文档库 最新最全的文档下载
当前位置:文档库 › 船舶艉轴磁流体密封的设计与试验研究

船舶艉轴磁流体密封的设计与试验研究

船舶艉轴磁流体密封的设计与试验研究
船舶艉轴磁流体密封的设计与试验研究

2008年9月第33卷第9期

润滑与密封

LUBR I CATI O N ENGI N EER I N G

Sep.2008

Vol 133No 19

3基金项目:哈尔滨工程大学校基金项目(HEUFT05074)1收稿日期:2008-05-06

作者简介:杨恩霞(1963—),女,硕士,教授1E 2m ail:yangenxia@hrbeu 1edu 1cn 1

船舶艉轴磁流体密封的设计与试验研究

3

杨恩霞 应丽霞 喻大发

(哈尔滨工程大学机电工程学院 黑龙江哈尔滨150001)

摘要:研制了一种用于船舶艉轴磁流体密封的试验装置,研究了不同的磁饱和强度、转速及密封间隙对不同类型的

磁流体密封承压能力的影响。结果表明,油基磁性流体可作为船舶艉轴密封液,对水和海水介质密封压差可以达到2MPa;船舶艉轴磁流体密封的耐压能力,随着磁流体饱和磁化强度的提高而增大,随着转轴转速的增加而减小,随着径向间隙的减小而增大。

关键词:船舶艉轴;磁流体;密封;耐压能力中图分类号:T H11711 文献标识码:A 文章编号:0254-0150(2008)9-025-3

Desi gn and Study of a Dev i ce Sea li n g Axes of Sterns with Magneti c Flui d

Ya ng Enxia Yi ng L i xia Yu D a fa

(School ofMechatri onics Engineering,Harbin Engineering University,Harbin Heil ongjiang 150001,China )

Abstract:A tester which is used t o seal axes of sterns with magnetic fluid was developed .The effects of magnetic satu 2

ration intensity,sealing clearance and rotate s peed on the bearing capacity of the different magnetic fluid seal were studied .

The result shows that oil 2based magnetic fluid can be used as sealing liquid of the sterns,and the differential p ressure be 2t ween sealing water and sealing seawater can reach as much as 2MPa .W ith the decrease of radial clearance,bearing ca 2pacity of this seal increases,but the increase of viscosity of magnetic fluid and r otate s peed will lead t o the decrease of the bearing capacity .

Keywords:axes of sterns;magnetic fluid;sealing;bearing capacity

 船舶后传动系统主轴密封是一类特殊密封,其特点为轴管直径较大,且存在较大的横向和轴向振动,要求密封具有自动对中能力和适应振动的跟随性;艉轴在海水或江水环境中工作,海水有严重的腐蚀性,江水中含有泥沙,对密封造成不利影响;对于油润滑艉轴密封,既要防止润滑油漏出船体外面,污染海洋环境,又要防止海水或江水进入艉轴系统,要进行双向密封。目前,我国现役船舶螺旋桨轴密封主要为接触式的骨架橡胶圈及盘根绳,随着船舶大型化和高速化,接触式密封装置的缺点逐渐暴露,由于材料和结构原因,经常出现密封损坏,导致漏油事故,丁腈密封环由于老化裂损工作寿命一般不超过8000h,同时能耗大,这些缺点制约了现役舰船向大功率、高速、减振降噪的现代化目标发展。磁流体密封技术,是解决船舶艉轴防水或防油密封的比较理想的新技术,它具有寿命长、泄漏量低、磨损少、结构简单、

适合高速旋转和往复密封等一系列特点[1-5]

。不但可以提高主机轴功率利用率,使主轴功率耗损降低10%~40%,明显提高了船的航行速度;而且还可使船舶向减振降噪的低噪声现代化舰艇方向发展。因

此,本文作者研制了用于船舶艉轴磁流体密封的试验装置,并通过试验研究了不同类型的磁流体、不同的转速及密封间隙对船舶艉轴磁流体密封承压能力的影响,为船舶艉轴密封装置的改进提供了参考。1 船舶艉轴磁流体密封的设计111 

磁流体密封原理

图1 磁流体密封原理

Fig 1 The sealing p rincip le of magnetic fluid

磁流体密封如图1所示,是由磁极、永久磁铁、导磁密封轴、磁流体等组成,其工作原理是:由永磁铁、磁极和具有导磁性的转轴构成闭合磁回路,利用永磁体中的磁能,在密封轴与磁极齿端的间隙内产生强磁场,将磁流体紧紧吸在密封间隙内,形成磁性液体

“O ”型密封环,把间隙锁住,从而实现密封[6-8]

。112 船舶艉轴磁流体密封的设计

船舶艉轴磁流体密封结构如图2所示。用45#

钢经调质处理制成的艉轴,两端用向心球轴承支撑,艉

轴的端部采用平键联接一个外径D =110mm 、孔径d =8mm 船舶水池自行模用巴氏合金四叶螺旋桨;螺旋桨部分置于密封耐压仓内,仓壳正上方开出一个高压表孔,仓后壁开出一个泵管孔与4MPa 的手摇泵相联

图2 船舶艉轴磁流体密封装置简图Fig 2 The sealing test scheme of stern shaft

该密封装置由3个相同磁路组合形成的4级密封组成,其中3个磁环的N 2S 端各吸附一个尺寸相同的导磁极板,由此构成磁源,每组磁源作N 2N 、S 2S 相斥极向相对的轴向串接。筒形密封壳体及端盖用非导磁材料铝合金制成,其内孔与6块极板过渡配合。6块极板结构尺寸相同,均为<60mm ×<15mm ×13mm,每块极板内孔有6级齿槽,其结构尺寸如图3所示

图3 梯形齿形

Fig 3 Trapezoidal tooth

为防止极板与壳体内孔壁的“外路”泄漏,采用O 型橡胶圈密封。为了便于磁流体的填充,采用径向注入式,在每个极板距端面的第二道齿槽处钻<2mm 的径向孔,靠近外径扩为M 5的螺孔,可用长10mm 的M 5丝堵封堵。2 密封试验研究211 船舶艉轴磁流体密封试验方案

船舶艉轴磁流体密封试验装置是以水为密封介质,对不同基液的多个型号磁流体进行船舶艉轴磁流

体密封应用模拟实验,以取得不同基液的磁流体密封能力的数据,进而对不同基液的磁流体密封水的性能进行分析。作者采用油、水基磁流体密封液环间隔组合,替代接触式唇封的橡胶环,使其分别发挥水、油不相容的特性,达到综合密封的功效。即利用油基磁流体液环封水,间隔的水基磁流体液环封油。设计研究目标:密封压力为2MPa;密封轴为<20mm 的模拟船舶艉轴。实验传动装置的主要组成部分如图4所

示。

图4 船舶艉轴磁流体密封传动装置示意图 Fig 4 The driving system of the magnetic

fluid device f or the stern shaft

为了实验拆装方便,艉轴由旁置200W 直流电动机通过一级带传动拖动,采用可控硅调速,可实现密封艉轴的正、倒车转动。212 实验结果与讨论21211 不同型号磁性流体的防水和防油性能

本实验对所制备的各种不同类型磁流体进行了动密封防水、防油测试,根据实验原始记录的数据,当径向间隙为0105mm 时,各型号磁性流体密封在不同工况下各压力表记录值见表1。

