一条直线,来实际操作. 解答:解:本题为开放问题,答案不唯一,只要可行即为正确. 现提供一种答案,仅供参考: 先让两个同学站好不动,其他同学依次往后站,要求只能看到各自前面的那个同学. 点评:此题考查了“两点确定一条直线”的应用. 3.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这个方法,并说一说其中的道理. 考点:直线的性质:两点确定一条直线。 分析:取木条上任意一点,与两端点得到三条线段,根据两点确定一条直线,三点在同一直线上,所以木条的边线是直的. 解答:解:如图,有3条线段,它们分别是线段AB,线段BC,线段AC, ∵两个端点及这条边线中的各点都重合于一点,根据经过两点有且只有一条直线, ∴这条线的边线是直的. 点评:本题是两点确定一条直线在实际生活中的运用,比较简单. 4.我们知道:平面上有一个点,过这一点可以画无数条直线. 若平面上有两个点,则过这两点可以画的直线的条数是1; 若平面上有三个点,过每两点画直线,则可以画的直线的条数是1或3; 若平面上有四个点,过每两点画直线,则可以画的直线的条数是1或4或6. 考点:直线的性质:两点确定一条直线。 分析:直线公理:经过两点有且只有一条直线可知过两点可以画的直线的条数;过平面内三点、四点画直线时,要根据平面上三点、四点的位置关系要分情况讨论. 解答:解:①根据直线公理:经过两点有且只有一条直线可知:若平面上有两个点,则过这两点可以画的直线的条数是:1; ②当三点在同一条直线上时,可以画1条直线, 当三点不在同一直线上时,可以画3条. 故平面上有三个点,若过两点画直线,则可以画出直线的条数为1或3条. ③如图所示:分别根据四点在同一直线上、三点在同一条直线上、任意三点均不在同一条直线上描出各点,再根据两点确定一条直线画出各直线可知:

直线方程中的对称问题

直线中的几类对称问题 对称问题,是解析几何中比较典型, 对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称. 通过几道典型例题,介绍这几类对称问题的求解策略. 一、点关于点的对称问题 点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解. 熟练掌握和灵活运用中点坐标公式是处理这类问题的关键. 例1 求点A (2,4)关于点B (3,5)对称的点C 的坐标. 分析 易知B 是线段AC 的中点,由此我们可以由中点坐标公式,构造方程求解. 解 由题意知,B 是线段AC 的中点,设点C (x ,y ),由中点坐标公式有???????+=+=2 45223x x ,解得???==6 4y x ,故C (4,6). 点评 解决点关于点的对称问题,我们借助中点坐标公式进行求解. 另外此题有可以利用中点的性质AB=BC ,以及A ,B ,C 三点共线的性质去列方程来求解. 二、点关于直线的对称问题 点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上. 例2 求点A (1,3)关于直线l :x+2y-3=0的对称点A ′的坐标. 分析 因为A ,A ′关于直线对称,所以直线l 是线段AA ′的垂直平分线. 这就找到了解题的突破口. 解 据分析,直线l 与直线AA ′垂直,并且平分线段AA ′,设A ′的坐标为(x ,y ),则AA ′的中点B 的坐标为.13,23,2 1??x y ??k ?y ??x A A --=??? ??++' 由题意可知,???????-=?? ? ??-?--=-+?++121130323221x y y x , 解得??? ????-=-=5153y x . 故所求点A ′的坐标为.51,53???????? ??-- 三、直线关于某点对称的问题 直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意到的是两对称直线是平行的. 我们往往利用平行直线系去求解. 例3 求直线2x+11y+16=0关于点P (0,1)对称的直线方程. 分析 本题可以利用两直线平行,以及点P 到两直线的距离相等求解,也可以先在已知直线上取一点,再求该点关于点P 的对称点,代入对称直线方程待定相关常数. 解法一 由中心对称性质知,所求对称直线与已知直线平行,故可设对称直线方程为2x+11y+c=0. 由点到直线距离公式,得2222112|11|112| 1611|++=++c , 即|11+c|=27,得c=16(即为已知直线,舍去)或c= -38. 故所求对称直线方程为

相关文档
相关文档 最新文档