文档库 最新最全的文档下载
当前位置:文档库 › 广州地区建筑基坑支护规范-secret

广州地区建筑基坑支护规范-secret

广州地区建筑基坑支护规范-secret
广州地区建筑基坑支护规范-secret

广州地区建筑基坑支护

技术规定

(98-02)

《广州地区建筑基坑支护技术规定》

编委会

1998.6.15.广州

目录

1 总则 (1)

2 术语、符号 (2)

2.1 术语 (2)

2.2 符号 (3)

3 基本规定 (5)

3.1 一般规定 (5)

3.2 设计规定 (5)

3.3 施工规定 (7)

3.4 检测与监测规定 (7)

4 岩土工程勘察与环境调查 (8)

4.1 一般规定 (8)

4.2 勘察与测试 (8)

4.3 环境调查 (9)

4.4 勘察报告 (9)

5 支护结构水平荷载和抗力计算 (10)

5.1 一般规定 (10)

5.2 水平荷载标准值 (10)

5.3 水平抗力标准值 (15)

6 支护结构设计 (16)

6.1 支护结构分类与选型 (16)

6.2 混凝土支护结构圆形截面承载力设计 (18)

6.3 放坡设计 (20)

6.4 土钉墙设计 (21)

6.5 排桩设计 (26)

6.6 地下连续墙设计 (31)

6.7 重力式挡墙设计 (32)

6.8 锚杆设计 (36)

6.9 内支撑设计 (39)

6.10 逆作法支撑体系设计 (43)

6.11 组合式支护结构设计 (45)

7 地下水控制 (47)

7.1 一般规定 (47)

7.2 集水明排设计 (47)

7.3 降水设计 (48)

7.4 高压喷射注浆止水设计 (51)

7.5 深层搅拌法止水设计 (53)

7.6 压力注浆止水设计 (54)

7.7 回灌设计 (55)

7.8 集水明排施工 (55)

7.9 降水施工 (56)

7.10 高压喷射注浆止水施工 (56)

7.11 深层搅拌法止水施工 (57)

7.12 压力注浆止水施工 (57)

7.13 回灌施工 (59)

8 支护结构施工与质量检测 (60)

8.1 施工组织设计 (60)

8.2 放坡施工 (61)

8.3 土钉墙施工 (61)

8.4 排桩施工 (63)

8.5 地下连续墙施工 (64)

8.6 重力式挡墙施工 (66)

8.7 锚杆施工 (67)

8.8 内支撑施工 (69)

8.9 支护结构质量检测 (71)

9 基坑地基处理 (73)

9.1 一般规定 (73)

9.2 坑内地基处理 (73)

9.3 坑外地基处理 (73)

9.4 地基处理方法 (74)

10 基坑开挖与监测 (75)

10.1 土方开挖 (75)

10.2 基坑内爆破 (75)

10.3 基坑监测 (77)

10.4 抢险与加固 (79)

11 基坑开挖对环境影响的评价 (80)

11.1 一般规定 (80)

11.2 基坑降水对环境影响的预估 (81)

11.3 重力式挡土墙支护的基坑开挖对环境影响的预估 (82)

11.4 内支撑支护的基坑开挖对环境影响的预估 (82)

附录 A 广州市浅层水文地质分区略图 (87)

附录B-1 广州地区各土层常规物理力学参数参考值 (88)

附录B-2 广州地区砂土与岩石物理力学参数参考值 (89)

附录C 桩墙结构变形计算的弹性地基梁法 (90)

附录 D 钢筋混凝土圆形截面受弯构件正截面受弯承载力计算系数表 (94)

附录E 用“大井法”计算基坑涌水量公式 (96)

附录F 锚杆试验 (98)

附录G 圆弧滑动简单条分法 (100)

附加说明 (102)

本规定用词说明 (103)

前言

根据广州市建设委员会穗建技[1996]323号和穗建技[1996]368号文要求编制本规定。

本规定的主要技术内容包括:总则、术语、符号、基本规定、岩土工程勘察与环境调查、支护结构水平荷载和抗力计算、支护结构设计、支护结构施工与质量检测、地下水控制、基坑地基处理、基坑开挖与监测、基坑开挖对环境影响的评价等。

本规定由广州市建设委员会科技设计处负责管理,具体解释工作由广州市建筑科学研究院、广州市设计院、广州城建开发设计院有限公司共同负责。

本规定用词说明

本规定对要求严格程度不同的表达如下:

1 表示很严格,非这样做不可的:

正面词采用“必须”;

反面词采用“严禁”。

2 表示严格,在正常情况下均应这样做的:

正面词采用“应”;

反面词采用“不应”或“不得”。

3 表示允许稍有选择,在条件许可时首先应这样做的:

正面词采用“宜”,反面词采用“不宜”。

表示允许有选择,在一定条件下可以这样做的,采用“可”。

1 总则

1.0.1 为了在广州地区建筑基坑支护的勘察、设计、施工、监控与检测工作中做到技术先进、经济合理、质量可靠,确保基坑支护顺利施工和周边环境安全,制定本规定。

1.0.2 本规定是在总结多年来建筑基坑支护设计、施工经验的基础上,吸取当前国内外建筑基坑支护的先进技术,结合广州地区的特点编写而成,适用于本地区基坑支护的勘察、支护设计、施工、开挖监控与检测。

1.0.3 基坑支护的设计与施工,应根据本地区的成功经验与失败教训,结合工程的实际情况与周边环境的特点和要求,做到因地制宜、因时制宜、合理没计、精心施工,严格监控和检测。

1.0.4广州地区基坑支护除应符合本规定外,还应符合国家、行业和广东省的现行有关标准及广州市的有关管理和技术规定。

2 术语、符号

2.1 术语

2.1.1建筑基坑

建(构)筑物基础或地下室的施工所开挖的地面以下空间。

2.1.2基坑支护

对开挖基坑侧壁及周边环境采用的支挡、加固或保护措施。

2.1.3基坑侧壁

构成建筑基坑围体的某一侧面。

2.1.4 主动侧

基坑支护周边土体主动变形一侧。

2.1.5被动侧

基坑支护周边土体被动变形一侧。

2.1.6 基坑周边环境

基坑开挖影响范围内的建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。

2.1.7 排桩

以某种桩型按队列布置组成的基坑支护结构。

2.1.8地下连续墙

用机械施工方法成槽浇灌钢筋混凝土形成的墙体。

2.1.9 水泥土墙

由水泥土桩相互搭接形成的格栅状、壁状等形式的重力式支护结构。

2.1.10 土钉墙

对基坑侧壁土体采用土钉或锚杆、钢筋网及混凝土护面的支护结构。

2.1.11 组合式支护结构

排桩、地下连续墙、土钉墙、重力式挡墙或放坡等组合而成的支护结构。2.1.12 土层锚杆

由设置于钻孔内、端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体。

2.1.13内支撑

用钢或钢筋混凝土构件支撑基坑侧壁的结构体系。

2.1.14冠梁

设置在支护结构顶部的钢筋混凝土连梁。

2.1.15腰梁

设置在支护结构顶部以下传递支护结构与锚杆或内支撑支点力的钢筋混凝土梁或钢梁。

2.1.16 支点

锚杆或内支撑对支护结构的水平约束点。

2.1.17支点刚度

锚杆或内支撑对支护结构的水平作用力与其位移的比值。

2.1.18 人工降水

人为地降低基坑及周边一定范围内的地下水位。

2.1.19 止水

人为地采取措施以阻止地下水流入基坑内。

2.1.20 止水帷幕

用于阻止或减少基坑侧壁外及基坑底地下水流入基坑而采用的连续止水体。

2.1.21 嵌固深度

桩墙结构在基坑开挖面以下的埋置深度。

2.1.22 地下水控制

为保证工程施工及基坑周边环境安全而采取的集水明排、降水、止水或回灌措施。

2.2 符号

2.2.1 抗力和材料性能:

c ?土的不固结不排水粘聚力;

??土的不固结不排水内摩擦角;

e ?土的孔隙比;

k ?土的渗透系数;

w ?土的天然含水量;

γ?土的重力密度(简称土的重度);

γcs ?水泥土墙的平均重度;

f c s k 、f cs ?水泥土开挖龄期轴心抗压强度标准值、设计值;

f r ?岩石饱和单轴抗压强度;

f ck 、f c ?混凝土轴心抗压强度标准值、设计值;

f c m k 、f cm ?混凝土弯曲抗压强度标准值、设计值;

f yk 、f pyk ?普通钢筋、预应力钢筋强度标准值;

f y 、f y '?普通钢筋的抗拉、抗压强度设计值;

f py 、f py '

?预应力钢筋的抗拉、抗压强度设计值;

e p i k ?基坑开挖面下i 点被动侧抗力标准值;

K pi ?第i 层土被动土压力系数;

k si ?基坑开挖面以下土体刚度系数;

N k ?锚杆轴向拉力标准值;

M u ?构件的正截面受弯承载力设计值;

B ?受弯构件的截面刚度;

2.2.2 作用和作用效应

e a i k ?i 点主动侧荷载标准值;

K ai ?第i 层土主动土压力系数;