表1 各型号磁性流体承压值

Table 1 The sealing pressure of different magnetic fluid MPa

型 号

表1表2表3表4油基磁流体密封水

HJY 2060140018011502100HJY 2070135016511101150HJN 2100130017011101130HJN 211

0130016001901130氟醚油基磁流体密封水

HZ 2110110013001700180HZ 2120109012801700179水基磁流体密封水HS 2水0115013001400140HS 2海水0011001400140水基磁流体密封油

HS 2水

010*********

 从表1中可以看出,实验所使用的3磁钢-4极的

实验装置,对于油基磁流体密封水各极测得的平均压差值近乎相等。油基磁流体对水和海水密封实验压差达到2MPa,单级单齿密封压差超过0106MPa,氟醚

62润滑与密封第33卷

油基磁流体密封水的单级单齿压差约为0102MPa,水基磁流体密封水或油的单级单齿压差约为01012MPa 。21212 

轴转速对密封能力的影响

 图5 HJN 211磁流体密封水压差与转速关系Fig 5 The differential p ressure

of sealing water and r o 2tate s peed curves of HJN 211magnetic fluid 在旋转密封中,受离心力作用的磁流体随着转速的增高向极靴的齿槽底靠近,密封液环在桨轴表面上的轴向宽度减薄;同时由于轴转速的增高,被封液与磁

流体接触的界面及磁流体内部层与层之间的界面不稳定增加,使其承压能力下降,密封压差

与转速的关系曲线如图

5所示。

由图可知,密封装置的密封压差随着转轴转速的增加而减小,反映了密封性能随转速的升高而下降,当转速增加到一定值后,磁流体密封耐压值为0,密封失败。21213 

饱和磁化强度对密封能力的影响

 图6 饱和磁化强度与

承压能力关系Fig 6 Magnetic saturati on inten 2

sity and bearing capacity

curves

选用3种不同的磁流体进行密封测试,测出径向间隙为0105mm,转速为600r/m in 时的承压值,根据实验结果得到饱和磁化强度与承压能力关系,见图6。

在图6中,实验点的连线基本上为一直线,

说明密封能力的大小与磁流体的饱和磁化强度

成正比,磁流体的饱和磁化强度越高,密封的

承压能力越高,所以从

承压能力单方面考虑,磁化强度越高越好。21214 

密封间隙对密封能力的影响 图7 密封间隙与承

压能力关系Fig 7 Sealing clearance

and

bearing capacity curves

本实验作者设计了0105,011,012,013,014mm 5种间隙,其它主要参数为:密封级数为4级,转速为600r/m in,磁流体饱和磁化强度为01042T,得出的间隙对

承压能力的影响规律,如图7所示。

从实验结果来看,间隙越大承压能力越低,反之间隙越小,承压能力越大。但是由于边缘磁场效应,限制了从给定的永久磁铁中获得最大磁场强度,而间隙又不能无限地减小。而且间隙太小,由于轴的跳动,或者轴与磁极的不同心,造成轴与磁极的机械摩擦,从而使得密封性能和密封寿命降低。另外间隙太小又会增加机械加工的难度,提高加工成本。若轴的加工质量不好,跳动大或者磁铁安装不正,造成磁极与轴的摩擦现象,使得密封性能下降。所以在实际应用时必须考虑诸因素的影响,如果采用小间隙密封来提高承压能力,则必须提高轴的加工精度和部件的装配精度。3 结论

(1)油基磁流体可作为舰船艉轴密封液,对水和海水介质密封压差可以达到2MPa 。

(2)随着磁流体饱和磁化强度的增加,密封的承压能力变大;随着转轴转速的增加,密封的承压能力变小;随着密封间隙的增大,密封的承压能力降低。

参考文献

【1】温利,周仁魁,罗长洲.磁流体密封技术的发展及应用综

述[J ].润滑与密封,2002(6):86-90.

W en L i,Zhou Renkui,Luo Changzhou .Development and Ap 2p lication of Ferrofluid 2Seal Technol ogy [J ].Lubrication Engi 2

neering,2002(6):86-90.

【2】王瑞金,曹淼龙.磁流体密封的原理和应用[J ].通用机

械,2005(2):54-58.Wang Ruijin,Cao Miaol ong .Princi ple and Applicati on of Fer 2

r ofluidics Sealing [J ].General Machinery,2005(2):54-58.

【3】邹继斌,陆永平.磁性流体密封原理与设计[M ].北京:国防工业出版社,2000.

【4】李德才.磁性液体理论及应用[M ].北京:科学出版社,

2003.

【5】Zhang W enjun,Chai Bo,Zhang Huifang,et al .Study on

Preparation and Properties of Fe 3O 4Magnetic Fluid by One Step Method with a M icr o Emulsion Reactor [J ].Lubrication

Engineering,2005(2):57-58.

【6】刘同冈,杨志伊.磁流体液体动密封结构的优化设计

[J ].摩擦学学报,2003,23(4):353-355.L iu T onggang,Yang Zhiyi .Design Op ti m izati on of Seal Struc 2

ture of L iquid Sealing by Magnetic Fluids [J ].Tribology,

2003,23(4):353-355.

【7】樊玉光,袁淑霞.一种零泄漏密封技术———纳米磁性流体

密封研究的进展[J ].润滑与密封,2003(2):81-83.Fan Yuguang,Yuan Shuxia .Development Trend of Nano Fer 2

r ofluidic Seal Researches [J ].Lubrication Engineering,2003(2):81-83.

【8】杜存臣,林慧珠.极靴结构对磁流体密封能力的影响

[J ].化工装备技术,2006,27(2):71-73.

Du Cunchen,L in Huizhu .Effects of Magnetic Poles Configu 2ration on the Capability of Ferrofluidics Sealing [J ].Chem i 2

cal Equi pment Technol ogy,2006,27(2):71-73.

7

22008年第9期杨恩霞等:船舶艉轴磁流体密封的设计与试验研究

船舶尾轴密封

船舶尾轴密封的发展展望 第一章绪论 在采用螺旋桨推进的船舶中,尾轴和尾轴承之间要按一定的规定留有间隙,尾轴又处于水面以下,工作时需要润滑和冷却,因此为了防止海水沿螺旋桨轴流入船内及润滑油泄漏,在尾轴管中必须设置密封装置。尾轴密封装置的工作环境和条件极其恶劣,其在工作时不仅受到由轴系转动带来的磨损外,轴系自然下沉产生产生的不均匀作用力的影响,主机正倒车时尾轴还会产生一定的横向和轴向震动,这些都会对尾轴密封装置造成不良影响。尾轴密封装置是船舶轴系的重要部件之一,其性能的好坏直接影响到船舶的正常营运和经济型,同时对防止尾轴滑油污染海洋环境起着十分重要的作用,因此国内外造船界和航运部门对其可靠性和可维修性等提出了更高的要求,所以对尾轴密封装置的研究是及其必要的。下面笔者就对尾轴密封的发展及其展望做一个粗浅的分析。 第二章船舶尾轴密封的类型、原理及其发展 2.1填料函型首密封装置 “填料函型密封”俗称“盘根密封”,这种装置是最早出现的尾轴密封形式,多用于铁梨木尾轴承。 2.1.1填料函型首密封装置的工作原理 图1为填料函型首密封装置的工作原理简图,此种密封装置主要是靠填料5来阻止舷外水流入机舱,填料5在压盖3的预紧力作用下与螺旋桨轴紧密接触,达到密封的目的。尾轴承下沉时,可径向调节填料函本体4使与尾轴同心,以保持良好的密封效果。该密封装置一般都设有进水管1,引入具有压力的舷外水,冷却和冲走积存在填料内的泥沙。

