文档库 最新最全的文档下载
当前位置:文档库 › Manufacture of large uniform droplets using rotating membrane emulsification

Manufacture of large uniform droplets using rotating membrane emulsification

Manufacture of large uniform droplets using rotating membrane emulsification
Manufacture of large uniform droplets using rotating membrane emulsification

Journal of Colloid and Interface Science299(2006)

396–402

https://www.wendangku.net/doc/f617806244.html,/locate/jcis

Manufacture of large uniform droplets using rotating membrane

emulsi?cation

Goran T.Vladisavljevi′c a,?,Richard A.Williams b

a Institute of Food Technology and Biochemistry,Faculty of Agriculture,University of Belgrade,P.O.Box127,YU-11081Belgrade-Zemun,Serbia&Montenegro

b Institute of Particle Science&Engineering,School of Process,Environmental&Materials Engineering,University of Leeds,Clarendon Road,Leeds,LS29JT,

United Kingdom

Received11November2005;accepted28January2006

Available online23March2006

Abstract

A new rotating membrane emulsi?cation system using a stainless steel membrane with100μm laser drilled pores was used to produce oil/water emulsions consisting of2wt%Tween20as emulsi?er,paraf?n wax as dispersed oil phase and0.01–0.25wt%Carbomer(Carbopol ETD2050) as stabilizer.The membrane tube,1cm in diameter,was rotated inside a stationary glass cylinder,diameter of3cm,at a constant speed in the range50–1500rpm.The oil phase was introduced inside the membrane tube and permeated through the porous wall moving radially into the continuous phase in the form of individual droplets.Increasing the membrane rotational speed increased the wall shear stress which resulted in a smaller average droplet diameter being produced.For a constant rotational speed,the average droplet diameter increased as the stabilizer content in the continuous phase was lowered.The optimal conditions for producing uniform emulsion droplets were a Carbomer content of0.1–0.25wt% and a membrane rotational speed of350rpm,under which the average droplet diameter was105–107μm and very narrow coef?cients of variation of4.8–4.9%.A model describing the operation is presented and it is concluded that the methodology holds potential as a manufacturing protocol for both coarse and?ne droplets and capsules.

?2006Elsevier Inc.All rights reserved.

Keywords:Membrane emulsi?cation;Monodisperse emulsion;Rotating membrane emulsi?cation;Stainless steel membrane

1.Introduction

Conventional emulsi?cation devices,such as high-pressure homogenizers and rotor–stator systems,generally use inhomo-geneous extensional and shear forces and high energy inputs per unit volume to rupture droplets[1].As a result they gener-ate emulsions with wide droplet size distributions and relatively small mean droplet sizes,up to several micrometers.Further, batch-to-batch consistency is often poor even when similar ex-perimental conditions are deployed.However,some important potential uses of emulsions require the production of larger uni-form droplets with a mean size ranging up to several hundreds of micrometers,e.g.,in the manufacture of a variety of coherent and structured microparticles and microcarriers through poly-*Corresponding author.Fax:+38111199711.

E-mail addresses:gtvladis@afrodita.rcub.bg.ac.yu(G.T.Vladisavljevi′c), r.a.williams@https://www.wendangku.net/doc/f617806244.html,(R.A.Williams).merization,gelation,and other secondary reactions/processes in the emulsi?ed droplets.

Development of emulsi?cation methods for producing uni-form droplets are rooted in one of two possible manufacturing approaches[2]:

–equipment designs that seek to(a)reduce of process length scales of the turbulent perturbations in the shearing/mixing processes that rupture the liquids,and(b)enhance the de-gree of uniformity of the shear within the emulsifying chamber;

–the creation of droplets individually(drop-by-drop).

Our work here is concerned with the second route.Several single-drop technologies have been developed for generating uniform droplets,such as injection of liquid through a cap-illary into another co-?owing immiscible?uid[3,4],penetra-tion of dispersed phase through microfabricated parallel silicon

0021-9797/$–see front matter?2006Elsevier Inc.All rights reserved. doi:10.1016/j.jcis.2006.01.061

G.T.Vladisavljevi′c,R.A.Williams/Journal of Colloid and Interface Science299(2006)396–402397

channels[5]or interconnected channel network in micro?uidic devices[6,7],and injection of dispersed phase through micro-porous membranes of different nature(glass,ceramic,metal-lic,polymeric)[8–14].Production of various particulate prod-ucts,such as microspheres and microcapsules,using membrane emulsi?cation routes was recently reviewed by Vladisavljevi′c and Williams[15].