N ?组合轴向力设计值;

M ?组合弯矩设计值;

V ?组合剪力设计值;

T

?锚杆或内支撑水平荷载设计值;

d

M

?弯矩标准值;

k

V

?剪力标准值;

k

T

?第j层支点力标准值;

kj

2.2.3 几何参数

s

?排桩中心距;

a

h?基坑开挖深度;

h

?支护结构嵌固深度;

d

d?桩身直径;

b?墙身厚度;

A?桩(墙)身截面面积;

2.2.4计算系数

γ

?建筑基坑侧壁重要性系数。

3 基本规定

3.1 一般规定

3.1.1 除特殊要求外,各种临时性支护结构均应保证安全和正常使用一年。对暴露时间超过一年的基坑,应考虑坑底长期积水软化等各种不利因素,采取相应的加强措施。

3.1.2 根据建筑基坑工程实施可能造成的破坏后果,对基坑侧壁应按表3.1.2确定其安全等级。

级条件的侧壁,应按基坑工程施工可能造成的破坏后果确定安全等级。

注2:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。

3.1.3 基坑工程应按规定进行支护结构的质量检测和开挖监测,并应根据支护结构质量检测和开挖监测的结果进行动态设计和信息化施工,确保基坑及周边环境的安全及正常使用。

3.1.4基坑支护工程的不可预见因素很多,风险性大,设计和施工应考虑的首要问题是确保基坑支护本身及周边环境的安全。负责勘察、设计、施工、检测与监测等项工作的有关单位在这一系统工程的实施过程中应做到互相配合,密切联系。

3.2设计规定

3.2.1支护结构设计前,应取得如下资料:

1 工程用地红线图、地下工程的平面和剖面图;

2 场地的工程地质和水文地质勘察报告;

3 基坑周边环境状况调查资料;

4 建筑物设计和施工对基坑支护结构的要求;

5 有关基坑工程施工条件的资料,如可供选择的施工技术、设备性能、施工季节、排水情况和施工期限等;

6 类似条件基坑工程(规模、开挖深度、地质条件)的实施效果和经验教训。

3.2.2 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。

3.2.3基坑支护结构极限状态可分下列两类:

1 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、管涌导致支护结构和周边环境破坏;

2 正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响周边环境的正常使用。

3.2.4基坑支护结构应根据表3.2.4选用侧壁重要性系数。

3.2.5

1 满足边坡和支护结构稳定的要求:不应产生倾覆、滑移和整体或局部失稳;基坑底部不应产生隆起、管涌;锚杆不应抗拔失效;支撑系统不应失稳。

2 满足支护结构构件受荷后不应发生强度破坏;

3 控制降水引起的地基沉降不应对邻近建筑物或重要管线造成使用安全事故;

4 止水设计应控制因渗漏而引起的水土流失;

5 支护结构变形不应超过周边环境保护要求的允许值,当作为竖向承重结构时,还需满足竖向承重结构的变形要求。

3.2.6 支护结构设计应考虑其结构水平变形及地下水位变化对周边环境的水平与竖向变形的影响。应根据周边环境的重要性,由变形的允许范围及土层性质等因素确定支护结构的水平变形值。除特殊要求外,支护结构的最大水平位移不宜超过表3.2.6的允许值。

3.2.7

1 支护体系的方案比较和选型;

2 保证基坑内外土体稳定的支护结构设计;

3 支护结构构件的承载力和变形,必要时进行裂缝宽度验算;

4 降水、止水方法的选择和要求;

5 开挖工序和开挖工况的安排和要求;

6 周边环境保护的要求;

7 支护结构质量检测和开挖监控项目及报警要求。

3.2.8类似基坑工程实施效果和经验,可用于本基坑支护的选型参考与对比设计。

3.2.9 一、二级基坑支护设计应遵循动态设计与信息化施工相结合的原则。设计人员应根据施工过程中监测的反馈信息,及时对设计进行验证及修正,完善设计。

3.2.10 基坑支护工程设计,应充分估计难以预见的复杂情况,预计事故发生的可能性,作好报警设计,提出可行的抢险加固措施。

3.3 施工规定

3.3.1 基坑施工前,监理单位或甲方与施工单位应会同设计人员进行设计图纸会审和技术交底。

3.3.2施工组织设计由施工单位编制,并经组织会审后方可进行施工。

3.3.3基坑开挖应连续施工,宜减少基坑暴露时间。

3.3.4 施工单位必须做好基坑开挖监测配合工作,严格保护监控设施,根据监测结果进行信息化施工。监测结果达到或超过报警值时,必须采取经设计人员同意的有效控制措施才可进行基坑的下一步开挖施工。

3.3.5 施工单位必须根据设计要求采取预防施工事故的措施,作好抢险加固的准

备工作。

3.3.6 施工结束后,必须提供完整的竣工报告。

4 岩土工程勘察与环境调查

4.1一般规定

4.1.1 建筑基坑支护工程的岩土勘察宜与建筑地基岩土工程勘察同步进行,也可在建筑地基岩土工程勘察后,根据需要重点对基坑支护设计所需的项目进行补充岩土勘察。

4.1.2 基坑支护工程的岩土勘察前,应取得建筑及基坑的平面图、岩土工程勘察任务书等;并详细了解基坑支护结构设计的意图,包括基坑设计深度、可能采用的支护结构体系等。

4.1.3 勘察前应确定岩土勘探深度及勘探范围,编写好岩土工程勘察计划书。

4.1.4 基坑支护的岩土勘察的任务应包括:

l 查明基坑及周边的地层结构和岩土物理力学性质。

2 查明地下水类型、埋藏条件及透水层的渗透性,分析地下水对基坑支护工程的影响;提出可能采取的地下水控制措施;并评价其对已有建筑物及地面沉降的影响。

3 查明基坑周边的建筑物、给排水、供电供气线路系统,分析其对基坑侧壁侧向变形、地下水位变化等的适应能力,估计基坑支护可能对其产生的影响等。

4.2 勘察与测试

4.2.1基坑支护工程岩土勘察应在基坑及周边均匀布点,有条件时应在基坑边线外1~3倍基坑开挖深度范围内布置勘探点,对支护结构可能采用锚杆时,应查明锚杆施工范围内的岩土条件。

4.2.2勘探点布置间距应根据地层复杂程度和基坑侧壁安全等级而定,可取15~30m,但每剖面不宜少于3点,地层变化较大时,应增加勘探点,查明地层分布规律。

4.2.3勘探深度不应小于基坑开挖深度的两倍或进入基坑底以下中风化或微风化岩层不应小于3m,如遇软土或降水设计需要,勘探深度尚应穿过软土层或透水层(含水层),并到达隔水层。

4.2.4勘探必须查明地下填土、暗涌、强弱含水层、透镜状软土或砂层、承压含水层等,并应查明各含水层(包括上层滞水、潜水、承压水)的补给条件和水力联系,查明岩层的产状和走向。

4.2.5在所有的勘探点(孔)均应分层采取土工试验的土样,满足每一主要土层的重要土工试验不应少于6个数据的土样。取样时应减少对土样的扰动。

4.2.6 对一、二级基坑支护工程除常规室内土工试验外,尚应进行标准贯入试验、钻孔抽水(注水)试验等原位测试。

4.2.7勘察必须查明下覆岩层的岩性、产状、埋深、风化程度,并采取岩石力学试验所需的岩样。

4.2.8抽水试验应合理布置水位观测孔、确定场地各含水层的渗透系数和渗透影响半径。

4.2.9岩土工程应包括以下测试参数:

1 土的常规物理力学试验指标;

2 直接剪切试验测试不排水、不固结快剪指标c、?;

3 室内或原位试验测试渗透系数K;

4 岩石的天然和饱和单轴抗压强度指标,岩体质量等级;

5 土体变形模量E;

6 特殊条件下,可根据实际情况选择其它适宜的土工试验或岩石力学试验方法测试的参数。

4.2.10 广州地区各土层的不排水、不固结快剪指标c、?取值不宜大于附录B中相应c、?值的上限值。

4.3环境调查

4.3.1应查明基坑周边2~4倍开挖深度范围内建(构)筑物的地上及地下结构类型、层数、基础类型及埋深、使用现状和质量情况。

4.3.2应查明基坑周边2~3倍基坑深度范围内的给排水、供电供气和通信等管线系统的分布、走向及其与基坑边线的距离,管线系统的材质、接头类型、管内流体压力大小、埋设时间等。

4.3.3应查明场地周围地表和地下水体的分布、水位标高、距基坑距离、补给与排泄关系,估计其对基坑工程可能造成的影响等。

4.3.4 应查明基坑四周道路的距离、路宽、车流量及载重情况。

4.3.5 应查明土坡、河渠情况及其与基坑的平面位置关系。

4.4 勘察报告

4.4.1 建筑基坑工程的岩土勘察报告应包括以下主要内容:

1 勘察的目的、要求和任务,场地的区域地质构造概述;

2 建筑及基坑工程概况;

3 基坑的周边环境调查情况,评价基坑开挖、支护、降水对环境影响程度,提出防治措施和有关监测建议;