图1填料函型首密封装置的工作原理简图 2.1.2填料函型首密封装置的特点 填料函型首密封装置具有以下特点: (1)结构简单,易维护管理,当发现密封处漏水过多时,稍加压紧压盖即可;更换填料也很方便。但由于盘根比较容易磨损,定时的对密封进行调整和填料(盘根)的更换,增加了轮机人员的劳动量,同时也增加了调整的随意性和不安全因素。 (2)造价低廉,使用可靠,现在该种密封装置一般都采用橡胶轴承。相对来说橡胶轴承价格低廉,且使用可靠。但橡胶的磨损和老化会直接影响到轴系的情况且适应尾轴径向跳动的能力差。 (3)轴功率损耗大,对尾轴(套)的磨损严重,必须定期抽轴更换防磨衬套或对尾轴的磨痕进行堆焊、光车,维修成本高、周期长。 2.1.3填料型首密封装置的发展

磁流体密封间隙对密封性能的影响

第33卷第3期 1999年3月 上海交通大学学报 JOU RNAL O F SHAN GHA I J I AO TON G UN I V ER S IT Y V o l .33N o.3  M ar .1999  收稿日期:1998203224 基金项目:上海市教委科技发展基金资助(97H 04)作者简介:顾建明(1948~),男,副教授. 文章编号:100622467(1999)0320380203 磁流体密封间隙对密封性能的影响 顾建明1, 许永兴2, 陆明琦1, 芮 菁1 (1.上海交通大学动力与能源工程学院,上海200030;2.上海电视大学,上海200092) 摘 要:对磁流体在转轴密封中的应用作了探讨.阐明了磁流体密封的原理,根据磁学理论进行了磁回路的计算.在此基础上设计了磁流体密封的试验装置.实验中采用不同的密封间隙,以确定磁流体密封能力与密封间隙之间的关系.同时,进行了轴旋转和静止时磁流体密封能力变化的试验.试验结果表明,磁流体的密封能力随密封级数的增加而提高,随密封间隙的增大而减小,密封间隙在0.05~0.20mm 时,效果较好,同时密封级数有一个最佳值.关键词:磁流体;磁流体密封;密封间隙;密封能力 中图分类号:TH 117;TQ 584.1 文献标识码:A Effe c t of the G a p of M a gne tic F luid S e a l on S e a l C a pa c ity GU J ian 2m ing 1 , X U Y ong 2x ing 2 , L U M ing 2qi 1 , RU I Q ing 1 1.Schoo l of Pow er and Energy Engrg .,Shanghai J iao tong U n iv .,Shanghai 200030,Ch ina 2.Shanghai TV U n iv .,Shanghai 200092,Ch ina Abs tra c t :T he dynam ic seal of sp in shaft w ith m agnetic flu id w as studied .T he p rinci p le of m agnetic flu id seal w as described and w ith the calcu lati on of m agnetic loop based on m agnetic theo ry ,a test un it fo r m ag 2netic flu id seal w as estab ished .In the exp eri m en t ,the relati on sh i p betw een the seal cap acity of m agnetic flu id and the differen t seal gap w as determ ined ,and the variance of m agnetic flu id seal cap acity w as also tested w ith the shaft ro tating o r stati onary .T he resu lt show s that the seal cap acity of m agnetic flu id is raised w ith the increase of seal stage and the decrease of seal gap .W hen the seal gap is betw een 0.05mm and 0.20mm ,the resu lt is better and the num ber of seal stage has an op ti m um value . Ke y w o rds :m agnetic flu id ;m agnetic flu id seal ;seal gap ;seal cap acity 磁流体是一种新材料,它在机械、动力、航天和医学等方面有着广阔的应用前景[1,2].由于它具有独特的超顺磁特性[3],密封是它的又一个重要的用途.自70年代始,美国、前苏联、日本等国先后对磁流体 密封进行了研究和探索.由于磁流体密封是一项新技术,它涉及到磁学、热力学、流体力学等多种学科领域,在机理上是很复杂的.因此,在研究上存在相当的难度.尽管不少国家进行了一定的研究,但无论在理论还是实用上,许多问题有必要进行深入的研究.除了须研制出高性能的磁流体外,研究不同的磁 场强度、不同几何形状的磁极以及不同转轴转速对 密封性能的影响,也是一个十分重要的方面. 1 磁性流体密封原理及实验装置 1.1 密封原理 密封部分原理如图1所示.永久磁铁4和磁极3设置在固定部件上,磁极3和转轴1的间隙内注入磁流体2,将转轴贯穿的空间隔断.图1中,永久磁铁、磁极、磁流体和转轴构成一个封闭磁路.永久磁铁产生的强磁场,将磁流件牢牢地“束缚”在密封间隙内形成液体“O ” 形环,即油膜屏障,用来克服转轴两端的压差.磁流体密封的耐压能力取决于磁场对磁性流体的“束缚”力.