Some speci?c attributes of existing systems will be con-sidered brie?y.‘Direct membrane emulsi?cation’involves the direct(in situ)formation of droplets by extruding a pure dis-persed phase through the membrane into the continuous phase. In‘premix membrane emulsi?cation,’?ne emulsions are pro-duced by homogenization of coarsely emulsi?ed feeds through the membrane[16].In order to stimulate droplet detachment from the pore outlets in the direct emulsi?cation,shear stress is generated at the membrane/continuous phase interface by re-circulating the continuous phase through the membrane in cross ?ow[8]or by agitation in a stirring vessel[17].Zhu and Barrow [18]have introduced membrane vibration,through piezoactu-ation,to help the detachment of droplets and provide an extra control over droplet detachment in cross?ow membrane emulsi-?cation.The preliminary results showed that a vibrating mem-brane had a signi?cant effect in reducing the average size of emulsion droplets but only at very low frequencies(0–100Hz).

The typical coef?cients of variation CV1of droplet sizes in the direct emulsi?cation using porous glass membranes in cross?ow or stirring systems are in the range of7–20%and the mean droplet sizes range from less than1μm to over 60μm[15].The typical CV values in microchannel emulsi-?cation are less than5%and the mean droplet sizes range from several microns to100μm[19].Performing direct emul-si?cation using rectilinear silicon microchannels with oblong cross section,Kobayashi et al.[20]obtained highly uniform droplets with the CV values of less than2%.They concluded that an elongated cross section of the channels contributed de-cisively to the formation of monodispersed droplets with and without a continuous phase?ow.In order to produce emul-sion droplets with a CV below2%,the slot aspect ratio of the straight-through microchannels should exceed a critical value of3[20].

Schadler and Windhab[21,22]have studied continuous production of W/O emulsions using a rotating nickel mem-brane with carbon coating deposited on the porous substrate by the plasma-enhanced chemical vapour deposition(PECVD) method.The rotating membrane was mounted coaxially inside an outer cylinder and the dispersed phase was forced through the membrane at a?xed?ow rate of12l/h.The continuous phase was pumped through the gap at different?ow rates to ad-just the dispersed phase fraction.With increasing the gap width the droplet size decreased,but the disperse phase volume frac-tion did not in?uence the droplet size[22].

The rotating membrane concept has been applied earlier in dynamic membrane?lters,which can be designed as rotating

1For a speci?c size distribution the coef?cient of variation is de?ned as CV= (σ/d av)×100,whereσis the standard deviation of the droplet diameters and d av is the number-average droplet diameter.disk membranes[23]or rotating cylindrical membranes[24]. These?lters are most applicable to the clari?cation of very high concentration suspensions and the separation of biologi-cal products[25].

A novel rotating membrane emulsi?cation system utilizing a small diameter stainless steel membrane with uniformly spaced laser drilled pores has been investigated in this work.Fig.1A shows a continuous membrane emulsi?cation system with a ro-tating cylindrical membrane mounted in a stationary vessel.

A pure continuous phase is slowly passed upwards into the annulus between the stationary vessel and the membrane tube and a product emulsion is discharged from the top of the ves-sel.The shear stress is developed by rotating the membrane rather than by?owing the continuous phase,since the cross-?ow velocity is negligible.The requirement for circulation of the continuous phase along the membrane surface can thus be totally https://www.wendangku.net/doc/f617806244.html,pared with cross membrane emulsi?cation methods[2,14]this can be particularly advantageous to the pro-duction of coarse emulsions and fragile structured products, in which the droplets and/or particles are subject to breakage during the pump circulation.The dispersed phase passes ra-dially through the porous membrane wall and forms droplets moving into the continuous phase.At high rotational speeds a foot-bearing can be used to avoid the excessive vibration of the membrane tube.The experimental batch rotating mem-brane system used in this work for emulsi?cation experiments is shown in Fig.1B,and will be described further in Section2. In this case a smaller gap is used although the conditions em-ployed did not enter the regime of Taylor vortices in the annu-

lus.

Fig.1.(A)Schematic view of continuous rotating membrane emulsi?cation system.(B)Batch rotating membrane system used in this work.