4 分析场地的地层结构和岩土物理力学性质,提出计算参数取值及支护方式的选型;

5 水文地质条件,评价地下水对基坑支护设计、施工及使用的影响,提出地下水的控制方法及计算方法;

6 提出支护结构体系的设计和施工建议。

4.4.2基坑工程勘察报告应提供下列主要图表:

1 场地工程位置图,图上应注明勘探点、基坑边线、周边建筑物、道路、管线等的位置;

2 沿基坑边线的地质剖面图,当地质条件或环境复杂时,应有垂直基坑边线的地质剖面图,并注明基坑开挖底线;

3 各钻孔地质柱状图,图上应注明各主要土层的物理力学参数;

4 现场原位测试曲线及有关参数,室内试验成果表;

5 基坑支护结构设计的有关岩土工程计算表。

5 支护结构水平荷载和抗力计算

5.1 一般规定

5.1.1 基坑支护结构设计应考虑下列荷载:

1 土压力及水压力;

2 地面堆积荷载及大型车辆的动、静荷载;

3 周边建(构)筑物的作用荷截;

4 施工荷载;

5 支护结构作为主体结构一部分时,上部结构的作用。

5.1.2 土压力及水压力的计算应考虑下列影响因素:

1 土的物理力学性质;

2 地下水位及其变化。

5.1.3 支护结构水平荷载标准值e aik 应按可靠的经验确定;当无可靠经验时,可按本章第5.2节规定进行计算。

5.1.4 各类土宜按水土分算方法计算侧压力,有经验时,对粘性土、淤泥质土可按水土合算方法计算侧压力。

5.1.5 土压力计算宜采用直接剪切试验的固结快剪c 、?值,有经验时可采用其它

参数。

5. 2 水平荷载标准值

5.2.1 对于碎石土、砂土,支护结构水平荷载标准值e aik 可按水土分算法用下列规定计算(图5.2.1)。 h e aik

O hd

hwp

hwa

Zi

图5.2.1 水平荷载标准值计算图

1 当计算点位于地下水位以上时:

e K c K aik aik ai i ai =-σ2 (5.2.1-1)

2 当计算点位于地下水位以下时:

()()e K c K z h K aik aik ai i

ai i wa ai w =-+--σγ21

(5.2.1-2)

式中 K ai ?第i 层土的主动土压力系数,按本规定第5.2.11条计算;

σa i k ?作用于深度z i 处的竖向应力标准值,按本规定第5.2.4至5.2.9条计算; c i ?第i 层土的粘聚力标准值;

z i ?计算点深度;

h wa ?基坑外侧水位深度;

h wp ?基坑内侧水位深度;

γw ?水的重度。

5.2.2 当采用水土合算时,对于粘性土、粉土、淤泥及淤泥质土,支护结构水平荷载标准值e aik 可按下式计算。

e K c K aik aik ai i ai =-σ2 (5.2.2)

5.2.3 当按以上三式计算的基坑开挖面以上水平荷载标准值小于零时,应取零。

5.2.4 基坑外侧竖向应力标准值σaik 可按下式计算:

σσσσaik rk ok k =++1

(5.2.4-1)

式中 σrk ?土体自重产生的竖向应力; σ0k ?地面均布荷载在土中产生的竖向应力;

σ1k ?地面局部荷载在土中产生的竖向应力。

1 计算点深度z i 自重竖向应力σrk

1)计算点位于基坑开挖面以上时,用三角形分布模型计算,即

σγrk mi i z =

(5.2.4-2)

式中 γmi ?深度z i 以上土的加权平均天然重度,γγ

mi i i i h z =∑。

2)计算点位于基坑开挖面以下时,用矩形分布模型计算,即

σγrk mh h =

(5.2.4-3)

式中 h ?基坑开挖深度;

γmh ?开挖面以上土的加权平均天然重度,γγmh i i h h =

∑;

γi ?第i 层土的平均天然重度;

h i ?第i 层土的厚度。 2 当支护结构外侧地面作用均布荷载q 0时(图 5.2.4-1),在基坑外侧任意深度产生的竖向应力标准值σ0k 可按下式计算:

q 0

σ0k

图5.2.4-1 地面均布荷载产生的竖向应力计算图 σ00k q =

(5.2.4-4)

3 当距支护结构b 1外侧地面作用宽度为b 0的条形荷载q 1时(图5.2.4-2),在基坑外侧深度任意范围内产生的竖向应力标准值σ1k 可按下式计算: σ11100111010

02303k i i i z b q b b b b z b b z b b =<+≤≤+>+?????

?? (5.2.4-5)

q 1σ1k b 1

b 045

45

4545

C

D 图5.2.4-2 条形局部荷载产生的竖向应力计算图

4 复杂情况下的σ0k 和σ1k ,可按第5.2.5、5.2.6、5.2.7、5.2.8的规定进行计算。

5.2.5 当距支护结构b 1外侧地面作用有均布荷载q 0时(图5.2.5),在基坑外侧任意深度产生的竖向应力标准值σ0k 可按下式计算:

σ01010k

i i z b q z b =<≥???

(5.2.5)

q 0σ0k b 1

45C 0

图5.2.5 b 1外侧均布荷载产生的竖向应力计算图

5.2.6 对于局部放坡(或坑中坑)情况下(图5.2.6),在基坑外侧任意深度产生的竖向应力标准值σ0k 可按下列规定计算:

1 q h 00=γ

(5.2.6-1)

2 z a i <时,可不考虑边坡荷载的影响,取σ00k =;

3 ()a z a b i ≤<+时,

σ00k i q z a b =- (5.2.6-2)

4 当()z a

b i ≥+时,

σ00k q =

(5.2.6-3) 图5.2.6 上部有放坡时产生的竖向应力计算图

5.2.7 距支护结构距离a 有与支护结构平行的条形基础分布时(图5.2.7),其附加压力在基坑外侧任意深度范围内产生的竖向应力标准值σ1k 可按下列规定计算: l 当z a d i h <+时,可不考虑基础底面附加应力对支护结构的影响,σ10k =; 2 当a d z a b d h i h +≤≤++3时

()σγ12k h

p d b b a =-+

(5.2.7)

式中 p ?基础底面处附加压力标准值;

d h ?基础埋置深度;

b ?基础底面宽度;

a ?基础边距支护结构的距离。

3 当z a b d i h >++3时,σ10k =。

图5.2.7 条形基础产生的竖向应力计算图

5.2.8 距支护结构距离a 有与支护结构平行的矩形基础时(图5.2.7),其附加压力在基坑外侧任意深度范围内产生的竖向应力标准值σ1k 可按下列规定计算:

l 当()z a d i h <+时,σ10k =;

2 当()()

a d z d a

b h i h +<≤++3时

()()()σγ122k h p d bl b a l a =-++

(5.2.8)

3 当z a b d i h >++3时,σ10k =。

式中 l ?基础底面长度。

5.2.9 基坑外侧土体有大面积开挖时(图5.2.9),在基坑外侧计算深度处竖向应力标准值σaik 可按下列规定计算:

1 当z d i <0时

σγaik mi i z =

(5.2.9-1)

式中 γmi ?深度z i 以上土的加权平均天然重度。

2 当()d z a b d i 002≤<

++时 ()σγγaik md mi i d z d =+-00

(5.2.9-2)

式中 γmd ?墙后开挖面以上土的加权平均天然重度;

γmi ?墙后开挖面以下至计算点深度范围内土的加权平均天然重度。

3 当()

z a b d i ≥++20时

()σγaik mi i z d =-0

(5.2.9-3)

图5.2.9 墙背开挖竖向应力计算图

5.2.10 对于局部开挖或墙后土体有防空洞等复杂情况,在基坑外侧产生的竖向应力标准值σaik ,可根据以上各种应力进行迭加计算。

5.2.11 第i 层土的主动土压力系数K ai ,应按下式计算

K tg ai i =-?

? ???2452 ?

(5.2.11)

式中 ?i ?第i 层士的内摩擦角标准值。

5.3 水平抗力标准值

5.3.1 基坑内侧水平抗力标准值e pik 可按下列规定计算(图5.3.1):

1 对于砂土及碎石土,基坑内侧水平抗力标准值可按下列规定计算:

1)当计算点位于地下水位以上时:

e k pik pik pi =σ

(5.3.1-1)

2)当计算点位于地下水位以下时:

()()e k z h k pik pik pi i wp pi w =+--σγ1 (5.3.1-2)

式中 σp i k ?作用于基坑底面以下深度z i 处的第i 层土的竖向应力标准值,可按本规定第5.3.2条规定计算;

k pi ?第i 层土的被动土压力系数,可按本规定第5.3.3条确定;

2 对于粘性土及粉土,基坑内侧水平抗力标准值可按下式计算:

e k c k pik pik pi pi =+σ2

(5.3.1-3)

图5.3.1 水平抗力标准值计算图

5.3.2 作用于基坑底面以下深度z i 处的竖向应力标准值σpik 可按下式计算:

σγpik mi i z =

(5.3.2)

式中 γmi ?深度z i 以上土加权平均天然重度。

5.3.3 第i 层土的被动土压力系数应按下式计算:

k tg pi i =+

?? ???2452 ?