船舶尾轴密封

精心整理船舶尾轴密封的发展展望 第一章绪论 在采用螺旋桨推进的船舶中,尾轴和尾轴承之间要按一定的规定留有间隙,尾轴又处于水面以下,工作时需要润滑和冷却,因此为了防止海水沿螺旋桨轴流入船内及润滑油泄漏,在尾轴管中必须设置密封装置。尾轴密封装置的工作环境和条件极其恶劣,其在工作时不仅受到由轴系转动带来的磨损外,轴系自然下沉产生产生的不均匀作用力的影响,主机正倒车时尾轴还会产生一定的横向和轴向震动,这些都会对尾轴密封装置造成不良影响。尾轴密封装置是船舶轴系的重要部件之一,其性能的好坏直接影响到船舶的正常营运和经济型,同时对防止尾轴滑油污染海洋环境起着十分重要的作用,因此国内外造船界和航运部门对其可靠性和可维修性等提出了更高的要求,所以对尾轴密封装置的研究是及其必要的。下面笔者就对尾轴密封的发展及其展望做一个粗浅的分析。 第二章船舶尾轴密封的类型、原理及其发展 2.1填料函型首密封装置 “填料函型密封”俗称“盘根密封”,这种装置是最早出现的尾轴密封形式,多用于铁梨木尾轴承。 图1为填料函型首密封装置的工作原理简图,此种密封装置主要是靠填料5来阻止舷外水流入机舱,填料5在压盖3的预紧力作用下与螺旋桨轴紧密接触,达到密封的目的。尾轴承下沉时,可径向调节填料函本体4使与尾轴同心,以保持良好的密封效果。该密封装置一般都设有进水管1,引入具有压力的舷外水,冷却和冲走积存在填料内的泥沙。 图1填料函型首密封装置的工作原理简图 填料函型首密封装置具有以下特点: (1)结构简单,易维护管理,当发现密封处漏水过多时,稍加压紧压盖即可;更换填料也很方便。但由于盘根比较容易磨损,定时的对密封进行调整和填料(盘根)的更换,增加了轮机人员的劳动量,同时也增加了调整的随意性和不安全因素。 (2)造价低廉,使用可靠,现在该种密封装置一般都采用橡胶轴承。相对来说橡胶轴承价格低廉,且使用可靠。但橡胶的磨损和老化会直接影响到轴系的情况且适应尾轴径向跳动的能力差。 (3)轴功率损耗大,对尾轴(套)的磨损严重,必须定期抽轴更换防磨衬套或对尾轴的磨痕进行堆焊、光车,维修成本高、周期长。 随着船舶技术的发展,油润滑尾轴承及轴封应运而生,它的磨损少、摩擦功率小、使用寿命长,因此在一些大中型船舶上逐渐取代了填料型首密封装置。虽然后期出现了诸如“EVK型水润滑密封装置”和“带补偿装置的水润滑密封装置”等改进型,但主要趋势是用于小型船舶 2.2油润滑密封装置 笔者认为油润滑密封装置的原理可以以典型的辛泼莱克斯(simplex)型为例来说明,如图2,整个装置包括前密封、后密封和润滑油系统,位于船尾靠近螺旋桨的后密封上设了三道密封环,用于阻止海水的侵入和防止尾管轴承润滑油的向船外泄漏,前密封装置上装配有4#、5# 两道密封环,用于防止润滑油漏入机舱。润滑油系统的设置,主要考虑的是万一密封损坏,宁可让油漏至船外而不让海水侵入尾管。另外,即使密封完好无损,为使轴承滑动面形成油膜,也需使润滑油有极少量外泄,故尾管内的油压较海水压力为高。经过反复改进,六十年代以后,这种密封在船舶上迅速得到了推广使用。 图2最初的simplex尾轴密封装置 油润滑密封装置有以下优点:1、尾轴轴承采用油润滑的白合金轴承,由于油膜承载能力大,油的润滑性能好,尤其是其密封装置能有效地密封,海水和泥沙不易进入尾轴管,因而白合金轴承的磨损很小,主机和轴系的工作相对平稳、可靠。2、密封装置有良好的跟踪性,使其在尾轴下沉、或径向跳动及偏心转动、或轴向窜动时具有同样良好的密封性。 3、它的磨损少、摩擦功率小、轴功率损耗小。 4、使用寿命长。但是如何确保润滑油能有效地封闭在轴承区间而不向舷外和机舱泄露,一直是油润滑密封装置的难题。漏油不仅增加油耗,造成润滑不良,更会污染水面。因此就出现了一系列的改进型。 5#密封环之间空腔的润滑油能在一个带有散热片的油箱间进行循环,从而使润滑油温度降低,改进润滑,并避免润滑油中的杂质聚集在密封环和衬套的接触面上,以延长部件的使用寿命。 常规的密封装置尾管内的润滑油压力定得比海水压力高。而新型密封装置中则将尾管内的油压定得比海水压力低,使之无论是在正常状态还是密封损伤情况下都不会产生润滑油外泄。这种密封装置须认真对待的是想方设法来防止海水侵人尾管。图3是在紧凑型辛泼莱克斯前述四型产品基础上发展而成的防漏型产品。该型的前、后密封上都装有循环器,两循环器串联合用一个沉淀油箱。改进后的润滑油系统尾轴管中润滑油压力可减少到低于水压。后密封第2和第3道密封环之间腔室油压可比尾管内的油压和海水压力都低。当轴转动时,由于循环器的作用,润滑油经管系和沉淀油箱自动循环,在沉淀箱中水和杂质被分离。由于润滑油的循环,密封处润滑油温度降低且被清沽,延长了密封使用寿命。 图3防漏型simplex尾轴密封系统 改进密封环的数量和滑油系统,图4是一种改进形式,结构上和常规紧凑型辛泼莱克斯密封相比没有多大改变,仅在1#与2#密封环之间的空腔设有润滑油油管,使过去主要用以阻挡杂物的1#环也作为实际密封使用,并增设一个 页脚内容

磁流体密封设计

大学本科生毕业论文 摘要 本论文以对磁流体的表面张力的分析为出发点,建立了磁流体密封模型,根据磁流体密封力的最小单元——磁性微粒间的引力,结合磁性微粒在磁场下的浓度分布模型,推导出相应的磁流体密封耐压公式,并应用该磁流体密封耐压公式设计船舶艉轴磁流体密封实验装置的主要参数。依照密封装置的主要参数,设计出密封装置的动力源和传动机构。在设计的船舶艉轴磁流体密封实验装置上,对磁流体密封的主要密封参数进行了实验研究,并分析了影响磁流体密封装置的密封能力的因素,包括磁环、磁流体的性能,密封间隙与密封级数,磁极的齿型及转速。通过对实验数据的分析可知,密封能力是各因素综合影响的结果,任何一个因素的不合理,都能导致密封能力的降低。船舶艉轴密封实验装置,实现了较高的密封压差,对于实船应用具有一定的参考价值。 1

大学本科生毕业论文 第1章绪论 1.1选题的背景和意义 磁流体也叫磁液或铁流体,它是将磁性微粒掺入到载液中是一种对磁场敏感、可流动的液体磁性材料。磁流体自问世以来,在研磨、抛光、润滑、减振、冷却等领域逐步被人们所认识,磁流体在密封领域的应用也逐渐受到人们的重视。 磁流体密封是借助磁流体在磁场的作用下形成的磁流体密封环对气体、液体进行密封,由于它和密封轴之间是通过磁流体进行接触密封,因而避免了密封轴与密封件之间的直接摩擦,降低了附加载荷。在旋转轴密封中具有其它密封方式不可比拟的优点:无泄露、无磨损、结构简单、寿命长,受到国内外学者和工程技术人员的重视,在工业、国防等领域具有重要的意义。 磁流体密封在低压气体密封中的应用较为简单,因为密封压力低,所需的密封级数较少、密封间隙也可以选的比较大,所以容易实现。同时由于密封级数少,故密封装置的轴向尺寸限制较少,密封间隙大,其他诸如转速、磁极齿型等因素对密封装置的密封能力影响也较小,往往可以采用模糊的理论公式或经验公式对密封装置进行设计,就能满足使用的需要。随着密封压力的升高,磁流体密封耐压公式在磁流体密封装置的设计中越来越重要,它的理论水平直接决定了密封装置的性能。传统密封理论公式存在一些缺陷,比如密封力的来源不明确,计算复杂,适用范围小等等,这就不能很好的满足磁流体高压密封设计的需要。因此,应用新的、合理的密封耐压公式对旋转轴高压密封装置的设计是很必要的。 磁流体在气体密封中的应用已经很多,但是在液体密封中的应用较少,本文将磁流体密封技术应用于船舶艉轴密封中,并采用新的耐压公式,计算出密封装置的参数,设计出密封实验装置,进行了具体实验,取得了大量的数据。最后利用实验数据,分析对船舶艉轴磁流体密封的主要影响因素,可为今后进行磁流体密封装置的设计提供一定的帮助。 1.2国内外磁流体密封技术的发展现状 2