398G.T.Vladisavljevi′c ,R.A.Williams /Journal of Colloid and Interface Science 299(2006)396–402

Table 1

The composition and properties of O/W emulsions produced in this work Aqueous (continuous)phase

2%(wt/wt)Tween 20and 0.01,0.05,0.1or 0.25%(wt/wt)Carbomer dissolved in distilled water Oil (dispersed)phase

Paraf?n wax Apparent viscosity of continuous phase at 20?C and 9.2s ?1(350rpm) 5.3–831mPa s Equilibrium interfacial tension at 20?C

6.4mN /m Average diameter of droplets d av =79–259μm Coef?cient of variation of droplet diameters

CV =4.8–20%

2.Experimental 2.1.Materials

Table 1lists the composition and properties of O/W emul-sions produced in this work.2%(wt/wt)Tween 20(poly-oxyethylene sorbitan monolaureate),purchased from Fisher Chem.,UK was used as a water soluble emulsi?er and 0.01–0.25%(wt/wt)Carbomer (Carbopol ETD 2050)obtained from Surfachem Ltd.,Leeds,UK was added as a stabilizer.Car-bopol ETD 2050is a trade name of B.F.Goodrich Co.for a crosslinked polyacrylic acid polymer.The dispersed oil phase was paraf?n wax (cat.no.76234)supplied from Fluka.2.2.Experimental set-up and procedure

The experiments have been carried out using a tubular stain-less steel membrane with laser-drilled pores.The geometric characteristics of the membrane are given in Fig.2.The mem-brane pores with a mean size of approximately 100μm are arranged in a cubic array,with an average pitch of 500μm.The wall porosity was 3%and the effective membrane area was 26.7cm 2.The membrane tube was mounted on an IKA Eu-rostar digital overhead stirrer and situated in a stationary glass cylinder with an inner diameter of 30mm.The width of annular gap between the rotating membrane and the stationary cylinder was 10mm.The amount of continuous aqueous phase in the cylinder was 100ml and the membrane rotational speed in each experiment was kept constant between 50and 1500rpm.

The oil was introduced inside the membrane tube by a pipette and permeated through the porous wall under the driving force of a hydrostatic head.The minimum pressure p cap at which the dispersed phase can permeate through the membrane is given by:(1)

p cap =

4γ∞cos θ

d p

,where γ∞is the equilibrium interfacial tension between the continuous and dispersed phase and θis the contact angle between the dispersed phase and the membrane surface in con-tinuous phase.In this work,γ∞=6.4×10?3N /m and the contact angle θbetween the dispersed phase and the

membrane

Fig.2.Dimensions and pore arrangement of stainless steel membrane used in this work.

surface could be assumed zero.Therefore,from Eq.(1)a value for p cap is estimated as 256Pa for d p =1×10?4m,which corresponds to a hydrostatic head of only 26mm at the oil den-sity of 1000kg /m 3.The driving pressure in the experiments was slightly higher than the capillary pressure,therefore about 300Pa.

The aim of this study was to investigate the in?uence of the membrane rotational speed and the stabilizer content on the properties of the resultant emulsions (the mean droplet diame-ter and the CV)and to ?nd the optimal conditions for producing monodispersed droplets.

2.3.Determination of the average droplet diameter

The number-average diameter,d av ,of droplets was observed directly by means of a Nikon model SMZ800stereoscopic mi-croscope using 4×zoom ratio.The average diameter was de-termined by manual counting and measuring a large number (typically several hundred)of droplets which were lying in such a position as to present at least a semicircle of silhouette.The uniformity of the droplet sizes was expressed in terms of the coef?cient of variation (relative standard deviation).

G.T.Vladisavljevi′c,R.A.Williams/Journal of Colloid and Interface Science299(2006)396–402399

2.4.Rheological characterization

Flow curves were obtained for different Carbomer levels

in the continuous phase with a stress rate controlled rheome-

ter(Bohlin CVOR150)over shear rate regions pertinent to

experimental conditions in the rotating membrane emulsi?er

(1–40s?1).All data were obtained at20?C using concentric

cylinder measurement geometry.Data are presented in the form

of viscosity–shear rate curves.

3.Results and discussion

Flow curves of the continuous phase as a function of sta-

bilizer content are shown in Fig.3.It is seen that the appar-

ent viscosity of the continuous phase strongly depends on the

shear rate applied at the membrane surface and the content of

stabilizer added.Under laminar?ow conditions in the annu-

lar space,the shear rate at the membrane surface is directly

proportional to the membrane rotational speed,but depends sig-

ni?cantly on the width of the annular gap between the rotating

membrane and the stationary cylinder.In this work,the mem-

brane rotational speed n1was in the range of50–1500rpm

and the radius of the membrane tube and stationary cylinder

was R1=0.005m and R2=0.015m,respectively.Substitut-

ing these values into Eq.(A.8)in the Appendix gives values

for the shear rate at the membrane surface in the range of1.3–

39.3s?1.