(5.3.3)

建筑基坑支护工程安全性影响因素

建筑基坑支护工程安全 性影响因素 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

建筑基坑支护工程安全性影响因素 论文摘要:在建筑基坑施工时,为确保施工安全,防止塌方事故发生,必须对开挖的建筑基坑采取支护措施,本文分析了当前深基坑支护存在的安全问题,提出了深基坑支护设计中的注意事项和预防措施。 一、问题的提出 在建筑基坑施工时,为确保施工安全,防止塌方事故发生,必须对开挖的建筑基坑采取支护措施。建筑基坑支护设计与施工应综合考虑工程地质与水文地质条件、基坑类型、基坑开挖掘深度、降排水条件、周边环境对基坑侧壁位移的要求,基坑周边荷载、施工季节、支护结构使用期限等因素,做到合理设计、精心施工、经济安全。 近几年来,高层建筑的迅速兴起,促进了深基坑支护技术的发展。各地在深基坑开挖和支护技术方面积累了丰富的设计和施工经验,新技术、新结构、新工艺不断涌现。但是,现在的城市建筑间距很小,有的基坑边缘距已有建筑仅十几米、甚至几米,给基础工程施工带来很大的难度,给周围环境带来极大威胁,也相应地增加了施工工期和施工费用。另外,原来的深基坑支护结构的设计理论、设计原则、运算公式、

施工工艺等,已不符合深基坑开挖与支护结构的实际情况,导致一些基坑工程出现事故,造成巨大的损失。因此,深基坑支护的安全问题工程技术人员应予以高度重视。 二、深基坑支护存在的问题 (一)支护结构设计中土体的物理力学参数选择不当 深基坑支护结构所承担的土压力大小直接影响其安全度,但由于地质情况多变且十分复杂,要精确地计算土压力目前还十分困难,至今仍在采用库伦公式或朗肯公式。关于土体物理参数的选择是一个非常复杂的问题,尤其是在深基坑开挖后,含水率、内摩擦角和粘聚力三个参数是可变值,很难准确计算出支护结构的实际受力。 在深基坑支护结构设计中,如果对地基土体的物理力学参数取值不准,将对设计的结果产生很大影响。土力学试验数据表明:内磨擦角值相差5°,其产生的主动土压力不同;原土体的内凝聚力与开挖后土体的内凝聚力,则差别更大。施工工艺和支护结构形式不同,对土体的物理力学参数的选择也有很大影响。 (二)基坑土体的取样具有不完全性

基坑支护工程施工质量及验收要求

基坑支护工程施工质量及验收要求 一、工程概况: 本基坑支护范围长约483m,宽约262m,开挖深度为7.4515.65m。开挖范围内揭露底层为人工填土、坡残积粉质粘土、强风化砂岩和强风化泥岩。本基坑安全等级北侧为一级,其余段均为二级。场地土类别为软弱中硬土,建筑场地类别为Ⅱ类;抗震设防烈度为6度,地震设计分组未第一组。高程为黄海高程系。 基坑支护主要采用有线放坡、土钉墙、回填分层碾压土修坡护坡等支护形式,场地排水主要采用全场地排水沟收集潜水泵抽排。二、基坑支护工程施工验收依据如下:(1)基坑支护工程质量的基本规定: 基坑边坡分段分层开挖后,应首先进行人工修坡,修坡后的土坡坡度应符合设计要求。 施工中应及时对土钉位置,钻孔直径、深度及角度,土钉插入长度,注浆配比、压力及注浆量,喷锚墙面厚度及强度等关键项目进行检查。 督促施工单位做好土钉墙施工过程中和完成后的监测工作。重点观察坡顶或坡面位移、沉降及周围环境的变换。如有异常情况应立即采取措施进行处理。 土钉墙支护工程质量检验标准允许偏差项目序号检查项目检查方法(mm)主控1土钉长度±30用钢尺量项目2土钉锁定力设计要求现场实测1土钉位置±100用钢尺量一2钻孔倾角±10测钻机倾角般3浆体强度±10试样送检项检查计量数目4注浆量大于理论计算量据5土钉墙面厚度±10用钢尺量(2)基坑支护工程施工主控项目: 土钉的制作控制: 1、土钉采用钢花管和钢筋土钉,钢花管制作详见《建筑基坑支护结构构造》,大样图如下: 3、钢筋打设前应对锚筋进行检查且合格;采用凿岩机无水凿孔;锚筋按要求放至设计深度。 4、土钉孔位允许偏差150mm;倾角偏差±2度;长度允许偏差±100mm。 土钉支护工程质量检测控制: 1、土钉抗拔试验:数量为总数的1且每层不少于3根。 抗拔力为设计值的1.3倍。 2、注浆用的浆体材料28天的抗压强度不得低于M15。(3)基坑支护工程施工一般控制项目: 土钉注浆施工控制: 1、土钉注浆采用纯水泥浆,水泥采用42.5R,浆液水灰比为0.45。 2、注浆压力控制在0.2~0.3MPa左右,随注浆进行缓慢拔出注浆管,当注浆管底距孔口1.5m左右时暂停拔管,暂停拔管后的注浆压力维持在0.2MPa以上,并要求稳压时间不小于2min。 钢筋网及土钉头施工控制: 1、钢筋网为ф8mm200双向排列,网片钢筋搭接长度300mm,相邻土钉端部水平采用2Ф16通长钢筋与土钉锚筋端部侧面双侧焊接连接。在钢筋端部顺钢筋长度方向设置2Ф18短段钢筋(L80mm)与钢管侧面双侧焊接,且顺钢管长度方向压于水平通长钢筋之上。水平通长加强筋的连接采用单面搭接焊,搭接长度不小于10d。 泄水管施工控制: 1、放坡喷锚面泄水管的水平间距为2.5m,梅花形布置。

基坑支护规范

建筑基坑支护技术规程 1 总则 1.0.1 为了在建筑基坑支护设计与施工中做到技术先进、经济合理、确保基坑边坡稳定、基坑周围建筑物、道路及地下设施安全,制定本规程。 1.0.2 本规程适用于一般地质条件下的建筑物和一般构筑物的基坑工程勘察、支护设计、施工、检测及基坑开挖与监控。对于膨胀土和湿陷性黄土等特殊地质条件地区应结合当地工程经验应用。 1.0.3 基坑支护设计与施工应综合考虑工程地质与水文地质条件、基础类型、基坑开挖深度、降排水条件、周边环境对基坑侧壁位移的要求、基坑周边荷载、施工季节、支护结构使用期限等因素,做到因地制宜,因时制宜,合理设计、精心施工、严格监控。 1.0.4 基坑支护工程除应符合本规程的规定外,尚应符合国家现行的有关标准、规范和规程的规定。 2 术语、符号 2.1 术语 2.1.1 建筑基坑building foundation pit 为进行建筑物(包括构筑物)基础与地下室的施工所开挖的地面以下空间。 2.1.2 基坑侧壁side of foundation pit 构成建筑基坑围体的某一侧面。 2.1.3 基坑周边环境Surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。 2.1.4 基坑支护retaining and protecting for foundation excavation 为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固与保护措施。 2.1.5 排桩piles in row 以某种桩型按队列式布置组成的基坑支护结构。 2.1.6 地下连续墙diaphragm 用机械施工方法成槽浇灌钢筋混凝土形成的地下墙体。 2.1.7 水泥土墙cement –soil wall 由水泥土桩相互搭接形成的格栅状、壁状等形式的重力式结构。 2.1.8 土钉墙soil nailing wall 采用土钉加固的基坑侧壁土体与护面等组成的支护结构。 2.1.9 土层锚杆soil anchor 由设置于钻孔内、端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体。 2.1.10 支撑体系bracing system 由钢或钢筋混凝土构件组成的用以支撑基坑侧壁的结构体系。 2.1.11 冠梁top beam 设置在支护结构顶部的钢筋混凝土连梁。 2.1.12 腰梁middle beam 设置在支护结构顶部以下传递支护结构与锚杆或内支撑支点力的钢筋混凝土梁或钢梁。 2.1.13 支点fulcrum