铁磁流体

Study of Preparation and Stability for Ferromagnetic Fluids Lai Qiongyu, Lu Jizheng, Zhao Yefang, Song Dekuen (Chemical college of Sichuan University Chengdu 610064) Abstract The Fe3O4 magnetic powders of which the average size was 11nm had been prepared by the modified co-precipitation method. The products were characterized by XRD、 IR and TEM. The influences of surfactant amounts and magnetic fluid's concentrations on the stability of the magnetic fluids have been studied. In addition, the antioxidating and the antigathering for the magnetic fluids have been studied too. Key words ferromagnetic fluids, modified co-precipitating, carriers surfactant, stability O4磁粉,采用XRD、IR、TEM对产物进行表征。研究摘要 本文采用改性共沉淀法制备出平均粒径为11nm的Fe 3 了表面活性剂用量和磁液浓度对磁液稳定性的影响。另外,对磁粉的防氧化和抗团聚也进行了研究。 关键词 铁磁流体 共沉淀 载液 表面活性剂 稳定性 铁磁流体的制备及稳定性研究 赖琼钰 卢集政 赵叶访 宋德坤 (四川大学化学学院 成都 610064) 铁磁流体(简称磁流体)主要由粒径小于15nm超顺磁性磁粉、载液及表面活性剂3部分组成,这种胶状液体既有固体磁性材料的强磁性,又有液体的流动性。由于具有交叉特性,所以这种液体磁性材料应满足的性能要求是:高的饱和磁化强度,在使用温度下有长期的稳定性,在重力和电磁力的作用下不沉淀,有好的流动性。磁流体在现代技术中得到越来越广泛的应用。如立体声音箱,磁密封,轴承和润滑,磁场传感器,磁光转换器,光纤连接,磁致冷,磁流体发电等[1,2]。近年来,磁流体在医学上的应用日益受到人们关注,被称为“生物导弹”,在外磁场作用下,磁流体作为药物的载体可以在人体内靶向给药,对治疗肿瘤效果显著。另外也用于X-射线或NMR诊断中的不透光材料[3]。 在诸多磁流体的制备中,共沉淀法是制超微磁粒子的一种用得较多且十分有效的方法,已有不少人对此进行过研究[4]。在他人工作基础上,我们采用改性共沉淀法制备出了平均粒径为11nm的Fe3O4磁粉,并对其进行了物相、粒度和形貌的表征。研究了单一表面活性剂和复配表面活性剂对磁流体稳定性的影响,研究了表面活性剂用量及磁粒子含量对磁液稳定性的影响,对Fe3O4微粒的防氧化与抗团聚也进行了研究。 1 实验部分 1.1 试剂准备 按0.5mol/L3分别配制Fe2(NH4)2(SO4)2和FeNH4(SO4)2溶液,并按常规氧化还原滴定法标定其准确浓度。试验中所用试剂均为分析纯,水为去离子高纯水。 1.1.1 按[Fe3+]:[Fe2+]=2:1摩尔比混合两种铁盐溶液,搅拌下加入一定量油酸和油酸钠混合液并将混合液升温至55°C。 1.1.2 配制6mol/dm3 NaOH溶液,搅拌下加入一定量油酸钠和烷基阴离子表面活性剂并将混合液升温至55°C。 1.2 Fe O4纳米磁粉的制备 取100mL. 1.1.1混合液倒入100mL 1.1.2混合液中,搅拌均匀并将pH值调到9~10。反3 应时间约0.5h。将反应液冷至室温,用稀HCl调pH至5~6,减压抽滤,用含表面活性剂的乙醇液洗涤,70°C真空(0.085MPa)烘干得乌黑发亮的样品待用。 1.3 磁流体的制备 在容器中加入水或油作为载液,加入一定量的NNO分散剂(亚甲基萘磺酸钠),按一定量固液百分比在400r/min搅拌速度下投入制备的样品粉末,得到均匀液体。液体经离心机(4000r/min)分离处理后取其上层液体即得到稳定磁液。 1.4 样品测试 固体样品物相采用X-射线衍射仪分析(D/max-rA, CuKα, 40KV. 150mA, λ=0.1504nm)采用FT红外谱仪测IR谱(PE 16pc, 分辨率2cm-1 KBr压片),采用透射电子显微镜分析粒度和形貌(TEM-100CX型)。磁液稳定性是通过测悬浮率进行评价的。 2 结果和讨论 2.1 磁粒物相分析 由样品的XRD谱图知各衍射峰位置和强度均与标准粉末衍射数据卡(ASTM 19-629)符合得很好,说明产物为Fe3O4立方单相粉末。由各衍射线的密勒指数和相应的衍射角度计算出平均晶胞常数a为0.8350nm。 固体样品的IR谱图中两强吸收峰分别为586cm-1和434cm-1,应归属为位于氧密堆构成的八面体间隙和四面体

浅析船舶尾轴密封装置

浅析船舶尾轴密封装置 摘要:尾轴管密封装置的工作环境和条件极其恶劣,在工作时除受到轴系高速转动带来剧烈摩擦的作用外,还会受到螺旋桨运转及轴系自然下沉产生的不均匀作用力的影响,轴系运转的纵向和横向振动也会加剧对密封件的局部磨损。所以船舶尾轴管密封装置的选用、检验和优化,对于船舶的正常航行十分重要。 关键词:尾轴管检验密封装置 船舶尾轴管密封装置是保证轴系正常工作,防止尾轴管内润滑油外泄造成水域污染,防止河水及泥砂侵入尾轴管内加剧轴与轴承磨损、破坏润滑油的性能和防止润滑油直接泄漏损失的装置。 一.尾轴密封装置的工作条件 船舶尾轴密封装置的工作条件是十分恶劣的,在工作时,它除受到剧烈的磨损及摩擦高温的作用外,尚受到江河含泥沙水的作用。特别是对吃水比较深的船舶,还要承受较高水压和滑油静压两者压力差的作用。另外螺旋桨在回转时,还会产生悬臂及不均匀载荷,致使尾轴在尾轴承中所产生的径向跳动及偏心运动幅度较大。 再者,主机常用正倒车工作情况,尾轴在运转时往往还会产生一定的横向和轴向振动,对尾轴密封装置也会造成不良的影响。这些工作特点,对尾轴的密封是很不利的。加之尾轴密封装置一旦出现故障,不仅使滑油泄露或产生大量的机舱污水,对水域造成污染,而且换修往往需要船舶进坞或上排,影响船舶的正常营运,所以对尾轴密封装置的研究是及其必要的。 二、常用密封装置形式 1、水润滑船舶尾轴管密封装置 1.1常用的水润滑尾轴管密封装置为开放式的,即仅有尾轴管的首密封装置,而尾部不设密封装置,直接与舷外水相通闭式水润滑尾轴管密封装置。特点: 1.1.1尾轴管轴承(轴承一般采用橡胶或高分子复合材料制成(采用水作为润滑、冷却剂、对水体不产生任何污染、符合国家的防止水体污染政策要求。同时获取方便、不需要成本。 1.1.2水作为润滑剂由于粘度较小,因此在轴与轴承之间产生的润滑膜强度也较小,润滑效果较油润滑差。 1.1.3尾轴管后端与舷外水相通,水中的泥砂可直接进入尾管,虽然有泥砂冲洗装置,但是难以冲洗干净,这会造成轴与轴承之间较大的磨损。