As shown in Fig.4,the average droplet diameter decreases

with increase in membrane rotational speed and stabilizer con-

tent,as the shear force at the membrane surface,which is a

major force driving the droplet detachment,in both cases in-

creases.The effect of rotational speed on the mean droplet size

found here is similar to the effect of cross?ow velocity in cross-

?ow membrane emulsi?cation[10].However,it is especially

important to note that the droplet/pore size ratio for the given

stainless steel membrane is much smaller than for the Shirasu

porous glass(SPG)and ceramic membranes investigated by

Vladisavljevi′c et al.[10].For the stabilizer content of at

least

Fig.3.Flow curves of the continuous phase at four different stabilizer contents. The range of shear rates applied in the experiments is shown by the arrows.0.1%and the membrane rotational speeds exceeding550rpm, the average droplet diameter was even smaller than the mean pore size d p,as can be seen in Fig.4.For a stabilizer content of 0.05–0.1%,the optimal rotational speed with regard to droplet size uniformity was found to be350rpm.For a small stabilizer content of0.01%,however,the rotational speed of1100rpm was more favorable than350rpm(the CV was11.3and10.8% for350and1100rpm,respectively).It shows that the optimal membrane rotational speed with regard to droplet size unifor-mity decreases with increase in stabilizer content.The effect of membrane rotational speed on the mean droplet size was much more marked for a lower Carbomer content in the continuous phase.For example,as n1increased from350to1100rpm, a twofold reduction in d av was observed for a0.01%Carbomer and only by15%for a0.1%Carbomer.

As shown in Fig.5,for an n1value of350rpm,the average droplet diameter decreases with increasing the apparent vis-cosity of continuous phase,i.e.the stabilizer content,but only in the range of5.3–340mPa s.This corresponds to the

Car-Fig.4.Effect of membrane rotational speed on the average droplet diameter and the coef?cient of variation of droplet diameters for three different stabilizer

contents.

Fig.5.Effect of apparent continuous phase viscosity on the average droplet diameter,and the CV at a?xed rotational speed of350rpm.The particle size distributions corresponding to the data points A,B,and C are shown in insets.

400G.T.Vladisavljevi′c ,R.A.Williams /Journal of Colloid and Interface Science 299(2006)

396–402

(a)

(b)

Fig.6.Micrographs of the emulsion droplets produced at a ?xed speed of rota-tion of 350rpm using two different stabiliser contents:(a)0.1wt%Carbomer;

(b)0.01wt%Carbomer.

bomer content of 0.01–0.1%.In the range of Carbomer content of 0.1–0.25%,both d av and CV were independent of the sta-bilizer content.Therefore,in order to obtain uniform droplets at 350rpm,the Carbomer content in the aqueous phase should exceed a critical value of 0.1%.Under these conditions,the av-erage droplet size is some 5–7%larger than the pore size and the CV is slightly less than 5%,which is similar to the CVs reported in emulsi?cation using grooved-type silicon microchannels [5].For a Carbomer content of 0.25%,the CV was only 4.8%at 350rpm and almost all droplet diameters lied in a narrow range between 90and 110μm (the point C in Fig.5).For a small Carbomer content of 0.01%(the point A in Fig.5),less uni-form and much larger droplets were produced,due to smaller shear forces in the continuous phase.The strong effect of Car-bomer content on the size of produced droplets is obvious from Figs.6a and 6b .The droplets in both ?gures were produced at the same membrane rotational speed of 350rpm,but the stabi-lizer content was varied by a factor of 10.

For a rotational speed of 1500rpm and a Carbomer con-tent of 0.1%,polydispersed droplets with a CV value of 20%and an average droplet diameter 17%smaller than the pore size were produced,as shown in Fig.7.This is believed to be a consequence of partial droplet break-up into smaller

daughter

Fig.7.Particle size distribution data obtained under different operating condi-

tions.