浅析建筑基坑支护技术

浅析建筑基坑支护技术 发表时间:2016-11-24T15:55:15.207Z 来源:《低碳地产》2016年10月第20期作者:佟雪伟 [导读] 【摘要】基坑支护是现代建筑施工的重要环节,在建筑工程施工的过程中,场地整平工程完成之后需要进行的工作就是基坑的开挖,而基坑施工质量的优良将会直接影响到工程能否顺利的进行,随着如今科学技术的不断发展,新型的基坑支护技术不断的涌现出来,本文就对基坑支护技术进行了分析与探讨。 沈阳乾景房地产开发有限公司辽宁沈阳 110015 【摘要】基坑支护是现代建筑施工的重要环节,在建筑工程施工的过程中,场地整平工程完成之后需要进行的工作就是基坑的开挖,而基坑施工质量的优良将会直接影响到工程能否顺利的进行,随着如今科学技术的不断发展,新型的基坑支护技术不断的涌现出来,本文就对基坑支护技术进行了分析与探讨。 【关键词】基坑支护;技术;研究 一、基坑支护的类型及特点及适用范围 1、高压旋喷桩。高压旋喷桩所用的材料亦为水泥浆,它是利用高压经过旋转的喷嘴将水泥浆喷入土层与土体混合形成水泥土加固体,相互搭接形成排桩,用来挡土和止水,高压旋喷桩的施工费用要高于深层搅拌水泥土桩,但其施工设备结构紧凑、体积小、机动性强、占地少,并且施工机具的振动很小,噪音也较低,不会对周围建筑物带来振动的影响和产生噪音等公害,它可用于空间较小处,但施工中有大量泥浆排出,容易引起污染,对于地下水流速过大的地层,无填充物的岩溶地段永冻土和对水泥有严重腐蚀的土质,由于喷射的浆液无法在注浆管周围凝固,均不宜采用该法。 2、深层搅拌水泥土围护墙。深层搅拌水泥土围墙是采用深层搅拌机就地将土和输入的水泥浆强行搅拌,形成连续搭接的水泥土柱状加固体挡墙,水泥土围护墙的优点:由于一般坑内无支撑,便于机械化快速挖土;具有挡土、止水的双重功能;一般情况下较经济;施工中无振动、无噪音、污染少、挤土轻微,因此在闹市区内施工更显出优越性,水泥土围护墙的缺点:首先是位移相对较大,尤其在基坑长度大时,为此可采取中间加墩、起拱等措施以限制过大的位移;其次是厚度较大,只有在红线位置和周围环境允许时才能采用,而且在水泥土搅拌桩施工时要注意防止影响周围环境。 3、型钢桩横挡板支护。挡土位置预先打入钢轨、工字钢或H型钢桩,间距1~1.5m,然后边挖方,边将3~6m厚的挡土板塞进钢桩之间挡土,并在横向挡板与型钢桩之间打入楔子,使横板与土体紧密接触。适用于地下水位较低,深度不很大的一般粘性或砂土层中应用。 4、钢筋混凝土板桩。钢筋混凝土板桩具有施工简单、现场作业周期短等特点,曾在基坑中广泛应用,但由于钢筋混凝土板桩的施打一般采用锤击方法,振动与噪音大,同时沉桩过程中挤土也较为严重,在城市工程中受到一定限制。此外,其制作一般在工厂预制,再运至工地,成本较灌注桩等略高。 5、灌注桩排桩支护。在开挖基坑的周围,用钻机钻孔,现场灌注钢筋混凝土桩,达到强度后,在基坑中间用机械或人工挖土,下挖1m左右装上横撑,在桩背面装上拉杆与已设锚桩拉紧,然后继续挖土要求深度,在桩间土方挖成外拱形,使之起土拱作用,如基坑深度小于6m,或临近有建筑物,也可布设锚拉杆,采取加密桩距或加大桩径处理,是与开挖较大、较深(>6m)基坑,临近有建筑物,不允许支护,背面地基有下沉、位移时采用。 6、土钉墙。土钉墙是一种边坡稳定式的支护,其作用与被动其挡土作用的上述围护墙不同,它是起主动嵌固作用,增加边坡的稳定性,使基坑开挖后坡面保持稳定,施工时,每挖深1.5m左右,挂细钢筋网,喷射细石混凝土面层厚50~100mm,然后钻孔插入钢筋(长10~15m,纵、横间距1.5m×1.5m),加垫板并灌浆,依次进行直至坑底,基坑坡面有较陡的坡度,土钉墙适用于基坑侧壁安全等级为二级、三级的非软质土场地;基坑深度不宜大于12m。 7、地下连续墙支护。在开挖的基坑周围,先建造混凝土或钢筋混凝土地下连续墙,达到强度后,在墙中间用机械或人工挖土,直至要求深度。对跨度、深度很大时,可在内部假设水平支撑及支柱,用于逆作法施工,每下挖一层,将下一层梁、板、柱浇筑完成,以此作为地下连续墙的水平框架支撑,如此循环作业,直到地下室的地层全部挖完土,浇筑完成,适用于开挖较大、较深(>10m)、有地下水、周围有建筑物、公路的基坑,作为地下结构外墙的一部分,或用于高层建筑的逆作法施工,作为地下室结构的部分外墙。 8、SMW工法。SMW工法亦称劲性水泥土搅拌桩法,即在水泥土桩内插入H 型钢等,将承受荷载与防渗挡水结合起来,使之成为同时具有受力与抗渗两种功能的支护结构的围护墙,SMW 支护结构的支护特点主要为:施工时基本无噪音,对周围环境影响小;结构强度可靠,凡是适合应用水泥土搅拌桩的场合都可使用,特别适合于以黏土和粉细砂为主的松软地层;挡水防渗性能好,不必另设挡水帷幕;可以配合多道支撑应用于较深的基坑;此工法在一定条件下可代替作为地下围护的地下连续墙,在费用上如果能够采取一定施工措施成功回收H 型钢等受拉材料;则大大低于地下连续墙,因而具有较大发展前景。 二、基坑支护新技术 1、逆作法。目前,由于基坑的深度和面积不断的加大,施工现场周边环境多变的复杂性,这些都影响到了深基坑开挖和支护的难度,由于逆作法在工期、造价这两个方面的效果突出,所以“两墙合一”逆作法在未来的发展有着广阔的前景,逆作法施工是一种高效、经济的施工方法,它不但可以减短开挖基坑以及支护结构面积的暴露时间,还能够加强支护结构的受力性能,把支护的刚度提高,这样不但节省了支撑费用和锚杆的成本,还把支护的变形以及对周围建筑的负面影响降到最低,使总成本降低,上海电信大楼的地下3层是最早使用逆作法施工技术的,自此之后,广州的特种基础科研楼的地下3层、上海的人民广场地下变电站它的基坑深度为23.7m,直径达到63.9m,是我国目前直径最大的地下连续墙、福建的世界金龙大厦的地下室2层、广东延安东路隧道的一、二号风塔、广东恒基大厦的地下室2层、京津紫荆花园商住楼的地下室4层、天津地铁的车站等都是使用的地下连续墙作为挡土墙和地下室的外墙,使用逆作法进行施工,也有依据当地施工地形的特点使用“半逆作法”进行支护的,例如:天津的劝业场新大厦。 2、搅拌和注浆技术。为防止基坑发生形变,对支护施加预应力,以此来控制变形的方法在当下的较为流行,并将会被逐渐的推广,这种方法可以减小基坑对于环境的影响,例如:进行降水施工,就会引起地面的附加沉降,或者基坑要使用帷幕形式来进行支护,以此来保护地下水资源,还可以使用旋喷桩或者深层搅拌桩等方法,它们是除了地下的连续墙外,最有效的构筑水帷幕的方法。 3、对于软土基坑的处理技术。对于坑深且大,周围环境条件差的软土基坑,要在基坑的内部,坑外的有效范围内进行土体的加固,以起到稳定四周坑壁、防止土体隆起、保护周边环境、减少支护位移的作用,目前的支护施工中,施工人员都已经认识到支护的设计要由

基坑支护设计总说明

基坑支护设计总说明 一、工程概况 本工程为新川科技园污水泵站提升泵房项目基坑支护施工图设计。 (一)基坑位置及建设规模 场地位于污水泵站提升泵房位于新川科技园二组团内,东临洗瓦堰及B线道路,北面为规划220KV变电站,西面为地铁一号线红星站场站用地,之间有规划10m宽防护绿地,南面为规划市政绿地及华阳大道,该建筑物为1F,设一层地下室,设计 +0.00=480.30m。 (二)使用年限 本工程场地地面标高在481.0m左右,因此基坑设计时高度按481.0m考虑,地 下室基坑开挖深度西边按16.5m考虑(即基坑开挖底面标高为464.50m),东边按13.8m考虑(即基坑开挖底面标高为467.2m)。基坑安全等级为一级,结构重要性系数为1.1。 本项目基坑支护结构设计使用年限为一年,从基坑开挖之日起算。超过使用年限后未回填,支护体系需进行安全鉴定。 (三)基坑对周边影响 本工程地下室开挖深度为场地面标高(481.0m)以下13.8-16.5m,基坑开挖底 面标高为464.5-467.2m。根据业主提供的周边道路及地下管线资料及现状周边建(构)筑物情况,场地周边环境情况如下: 1、周边建构筑物及市政道路 基坑现在场地周围无建筑物分布。

2、地下管线 基坑的东侧和南侧有军用电缆分布电缆埋深约3m,距离本工程地下室边线约10~16.7m,不会对其造成影响。 3、地面沉降 本工程拟采用管井降水与明排水相结合。明挖顺作法施工时,工程施工可能引起地面不均匀沉降,应预防周边建(构筑)物下沉、倾斜、开裂,甚至造成破坏性影响。 施工前应对周边进行摄像取证,并在建筑物周边布设观测点,进行系统、全面的跟踪测量,信息化施工。根据监测结果及时调整施工方案,如出现异常情况,应立即停止施工,及时采用补救措施,确保建(构)筑物安全。 二、设计依据 1、《新川创新科技园污水泵站及配套管网市政工程岩土工程勘察报告》 2、业主提供的《新川创新科技园污水泵站建筑设计图》 3、设计采用的规范: 《岩土工程勘察规范》(GB50021-2001)(2009版) 《建筑地基基础设计规范》(GB50007-2011) 《混凝土结构设计规范》(GBJ50010-2010) 《建筑桩基技术规范》(JGJ94-2008) 《建筑基坑支护技术规范》(JGJ120-2012)