磁流体密封原理

磁流体密封原理 磁流体密封技术是在磁性流体的基础上发展而来的,当磁流体注入磁场的间隙时,它可以充满整个间隙,形成一种“液体的O型密封圈”。 磁流体密封装置的功能是把旋转运动传递到密封容器内,常用于真空密封,其基本原理见下图 磁流体密封装置是由不导磁座、轴承、磁极、永久磁铁、导磁轴、磁流体组成,在均匀稳定磁场的作用下,使磁流体充满于设定的空间内,建立起多级“O型密封圈”,从而达到密封的效果;每级密封圈一般可以承受大于0.15~0.2个大气压的压差。总承压为各级压差之和,一般设计为2.5个大气压,完全满足真空密封的需要;另外经过我公司的研究开发,也可用于高压密封。 2、磁流体密封的特性 ·长寿命 无磨损,具有极佳的工作可靠性。 ·高性能 极限真空度10-6Pa,泄漏率10-12Pa.m3/sec。 ·高适应性: 从低速到高速,从低压到高压,从室温到高温,均能满足各种[wiki]设备[/wiki]的要求。 3、磁流体密封的应用 近年来,国内外真空设备发展迅猛。在许多回转动密封装置上,磁流体密封得到了广泛的应用,例如在单晶硅炉、真空钎焊炉、真空熔炼炉、化学气相沉积、离子镀膜、液晶再生等真空设备的密封,以及高温高压设备及对[wiki]环境[/wiki]要求较高的设备的密封。从而提高产品质量,获得很好的经济效益。 1995年由美国帕佩尔(Papell)发明的磁性流体,是把磁铁矿等强磁性的微细粉末(约100?)在水、油类、酯类、醚类等液体中进行稳定分散的一种胶态液体。这种液体具有在通常离心力和磁场作用下,既不沉降和凝聚又能使其本身承受磁性,可以被磁铁所吸引的特性。 磁流体由3种主要成分组成: 1)固体铁磁体微粒(Fe3O4); 2)包覆着微粒并阻止其相互凝聚的表面活性剂(稳定剂); 3)载液(溶媒)。

船舶尾轴密封

船舶尾轴密封 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

船舶尾轴密封的发展展望 第一章绪论 在采用螺旋桨推进的船舶中,尾轴和尾轴承之间要按一定的规定留有间隙,尾轴又处于水面以下,工作时需要润滑和冷却,因此为了防止海水沿螺旋桨轴流入船内及润滑油泄漏,在尾轴管中必须设置密封装置。尾轴密封装置的工作环境和条件极其恶劣,其在工作时不仅受到由轴系转动带来的磨损外,轴系自然下沉产生产生的不均匀作用力的影响,主机正倒车时尾轴还会产生一定的横向和轴向震动,这些都会对尾轴密封装置造成不良影响。尾轴密封装置是船舶轴系的重要部件之一,其性能的好坏直接影响到船舶的正常营运和经济型,同时对防止尾轴滑油污染海洋环境起着十分重要的作用,因此国内外造船界和航运部门对其可靠性和可维修性等提出了更高的要求,所以对尾轴密封装置的研究是及其必要的。下面笔者就对尾轴密封的发展及其展望做一个粗浅的分析。 第二章船舶尾轴密封的类型、原理及其发展 填料函型首密封装置 “填料函型密封”俗称“盘根密封”,这种装置是最早出现的尾轴密封形式,多用于铁梨木尾轴承。 图1为填料函型首密封装置的工作原理简图,此种密封装置主要是靠填料5来阻止舷外水流入机舱,填料5在压盖3的预紧力作用下与螺旋桨轴紧密接触,达到密封的目的。尾轴承下沉时,可径向调节填料函本体4使与尾轴同心,以保持良好的密封效果。该密封装置一般都设有进水管1,引入具有压力的舷外水,冷却和冲走积存在填料内的泥沙。 图1填料函型首密封装置的工作原理简图 填料函型首密封装置具有以下特点: (1)结构简单,易维护管理,当发现密封处漏水过多时,稍加压紧压盖即可;更换填料也很方便。但由于盘根比较容易磨损,定时的对密封进行调整和填料(盘根)的更换,增加了轮机人员的劳动量,同时也增加了调整的随意性和不安全因素。 (2)造价低廉,使用可靠,现在该种密封装置一般都采用橡胶轴承。相对来说橡胶轴承价格低廉,且使用可靠。但橡胶的磨损和老化会直接影响到轴系的情况且适应尾轴径向跳动的能力差。 (3)轴功率损耗大,对尾轴(套)的磨损严重,必须定期抽轴更换防磨衬套或对尾轴的磨痕进行堆焊、光车,维修成本高、周期长。 随着船舶技术的发展,油润滑尾轴承及轴封应运而生,它的磨损少、摩擦功率小、使用寿命长,因此在一些大中型船舶上逐渐取代了填料型首密封装置。虽然后期出现了诸如“EVK型水润滑密封装置”和“带补偿装置的水润滑密封装置”等改进型,但主要趋势是用于小型船舶 油润滑密封装置 笔者认为油润滑密封装置的原理可以以典型的辛泼莱克斯(simplex)型为例来说明,如图2,整个装置包括前密封、后密封和润滑油系统,位于船尾靠近螺旋桨

磁流体的原理

磁流體的原理 磁流体的概念及其组成 产品说明 磁流体的概念及其组成: 磁流体又称磁液或铁流体,是一种对磁场敏感可流动的液体磁性材料。是由磁性纳米颗粒,经过特殊处理均匀分散到液体当中与其混合而成的一种固液相混的胶状液体。它既具有液体的流动性,又具有磁性。 磁流体由三部分组成:磁性微粒、基液(也叫载液)、表面活性剂(也叫分散剂、稳定剂或表面涂层)。 产品名称:工作原理特性命名法安装注意事项 产品说明 一、磁流体密封技术的工作原理: 磁流体密封技术是在磁流体的基础上发展起来的。当磁流体注入到高性能的永久磁铁、导磁性能良好的极靴及主轴所构成的磁回路中时,由于磁极齿尖处磁场力最强,磁流体集中于齿尖处,在密封间隙内形成一系列液体“O”型密封环,将密封间隙充满而达到密封的效果。如上图所示: 试验表明,每级密封环一般可以承受0.15-0.25个大气压,总耐压能力近似为各级耐压能力之和。真空用密封装置一般设计压力为2.5个大气压,完全能够满足真空密封的需要。 二、磁流体密封的特性: 1、严密的密封性:包围着主轴的磁流体能够对空气、水气、烟雾等进行严密的稳定的动、静密封。 3、寿命长、可靠性高:因磁流体的基液是一种惰性、稳定、低蒸气压的二酯基有机材料,挥发量极低,可以说密封的寿命取决于支撑旋转轴的轴承的寿命。 4、无磨损:这种密封是非接触式密封(极靴和主轴不直接接触),无机械部件的接触和磨损。 5、无污染性:由于密封装置本身不存在机械磨损,磁流体饱和蒸气压极低,因而即使用在高真空状态下使用也不会产生污染。 6、低阻尼和高速旋转能力:磁流体极低的粘滞阻力和磁流体密封装置无需接触密封圈的结构,决定了它的稳定操作和高速转动。 三、磁流体密封传动装置命名法: 轴类型:实心轴(S)、空心轴(K)、多轴(D)。 机座类型:法兰式(F)、套筒式(T)、悬臂式(X)。 冷却方式:无水冷(W)、带水冷(Z)。 负荷状态:普通负荷(P)、重负荷(Z)。 运动状态:旋转(略)、往复(W)。 示例:S F 030 Z P——表示实心轴法兰式轴径为φ30带水冷普通负荷的磁流体密封传动装置。