建筑基坑支护工程施工组织设计方案

目录 第一章编制依据 (2) 第二章工程概况 (2) 第三章基坑支护方案设计 (2) 第四章施工部署 (4) 第五章施工准备工作计划和资源计划 (5) 第六章施工方法 (6) 第七章质量保证措施 (10) 第八章安全及文明施工措施 (13) 第九章施工监测 (14) 第十章图及计算表 (16)

第一章编制依据 l、甲方提供的工程地质勘察报告及设计的基础图纸。 2、《建筑基坑支护技术规程》(JGJ120-99); 3、《混凝土结构设计规范》(JBJ 10-89); 4、《建筑与市政降水工程技术规范》(JGJ/T111-98); 5、《建筑地基与基础设计规范》(GBJ7-89); 6、《北京地区建筑地基基础勘察设计规范》; 7、根据我公司多年从事基坑支护设计及施工所积累的经验。 第二章工程概况 2.1工程概况 拟建的航天信息园2#建筑工程,其基础埋深约6.00m。 2.2工程地质、水文地质条件 2.2.1工程地质条件 拟建场地地基土层除上有杂物及填土外,下部均为第四系全新持力层。(详见地质勘察报告) 2.2.2 水文地质条件 据勘测报告显示本场地不受地下水影响。 第三章基坑支护方案设计 3.1 方案选择 根据现场位置,本工程基坑支护拟全部采用1:0.3放坡锚喷进行支护;

3.2 锚喷支护设计方案 锚喷采用C20碎石砼,厚度为8—10cm,钢筋网片为 6.5双向200×200。加强筋314,横向连接锚杆。土钉设计参数见下表,杆体材料为118钢筋。锚喷面深入基坑底300mm,钢筋砼外沿坡面1000mm,抹平作为散水面,并及时在坡顶施工硬化路面,硬化厚度不应小于10cm。 3.2.1锚喷土钉设计参数 118 118 3.2.2基坑西侧临近现场通道需考虑动荷载对边坡的影响,所以该段支护采用复合土钉墙进行支护,其设计参数如下: 122 118用200×200钢板做垫片,锚杆间距为1.00m。锚杆孔径为150mm,锚杆长度为5.0m,其中自由段长为3.0m,倾角为15°,锚杆头焊接螺栓,靠螺母和螺栓的咬合力锁定。

房屋建筑基坑支护的施工与方法

房屋建筑基坑支护的施工与方法 房屋建筑基坑支护的施工与方法 摘要:在高层房屋建筑深基坑工程中,基坑支护的设计与施工是一项起到关键作用的核心内容,必须给予高度的重视。当要对深基坑支护进行施工的时侯我们要综合考虑多项因素来确定其施工工艺 和方案,例如,有建筑场地及周围的地理环境、地下水位及其变化情况、场地土质条件、深基坑的设计深度、施工天气、预防流砂和管涌等。此外,要根据工程的进度以及施工时遇到的具体问题、环境变化及时的对基坑支护做出适当的调整以适应高层房屋建筑深基坑工程 的需要。综合来讲,高层房屋建筑深基坑支护需要注意以下几个要点。 关键词:基坑支护;应急处理;支护类型 中图分类号:TV551.4 文献标识码:A 文章编号: 深基坑施工要点 1. 安全问题是基坑工程以及整个建筑工程的重中之重,深基坑支护首先要保证的就是要安全、可靠,要将施工安全责任落实到个人。 2. 由于高层房屋建筑一般位于市区,施工给周围居民的生产生活造成一定的影响,尤其是环境问题,基坑支护施工时要采用先进的施工技术,降低噪声、注意废弃物的存储,避免对周围环境的污染。 3. 基坑支护施工时要加强管理与监测的力度,改进施工机械与技术,避免因不均匀沉降和地基变化对周围相邻建筑物产生不利影响。 4. 由于场地上空大多有高压电线跨过,城市煤气、水管、电缆等地下管线较多,且密度较大,如果基坑支护施工出现失误将导致巨大的损失。 5. 城市内的施工一般工期紧、场地小,因此,事先需进行周密的计划与安排,这样可以减少施工期间一些不必要的意外事故。 深基坑支护类型施工技术

对于深基坑支护类型的选择要综合考虑多种因素,例如,施工技术水平、基坑开挖深度、天气与降水条件、地下水位、场地土质条件、场地周围建筑物以及支护结构的要求期限等。常见的深基坑支护类型及其特点有以下几类。 周边放坡开挖所谓放坡开挖,就是将深基坑的周边维护结构进行按一定角度的放坡施工,这种方案施工简单、方便、经济,但是需要开挖大量的土方。当建筑场地可使用的范围比较开阔,地质条件良好,地下水位低,排水条件较好,以及放坡对相邻的建筑物不会造成较大的影响时,可以考虑使用基坑周边放坡开挖的方法,分为基坑完全深度的或局部深度的放坡开挖。土方边坡的大小,应该根据挖方深度、土质条件、填方高度、水质条件、施工工艺、荷载形式与大小、使用期限等因素综合考虑决定。土方边坡的类型有直线型、折线型和阶梯型。放坡开挖时如果边坡太陡,容易发生土体失稳,引起塌方事故,如果边坡太缓,不仅浪费空间,增加工作量,而且会威胁到其他建筑物的安全,因此,必须合理确定边坡的大小以满足安全可靠、经济合理的要求。 土钉与复合土钉墙支护此深基坑支护是以土钉作为主要受力部 分的支护技术,土钉是一种用来加固和锚固场地原来土体的细长杆件,主要组成部分有密排的土钉、混凝土喷射表层、经过加固处理的原位土体以及防水部分等,故又称为土钉墙。土钉主要是依靠土体受力变形时与其之间形成的被动粘结力或者摩擦力来发挥作用。土钉与复合土钉墙支护技术节省材料、工作量小、工期短,施工方便,对周围环境的影响小,而且变形小,利于基坑施工,经济效益明显。当深基坑施工场地较狭小,放坡不方便,相邻的已建成建筑物受影响的程度较低或者基坑周边的土体可以利用,场地地下水位低或者排水条件好等条件成立的时候可以考虑使用。土钉与复合土钉墙支护主要适用于地下水位以上土体或者经过降水处理之后的砂土、粘土和粉质土等。通常的施工技术为在土体中预先按确定的位置钻孔并且标记编号,放入变形处理的钢筋并且运用设备对钻孔全长进行灌浆,倾斜的孔适宜运用重力灌浆,水平的孔适宜运用高压或低压灌浆,进行二次高压注浆的话可以有效的提高土钉的抗拔承载力,而后在表面铺置0

广州地区建筑基坑支护技术规定(1998版)

广州地区建筑基坑支护 技术规定 (98-02) 《广州地区建筑基坑支护技术规定》 编委会 1998.6.15.广州

目录 1 总则 (1) 2 术语、符号 (2) 2.1 术语 (2) 2.2 符号 (3) 3 基本规定 (5) 3.1 一般规定 (5) 3.2 设计规定 (5) 3.3 施工规定 (7) 3.4 检测与监测规定 (7) 4 岩土工程勘察与环境调查 (8) 4.1 一般规定 (8) 4.2 勘察与测试 (8) 4.3 环境调查 (9) 4.4 勘察报告 (9) 5 支护结构水平荷载和抗力计算 (10) 5.1 一般规定 (10) 5.2 水平荷载标准值 (10) 5.3 水平抗力标准值 (15) 6 支护结构设计 (16) 6.1 支护结构分类与选型 (16) 6.2 混凝土支护结构圆形截面承载力设计 (18) 6.3 放坡设计 (20) 6.4 土钉墙设计 (21) 6.5 排桩设计 (26) 6.6 地下连续墙设计 (31) 6.7 重力式挡墙设计 (32) 6.8 锚杆设计 (36) 6.9 内支撑设计 (39) 6.10 逆作法支撑体系设计 (43) 6.11 组合式支护结构设计 (45) 7 地下水控制 (47) 7.1 一般规定 (47) 7.2 集水明排设计 (47) 7.3 降水设计 (48) 7.4 高压喷射注浆止水设计 (51) 7.5 深层搅拌法止水设计 (53) 7.6 压力注浆止水设计 (54) 7.7 回灌设计 (55) 7.8 集水明排施工 (55) 7.9 降水施工 (56) 7.10 高压喷射注浆止水施工 (56)

《建筑边坡工程技术规范》

岩质边坡的破坏形式(表)滑移型+ 崩塌型 确定岩质边坡的岩体类型应考虑因 素 视为相对软弱岩质组成的边坡情况 和可分段确定边坡类型情况 3.2边坡工程安全等级 边坡工程安全等级(表) 安全等级为一级和二级的情况 边坡塌滑区范围估算 3.3设计原则 两类极限状况定义 荷载效应最不利组合(分项系数,重 要系数γο等) 永久性边坡的设计使用年限应不低 于受其影响相邻建筑的使用年限 考虑地震作用影响的原则 边坡工程设计应包括内容 计算和验算的对象和内容 3.4一般规定 设计时应取得的资料

一级边坡工程应采用动态设计法(内容) 二级边坡工程宜采用动态设计 边坡支护结构常用形式(表)参考因素 不应修筑边坡情况 避免深挖高填,后仰或分阶放坡 洞室 生态保护+自身保护措施 下列边坡工程专门论证 开挖坡角,坡顶超载,水渗入坡体3.5排水措施 截水沟(地表水) 排水管、管井、截槽(地下水) ~3.5.6泄水孔 3.6坡顶有重要建(构)筑物的边坡工程设计 设计规定(与基础相邻作用) 新建边坡措施(与相邻基础) 新建重要建筑规定 已建档墙坡脚新建建(构)筑物时

位于稳定土质或弱风化岩层边坡的 挡墙和基础 四、边坡工程勘察 4.1一般规定境条件复杂的边坡宜分阶段勘察;地质环境复杂的一级边坡尚应进行施 工勘察(专门勘察+合并勘察+分阶段 勘察+施工勘察对应情况) 勘探范围+控制性勘探孔深度 勘察报告内容 变形监测、水文长观孔 4.2边坡勘察 勘查前应取得的资料 分阶段勘察 勘察应查明的内容 勘探的方法 详勘的勘探线、点间距(垂直边坡走 向,数量≧2) 三轴试验,试样数量 特殊要求、流变试验 及时封填密实 可选部分钻孔埋设检测设备

基坑围护规范

基坑围护规范 一说起基坑围护,相关建筑人士还是比较陌生的,我国制定的基坑围护规范有什么内容?以下是为建筑人士整理相关基坑围护规范基本资料,具体内容如下: 基坑围护规范即建筑基坑支护技术规程,主要包括的内容包括:总则术语、符号基本规定土钉墙逆作拱墙等内容。其中基本规定中设计原则如下: 3.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。 3.1.2 基坑支护结构极限状态可分为下列两类: 1.承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致结构或基坑周边环境破坏; 2.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正确使用功能。 3.1.3 基坑支护结构设计应根据表3.1.3选用相应的侧壁安全等级及重要性系数。 基坑侧壁安全等级及重要性系数表3.1.3 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。 3.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、

对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 3.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周边有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 3.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算: 1.基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括: 1)根据基坑支护形式及其受力特点进行土体稳定性计算; 2)基坑支护结构的受压、受弯、受剪承载力计算; 3)当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。 2.对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 3.地下水控制计算和验算: 1)抗渗透稳定性验算: 2)基坑底突涌稳定性验算; 3)根据支护结构设计要求进行地下水位控制计算。 3.1.7 基坑支护设计内容应包括对支护结构计算和验算、质量检测及施工监控的要求。 3.1.8 当有条件时,基坑应采用局部或全部放坡开挖,放坡坡度应满足其稳定性要求。

建筑基坑工程技术规范

《建筑基坑工程技术规范》(YB9258—97)介绍 规范2008-01-29 14:08:45 阅读348 评论0 字号:大中小订阅 唐业清王吉望顾晓鲁李虹 [摘要]介绍了我国行业标准《建筑基坑工程技术规范》(YB9258—97)的编制工作概况及主要内容。 [关键词]基坑工程技术标准支护结构土压力现场监测 Introduction to 《Technical Specifications for Foundation Pits Excavation for Buildings》 (YB9258—97) Tang Yeqing Wang Jiwang Gu Xiaolu Li Hong [Abstract]This article describes the main contents and the drawing-up of the said specifications. [Keywords]Foundation pit excavation;Technical standards;Supporting strecture;Earth pressure;Field monitoring 1编制工作概况 根据建设部标准定额司的要求,由冶金部下达《建筑基坑工程技术规范》(YB9258—97)编制工作任务,冶金部建筑研究总院主持并邀请中国建筑科学研究院、北方交通大学、天津大学、同济大学共16个单位,25位长期从事基坑工程教学、科研和工程施工单位的专家参加编制,前后经历近4年的编制工作。经冶金部主管部门的审查批准,作为中华人民共和国行业标准,于1998年5月1日正式颁布实施。1998年8月由冶金出版社正式出版。 2《建筑基坑工程技术规范》(YB9258—97)的主要内容 本规范共19章,15条附录及条文说明。

建筑基坑工程施工安全管理措施

建筑基坑工程施工安全管理措施 基坑支护工程是建筑施工中不可或缺的一种施工方法,它包括地下连续墙、排桩支护、重力式档土结构、喷锚支护结构和组合式支护结构等形式,其施工过程极易发生坍塌伤亡事故。建设部《建筑工程预坊坍塌事故若干规定》中明确指出,基坑支护是多发事故专项治理的主要内容之一应制定预防坍塌事故的安全技术措施,做好施工组织,确保安全。《建筑施工安全检查标准》(JGJ59-99)也明确规定基坑支护工程必须编制施工组织设计,否则该项为“零分项”。因此加强基坑支护工程技术安全措施至关重要。 1 基坑坍塌的常见原因 1.1 坑壁的形式选用不合理 基础施工时,坑壁的形式主要有两种:一是采用坡率法,即自然放坡;二是采用支护结构。实践证明,基坑坑壁的形式直接影响基坑的安全性若选用不当会为基坑施工埋一隐患。施工单位在进行施工组织设计时,过多考虑节省投资和缩短工期,忽视对坑壁形式的正确选用,从而出现坑壁形式选用不当。 在大多数工程中,由于采用坡率法比采用支护结构节省投资,因此,这种方式常被施工单位作为基坑施工的首选形式。但坡率法只能在工程条件许可时才能采用,如果施工场地有限不能满足规范所要求的坡率或者地下水丰富、土质稳定性差,一般不能考虑坡率法,否则,容易出现隐患,造成坑壁坍塌。当不具备采用坡率法的条件时,应对基坑采用支护措施。成都地区常用的支护结构有土钉墙支护、喷锚支护、混凝土灌注支护等。施工前,应根据工程所处周边环境、地质水文条件以及工程施工工艺要求对支护形式进行合理选择、设计,若为节省资金仅凭经验确定支护形式,很可能达不到支护的目的,同样容易出现坑壁坍塌的情况,造成安全事故。因此,对这种坑壁,采用混凝土灌注桩效果更为理想,安全性更高。 1.2 坑壁土方施工不规范 一些施工单位在基坑施工中,不重视施工管理控制,随意更改施工设计,违反技术规范要求也是带来基坑施工隐患,造成坑壁坍塌的主要原因。 主要表现在:一是采用坡率法时坡率值不足。当工程条件许可时,基坑施工一般采用坡率法。但采用坡率法必须严格按照技术规范的要求搞好基坑施工的坡率控制。然而,在实际工作中施工单位常常因为土方开挖时坡率控制不好或地勘资料不准确,造成开挖深度大于预计深度,出现基坑坑壁坡率小于设计值的情况,使基坑坑壁处于不稳定的状态,最容易出现坑壁坍塌;二是支护结构施工时未按要求进行土方开挖。在进行土钉墙支护或喷锚支护结构施工时,按照规范要求,应根据土钉或锚杆的排距分层开挖,开挖一层土方后立即进行支护,待支护结构达到设计要求后再开挖下一层土方。但现场施工时,常因土方开挖作业与护壁施工未紧密配合,土方挖运速度,坑壁直立土方大面积长时间裸露,为坑壁坍塌创造了条件。 1.3 对地表水的处理不重视 基坑施工的“水患”一是地下水,二是地表水。由于地下水处理不好将直接影响基础工程的施工并对基础坑坑壁的稳定性造成威胁,因此建筑工程相关各方都对地下水的处理非常重视,从勘察、设计和资金投入等方面均能得到保证。现在,成都地区普遍采用管井降水,降水效果良好,有效地消除了地下水对基坑坑壁的不良影响。另外,地表水对基坑坑壁稳定性的作用同样影响很大。地表水可分为“一明一暗”两种情况“,明”主要是指施工现场内地面可能出现的地表水,如雨水、施工用水、从降水井中抽出的地下水等“;暗”主要是指基坑周边地面以下的管网渗漏、爆管等产生的地表水。