船舶尾轴密封的研究

大连海事大学 毕业论文 二0一一年六月

关于当前尾轴密封技术的研究与介绍 专业班级:轮机管理07级13班 姓名:林守东 指导教师:张鹏 轮机工程学院

内容摘要 本文着重介绍了当前主流的尾轴密封装置的原理,结构,优缺点和应用范 围,如水润滑密封的EVK型尾轴密封,油润滑的填料函式和simplex式尾轴密 封技术,空气式3AS尾轴密封技术等,并对各个密封技术的发展前景分析展望。关键词:尾轴;密封;唇形密封;端面密封 Abstract Several current main stern-shaft sealing technology'working principle,structures,advantages and disadvantages,scope of applicaticn have been introduced in t his paper,such as Water lubrication sealed EVK stern-shaft seal type,oil lubrication of the stuffing box type and simplex type stern-shaft sealing technology,Air guard 3AS seal and so on,And of all the development prospect of the sealing technology are analysed. Key words:Stern-shaft ; Seal; Simplex seal; Face seal

磁流体密封的磁场有限元分析

https://www.wendangku.net/doc/f717761654.html, 磁流体密封的磁场有限元分析 孙明礼,李德才,何新智,白博海 北京交通大学机电学院,北京(100044) E-mail :sunmingli1@https://www.wendangku.net/doc/f717761654.html, 摘 要:介绍了磁性液体密封的理论,并应用ANSYS 有限元分析软件对一个三槽四齿密封结构进行磁场有限元分析,通过对计算结果进行的分析和讨论,结果表明,转轴侧极齿两侧磁场强度差决定密封装置的密封能力;密封间隙不宜超过0.3mm 。 关键词:磁流体;密封;磁场 中图分类号:TH136 文献表示码:A 1 引言 磁流体密封是近年来迅速发展起来的一项新技术,具有1)严密的密封性2)不可测量的泄漏率3)长寿命4)可靠性高 + 5)没有污染6)能承受高转速7)最佳的扭矩传递8)低的粘性摩擦9)磁性流体密封即使在中断运行时,也不像弹性密封在停机期间,受增塑和驰豫的影响等优点。可以在高速下运行,尤其在旋转轴密封中具有独特的优越性[1]。 磁流体密封原理是利用永久磁铁在转轴和极齿间的密封间隙内产生强磁场,将磁性流体固定在密封间隙内,形成液体0形密封环,磁场力和外界压差相平衡而实现介质密封。但目前普遍采用的磁流体密封结构其密封间隙很小,间隙内的磁场很难直接测量,一般通过解析方法进行近似计算,这样就很难了解间隙磁场的实际分布情况。邹继斌、Sama 等对磁流体密封的磁场问题进行了计算[2-4],本文利用ANSYS 软件对密封间隙内的磁场进行深入分析。 2 密封理论 根据磁性流体力学分析,对旋转轴密封,磁性流体内部压强为: ()H p MdH r gh C φρ=+++∫(1) 式中,M 表示磁性流体的磁化强度;H 表示磁场强度;ρ表示磁性流体密度;g 表示重力加速度;φ( r)表示与转速、磁极形状及半 径有关的函数,转速为零时,φ( r)=0;h 表示磁性流体深度;C 表示由边界条件确定的积分常数。 设低压边和高压边磁性流体与被密封介质的分界面分别为1和2,当考虑分解面上介质跃变引起的应力跃变时,则磁性流体密封压差公式为: 2 1 2121()()() H H p MdH r r g h h φφρ?=+?+?∫ 0211 ()2 t t M M μ?? (2) 式中, M t 为磁化强度的切向分量,r 为半径. 一般地,外磁场较强,磁流体饱和磁化.M=Ms(磁性流体的饱和磁化强度)。式 (2)右边第五项可以忽略不计,且重力远小于磁场力,因而密封压差可以近似地表示为: 2121()()()s p M H H r r φφ?=?+? (3) 如果是磁性流体静止密封,式(3)密封压差可进一步简化为: 21()s p M H H ?=? (4) 由(4)式可知,在磁性流体饱和磁化强度一定的情况下,只有尽量提高ΔH 的值才能有效提高密封压差[3-6]。 3 静态磁场分析 在ANSYS 的前处理器中创建磁流体密封的物理环境。采用plan53单元并将此单元的的k3选项修改为对称,将磁流体密封的三维轴对称问题简化为二维平面问题。极靴和转轴的材料分别为电工纯铁和45#钢,永磁材料为N40型的Nd-Fe-B 。由于磁性流体的

磁流体密封在真空炉上的应用

磁流体密封在真空炉上的应用 一、目的、意义及必要性: 随着科技的发展和人们环境意识的提高,密封问题被放到很高的位置,磁流体密封作为一种新型密封方式——无泄露、无摩擦、结构简单、易维修,符合现代倡导的绿色生产、清洁生产等特点,已受到越来越多的关注。 对于磁流体密封在真空炉上应用还原电动机的应有工作环境,杜绝叶轮电机爆燃事故,作为真空炉的资深制造企业,为公司产品在市场的占有率,积极采用新技术,研发新产品的科技含量的基础上,创出华翔公司的特有品牌,明确展示华翔公司真空炉的特点和优势,为客户着想,创卓越产品。 二、国内外现状、水平和发展趋势: 近年来,国内外真空设备发展迅猛。在许多回转动密封装置上,磁流体密封得到了广泛的应用,例如在单晶硅炉、真空钎焊炉、真空熔炼炉、化学气相沉积、离子镀膜、液晶再生等真空设备的密封,以及高温高压设备及对环境要求较高的设备的密封。从而提高产品质量,获得很好的经济效益。并且,磁流体的应用现已扩展到机械、电子、能源、化工、冶金、船舶、航天、遥测、仪表、印刷、环保、卫生、医疗等诸多领域, 在密封、冷却、润滑、医学、发动机、压缩机、换能器、计量阀、造影剂、生物学、精密研磨、阻尼减振、矿物分离、油水分离、快速印刷、定向淬火、执行元件、磁畴观察、各向异性以及其它方面有着新的应用, 是唯一具有工业实用价值的液体磁性智

能化功能材料。 由于我国的磁流体密封技术起步相对较晚,同发达国家相比,仍有较大差距,尚有相当多的工程技术人员不了解此技术,要进行多方面的学习研究。有必要抢先在真空炉上展示和试验性采用。 磁流体密封是一项不断发展并逐步走向成熟和完善的技术。只要用户有更高的应用要求,再生产厂家和用户的密切配合下,这项技术的应用领域将不断拓展,同时也将给生产厂家和用户带来可观的经济效益。 三、课题总体目标及研究内容 目前公司在这项技术的试验性采用过程中对这一问题进行过匹配性技术研究,通过磁流体这种密封方式是否适合本公司的要求。同时前期已经有行业内企业存在启动采用这项技术的动作。 四、技术可行性分析: 首先,磁流体密封是由3部分组成:固体铁磁体微粒(Fe3O4);包覆着微粒并阻止其相互凝聚的表面活性剂(稳定剂);载液(溶媒)。此密封技术是在磁性流体的基础上发展而来的,当磁流体注入磁场的间隙时,它可以充满整个间隙,形成一种“液体的O型密封圈”。其次,磁流体密封的工作原理是圆环形永久磁铁,极靴和转轴所构成的磁性回路,在磁铁产生的磁场作用下,把放置在轴与极靴顶端缝隙间的磁流体加以集中,使其形成一个所谓的“O”形环,将缝隙通道堵死而达到密封的目的。这种密封方式可用于转轴是磁性体和转轴是