深基坑开挖支护工程监理实施细则

深基坑开挖支护工程 监理实施细则 一、工程概况 本工程,主体建筑24层,裙楼4层,地下1层,设计为框架剪力墙结构,建筑物高度为85.3m,总建筑面积为36316.2m2,地上建筑面积30038 m2,地下建筑面积6278.2m2。  地下基础开挖深度为-7.45m,局部开挖深度为- 10.25m,地基基础为钢筋混凝土筏板基础,以天然地基为持力层。 二、环境概况 施工现场四周环境复杂建筑物稠密 1、基坑东侧为1栋已建1层建筑,砖混结构,浅基础,建筑外轮廓线距地下室外墙边最近处约6m,需保护。 2、基坑北侧为1栋已建3~4层建筑,砖混结构,浅基础,建筑外轮廓线距地下室外墙边最近处约8.5米;该侧西边围墙外有一配电柜,围墙外有雨、污水管及自来水管,需重点保护。北侧西半段外为渔市口路,路边距地下室外墙约5.5米。 3、基坑西侧围墙外为东大街,紧靠围墙为沿街商铺,在基坑施工前搬迁,街道一侧为人民商场,为3~4层建筑,框架结构,该侧地下室外墙距其外墙边最近处约15m需重点保护。

4、基坑南侧有2栋已建2~3层建筑,砖混结构,浅基础,建筑外轮廓线距地下室 外墙边最近处约10m该侧围墙外道路下埋有电缆,需保护。 三、基坑安全等级 综合本基坑挖深,周边环境等因素,确定本基坑的安全等级为二级,重要性系数1. 0 四、工程地质条件? 本工程场地土类型属中压缩性、中硬场地土,属基本稳定区。场区内无液化土层分布 。场地地下水常年最高水位埋深为1.5米,年变化幅度为1.0米左右。?五、工程特点 1.开挖面宽,开挖深度大,开挖时间要求紧。故只能用分段分层开挖,根据进度需要,视 施工现场条件的可能,适当考虑部分工序搭接进行。   2.本工程地下水主要赋存于上部杂填土中,下部土层为隔水层且含水量小,基坑所在 场地地表土体已被下挖约2~3米,场地标高- 2.00~+0.00;基坑挖深4.3m~6.8m。 现场查看发现坑内基本干燥,本工程不做专门的止降水措施,采用坑内布设明沟加集水 井的方式明排坑中地下水。?六、实施监理工作依据 1.《建筑结构荷载规范》(GB50009—2001) 2、《建筑地基基础设计规范》(GB50007—2002) 3、《混凝土结构设计规范》(GB50010—2002) 4、《锚杆喷射混凝土支护技术规范》(GB50086—2001) 5、《建筑地基基础工程施工质量验收规范》GB50202—2002

基坑支护结构设计原则

基坑支护结构设计原则与勘察要求 基坑支护结构设计原则与勘察要求 3.1 设计原则 3.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。 3.1.2 基坑支护结构极限状态可分为下列两类: 1 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; 2 正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 3.1.3 基坑支护结构设计应根据表3.1.3选用相应的侧壁安全等级及重要性系数。 表3.1.3 基坑侧壁安全等级及重要性系数 安全等级破坏后果Υ0 一级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 1.10 结构施工影响很严重 二级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 1.00 结构施工影响一般 三级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 0.90 结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。 3.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 3.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 3.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算。 1 基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括: 1) 根据基坑支护形式及其受力特点进行土体稳定性计算; 2) 基坑支护结构的受压、受弯、受剪承载力计算; 3) 当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。 2 对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 3 地下水控制验算: 1) 抗渗透稳定性验算; 2) 基坑底突涌稳定性验算;

建筑基坑支护规范

建筑基坑支护规范 《建筑基坑支护技术规范》基本概况: 《建筑基坑支护规范》为了在建筑基坑支护设计、施工中做到安全适用、保护环境、技术先进、经济合理、确保质量,制定本规程。 《建筑基坑支护规范》关于发布北京市地方标准《建筑基坑支护技术规程》的通知。京建科教【2007】766号。 《建筑基坑支护规范》关于同意北京市《建筑基坑支护技术规程》地方标准备案的函。建标标备便【2007】24号。 《建筑基坑支护技术规程》本规程适用于一般地质条件下临时性建筑基坑支护的勘察、设计、施工、检测、基坑开挖与监测。对湿陷性土、多年冻土、膨胀土、盐渍土等特殊土或岩石基坑,应结合当地工程经验应用本规程,并应符合相关技术标准的规定。 《建筑基坑支护技术规程》的主要内容包括:总则、术语、符号、基本规定、放坡、排桩、地下连续墙、土钉墙、地下水控制等内容。其中相关内容如下: 3.1.4支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 3.1.5当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地

下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 3.1.6根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算: 1基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括:1)根据基坑支护形式及其受力特点进行土体稳定性计算; 2)基坑支护结构的受压、受弯、受剪承载力计算; 3)当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。 2对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 3地下水控制计算和验算: 1)抗渗透稳定性验算; 2)基坑底突涌稳定性验算; 3)根据支护结构设计要求进行地下水位控制计算。 3.7.2基坑边界周围地面应设排水沟,对坡顶、坡面、坡脚采取降排水措施。 3.7.3基坑周边严禁超堆荷载。 3.7.3基坑周边严禁超堆荷载。 3.7.5基坑开挖过程中,应采取措施防止碰撞支护结构、工程桩或扰动基底原状土。 8.1.4当基坑底为隔水层且层底作用有承压水时,应进行坑底突涌验算,

建筑基坑支护设计规范

建筑基坑支护设计规范 《建筑基坑支护设计规范》基本概况: 《建筑基坑支护设计规程》本规程适用于一般地质条件下临时性建筑基坑支护的勘察、设计、施工、检测、基坑开挖与监测。对湿陷性土、多年冻土、膨胀土、盐渍土等特殊土或岩石基坑,应结合当地工程经验应用本规程,并应符合相关技术标准的规定。 《建筑基坑支护设计规程》的主要内容包括:总则、术语、符号、基本规定、放坡、排桩、地下连续墙、土钉墙、地下水控制等内容。 建筑施工企业对建筑基坑支护设计规程中基坑内支撑结构形式内容怎么规定: 4.9.3 内支撑结构应综合考虑基坑平面的形状、尺寸、开挖深度、周边环境条件、主体结构的形式等因素,选用下列内支撑形式: 1 水平对撑或斜撑,可采用单杆、桁架、八字形支撑; 2 正交或斜交的平面杆系支撑; 3 环形杆系或板系支撑; 4 竖向斜撑。 说明: 内支撑结构形式很多,从结构受力形式划分,可主要归纳为以下几类 1、水平对撑或斜撑,包括单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆系或板系支撑;

4、竖向斜撑。每类内支撑形式又可根据具体情况有多钟布置形式。 一般来说,对面积不大、形状规则的基坑常采用水平对撑或斜撑;对面积较大或形状不规则的基坑有时需采用正交或斜交的平面杆系支撑;对圆形、方形及近似圆形的多边形基坑,为能行成较大开挖空间,可采用环形杆系或环形板系支撑;对深度较浅、面积较大的基坑,可采用竖向斜撑,但需注意,在设置斜撑基础、安装竖向斜撑前,无撑支护结构应能够满足承载力、变形和整体稳定性要求。对各类支撑形式,支撑结构的布置要重视支撑体系总体刚度的分布,避免突变,尽可能使水平力作用中心与支撑刚度中心保持一致。 附件:建筑基坑支护技术规程

基坑支护中最新强制性规范条文

基坑支护中的强制性规范条文(2013最新版) JGJ 120-2012 《建筑基坑支护技术规程》 3.1.2 基坑支护应满足下列功能要求: 1 保证基坑周边建(构)筑物、地下管线、道路的安全和正常使用; 2 保证主体地下结构的施工空间。 8.1.3 当基坑开挖面上方的锚杆、土钉、支撑未达到设计要求时,严禁向下超挖土方。 8.1.4 采用锚杆或支撑的支护结构,在未达到设计规定的拆除条件时,严禁拆除锚杆或支撑。 8.1.5 基坑周边施工材料、设施或车辆荷载严禁超过设计要求的地面荷载限值。 8.2.2 安全等级为一级、二级的支护结构,在基坑开挖过程与支护结构使用期内,必须进行支护结构的水平位移监测和基坑开挖影响范围内建(构)筑物、地面的沉降监测。 GB50497-2009《建筑基坑工程监测技术规范》 3.0.1 开挖深度超过5m、或开挖深度未超过5m 但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程监测。 3.0.2 建筑基坑工程设计阶段应由设计方根据工程现场及基坑设计的具体情况,提出基坑工程监测的技术要求,主要包括监测项目、测点位置、监测频率和监测报警值等。 3.0.3 基坑工程施工前,应由建设方委托具备相应资质的第三方对基坑工程实施现场监测。监测单位应编制监测方案。监测方案应经建设、设计、监理等单位认可,必要时还需与市政道路、地下管线、人防等有关部门协商一致后方可实施。 监测方案应包括工程概况、监测依据、监测目的、监测项目、测点布置、监测方法及精度、监测人员及主要仪器设备、监测频率、监测报警值、异常情况下的监测措施、监测数据的记录制度和处理方法、工序管理及信息反馈制度等。GB 50739-2011 《复合土钉墙基坑支护技术规范》 6.1.3 土方开挖应与土钉、锚杆及降水施工密切结合,开挖顺序、方法应与设计工况相一致;复合土钉墙施工必须符合“超前支护,分层分段,逐层施作,限时封闭,严禁超挖”的要求。

相关文档
相关文档 最新文档