荷兰IHC船用尾轴密封产品样本

IHC Sealing Solutions SUPREME? seals Performance to promise Your peace of mind

Hoofd(stuk)kop Aanvulling Tekstpositie kop/subkop/eerste regel platte tekst 2 SUPREME ? seals Environmentally responsible, innovative and future-oriented

Hoofd(stuk)kop Aanvulling Tekstpositie kop/subkop/eerste regel platte tekst Expert solutions since 1856 Ever since its establishment, IHC Sealing Solutions responds to the needs of numerous sectors of industry to whom reliability is not a simple luxury, but a critical necessity. The objective was long-term performance to promise a peace of mind to all involved and safety for the environment. This objective hasn’t changed and achievements have been significant. To date, IHC Sealing Solutions serves a vast network of propulsion manufacturers and ship owners benefiting from its products - over 30,000 seals now in operation. Backed by the IHC Merwede group of innovative technology companies, your needs are served, 24 hours a day, 7 days a week, worldwide. 3

船舶尾轴密封

船舶尾轴密封 Document number:PBGCG-0857-BTDO-0089-PTT1998

船舶尾轴密封的发展展望 第一章绪论 在采用螺旋桨推进的船舶中,尾轴和尾轴承之间要按一定的规定留有间隙,尾轴又处于水面以下,工作时需要润滑和冷却,因此为了防止海水沿螺旋桨轴流入船内及润滑油泄漏,在尾轴管中必须设置密封装置。尾轴密封装置的工作环境和条件极其恶劣,其在工作时不仅受到由轴系转动带来的磨损外,轴系自然下沉产生产生的不均匀作用力的影响,主机正倒车时尾轴还会产生一定的横向和轴向震动,这些都会对尾轴密封装置造成不良影响。尾轴密封装置是船舶轴系的重要部件之一,其性能的好坏直接影响到船舶的正常营运和经济型,同时对防止尾轴滑油污染海洋环境起着十分重要的作用,因此国内外造船界和航运部门对其可靠性和可维修性等提出了更高的要求,所以对尾轴密封装置的研究是及其必要的。下面笔者就对尾轴密封的发展及其展望做一个粗浅的分析。 第二章船舶尾轴密封的类型、原理及其发展 填料函型首密封装置 “填料函型密封”俗称“盘根密封”,这种装置是最早出现的尾轴密封形式,多用于铁梨木尾轴承。 填料函型首密封装置的工作原理 图1为填料函型首密封装置的工作原理简图,此种密封装置主要是靠填料5来阻止舷外水流入机舱,填料5在压盖3的预紧力作用下与螺旋桨轴紧密接触,达到密封的目的。尾轴承下沉时,可径向调节填料函本体4使与尾轴同心,以保持良好的密封效果。该密封装置一般都设有进水管1,引入具有压力的舷外水,冷却和冲走积存在填料内的泥沙。

图1填料函型首密封装置的工作原理简图 填料函型首密封装置的特点 填料函型首密封装置具有以下特点: (1)结构简单,易维护管理,当发现密封处漏水过多时,稍加压紧压盖即可;更换填料也很方便。但由于盘根比较容易磨损,定时的对密封进行调整和填料(盘根)的更换,增加了轮机人员的劳动量,同时也增加了调整的随意性和不安全因素。 (2)造价低廉,使用可靠,现在该种密封装置一般都采用橡胶轴承。相对来说橡胶轴承价格低廉,且使用可靠。但橡胶的磨损和老化会直接影响到轴系的情况且适应尾轴径向跳动的能力差。 (3)轴功率损耗大,对尾轴(套)的磨损严重,必须定期抽轴更换防磨衬套或对尾轴的磨痕进行堆焊、光车,维修成本高、周期长。 填料型首密封装置的发展 随着船舶技术的发展,油润滑尾轴承及轴封应运而生,它的磨损少、摩擦功率小、使用寿命长,因此在一些大中型船舶上逐渐取代了填料型首密封装置。虽然后期出现了诸如“EVK型水润滑密封装置”和“带补偿装置的水润滑密封装置”等改进型,但主要趋势是用于小型船舶 油润滑密封装置 油润滑密封装置的工作原理 笔者认为油润滑密封装置的原理可以以典型的辛泼莱克斯(simplex)型为例来说明,如图2,整个装置包括前密封、后密封和润滑油系统,位于船尾靠近螺旋桨的后密封上设了三道密封环,用于阻止海水的侵入和防止尾管轴承润滑油的向船外泄漏,前密封装置上装配有4#、5# 两道密封环,用于防止润滑油漏入机舱。润滑油系统的设置,主要考虑的是万一密封损坏,宁可让油漏至船外而不让海水侵入尾管。另外,即使密封完好无损,为使轴承滑动面形成油膜,也需使润滑油有极少量外泄,故尾管内的油压较海水压力为高。经过反复改进,六十年代以后,这种密封在船舶上迅速得到了推广使用。 图2最初的simplex尾轴密封装置 油润滑密封装置的特点

磁流体密封

磁流体密封 第1章绪论 1.1选题的背景和意义 磁流体也叫磁液或铁流体,它是将磁性微粒掺入到载液中是一种对磁场敏感、可流动的液体磁性材料。磁流体自问世以来,在研磨、抛光、润滑、减振、冷却等领域逐步被人们所认识,磁流体在密封领域的应用也逐渐受到人们的重视。 磁流体密封是借助磁流体在磁场的作用下形成的磁流体密封环对气体、液体进行密封,由于它和密封轴之间是通过磁流体进行接触密封,因而避免了密封轴与密封件之间的直接摩擦,降低了附加载荷。在旋转轴密封中具有其它密封方式不可比拟的优点:无泄露、无磨损、结构简单、寿命长,受到国内外学者和工程技术人员的重视,在工业、国防等领域具有重要的意义。 磁流体密封在低压气体密封中的应用较为简单,因为密封压力低,所需的密封级数较少、密封间隙也可以选的比较大,所以容易实现。同时由于密封级数少,故密封装置的轴向尺寸限制较少,密封间隙大,其他诸如转速、磁极齿型等因素对密封装置的密封能力影响也较小,往往可以采用模糊的理论公式或经验公式对密封装置进行设计,就能满足使用的需要。随着密封压力的升高,磁流体密封耐压公式在磁流体密封装置的设计中越来越重要,它的理论水平直接决定了密封装置的性能。传统密封理论公式存在一些缺陷,比如密封力的来源不明确,计算复杂,适用范围小等等,这就不能很好的满足磁流体高压密封设计的需要。因此,应用新的、合理的密封耐压公式对旋转轴高压密封装置的设计是很必要的。 磁流体在气体密封中的应用已经很多,但是在液体密封中的应用较少,本文将磁流体密封技术应用于船舶艉轴密封中,并采用新的耐压公式,计算出密封装置的参数,设计出密封实验装置,进行了具体实验,取得了大量的数据。最后利用实验数据,分析对船舶艉轴磁流体密封的主要影响因素,可为今后进行磁流体密封装置的设计提供一定的帮助。 1.2国内外磁流体密封技术的发展现状 1.2.1磁流体简介 磁流体是由超微细磁粉在液体(载体)中稳定分散而形成的能流动、有超顺磁性的胶体,它无剩磁和矫顽力,可通过磁进行控制,在磁场作用下形成具有磁性的流体,其密封膜承压能力与磁场强度成正比。因此磁流体是阻塞密封比较理

相关文档