Fig.8.Micrograph of the emulsion droplets produced at 1500rpm and a Car-bomer content of 0.1wt%(d av =83μm,CV =20%).

droplets under the in?uence of high shear forces.Fig.8is a typical micrograph of emulsion droplets produced at 1500rpm.Spontaneous detachment of droplets was not possible under stagnant conditions (n 1=0),due to circular cross section of the pores,which resulted in the formation of large and highly polydispersed droplets under these conditions (Fig.9).The same type of droplet formation behaviour was found earlier by Kobayashi et al.[19]in silicon-based microfabricated channel devices with linear circular pores.4.Conclusions

Emulsion droplets with an average diameter of 79–259μm and a CV in the range of 4.8–20%have been produced us-ing a stainless membrane with 100μm diameter pores rotating with a speed of 50–1500rpm in a stationary glass cylinder.Both the average droplet diameter and CV decreased with in-crease in stabilizer content,i.e.continuous phase viscosity.In the range of stabilizer content between 0.1and 0.25wt%,the average droplet diameter and CV were unaffected by the sta-bilizer content.The optimal membrane rotational speed with

G.T.Vladisavljevi′c ,R.A.Williams /Journal of Colloid and Interface Science 299(2006)396–402

401

(a)

(b)

(c)

Fig.9.(a)Droplet size distributions for emulsions produced under stagnant con-ditions (0rpm)and 50rpm.(b)Micrograph of the emulsion droplets produced at 50rpm.(c)Micrograph of the droplets produced under stagnant conditions.The Carbomer content was ?xed at 0.1wt%.

regard to droplet size uniformity for a stabilizer content of 0.1–0.25wt%was 350rpm.Under these conditions,the CV was less than 5%and the average droplet diameter was 5–7%larger than the pore size.Spontaneous detachment of droplets was not possible under stagnant conditions resulted in highly polydis-persed droplets with a CV of 55%.For a rotational speed of 1500rpm,due to partial droplet break-up into smaller daughter

droplets,an average droplet diameter was 17%smaller than the

pore size and a CV was 20%.Further experiments are needed to investigate the in?uence of pressure,the type of emulsi?er,annular gap,membrane hydrophobicity and ultra high speed ro-tation on emulsi?cation.

The results demonstrate the potential for the rotating mem-brane methods as a emulsi?cation method for manufacturing droplets with a consistent and selectable droplet size.Through judicious choice of membrane,continuous phase viscosity (if this can be carried)and rotation rate,it is feasible to tune pro-duction characteristics.Similar principles are expected to apply to the production of ?ner emulsions.

Acknowledgments

This work is supported by a Royal Society (UK,London)short-term grant.Thanks are due to David Gladman (Emulsion Systems Ltd.,Guildford)for valuable advice in experimental development.Appendix A

Consider two cylinders with radii of R 1and R 2rotating at a constant angular velocity of ω1and ω2,respectively.The annu-lar gap between the two cylinders is occupied by an incompress-ible ?uid moving in the axial direction due to ?uid viscosity.Under steady-state conditions,v r =v z =0and ?/?θ=0,and the equation of continuity becomes:(A.1)

?v r

=0∴

v r =v r (r).

Navijer–Stokes equations are simpli?ed to Eqs.(A.2),(A.3)and (A.4):

(A.2)v 2θr =?p ?r ,(A.3)νd d r 1r d (rv θ)d r =0,(A.4)

?p

?z

=0∴p =p(r),where νis the kinematic viscosity of ?uid and r is the radial distance.The integration of Eq.(A.3)using the boundary con-ditions:r =R 1:v θ=R 1ω1and r =R 2:v θ=R 2ω2yields the velocity pro?le:v θ=

1(R 22?R 21)(A.5)

× ω2R 22?ω1R 21

r ?R 21R 22r

(ω2?ω1) .Hence the ?uid velocity is independent of its viscosity.The integration of Eq.(A.2)using Eq.(A.4)and the boundary con-dition:r =R 1:p =p 1,gives the pressure pro?le in the radial direction:

402G.T.Vladisavljevi′c ,R.A.Williams /Journal of Colloid and Interface Science 299(2006)396–402

p =p 1+ρ(R 22?R 21

) ω2R 22?ω1R 21

2r 2?R 21

2?2R 21

R 22(ω2?ω1) ω2R 22?ω1R 21 ln r R 1

(A.6)

?R 41R 422(ω2?ω1)2 1

r 2?1R 21

.

The tangential stress at any cylindrical plane can be derived

from Eq.(A.7).For example,the tangential stress on the sur-face of the inner cylinder for ω2=0is

(A.7)τrθ,r =R 1=η r ??r v θr r =R 1=?2ηR 21ω1

R 2?R 1.The shear rate at the surface of the inner cylinder for ω2=0is s rθ,r =R 1=?τrθ,r =R 1/η=

2R 21ω1R 22?R 21

(A.8)

=

2R 21(2πn 1

/60)R 22?R 21

=

πR 21n 115(R 22?R 21

),where ω1is the angular velocity in rad /s and n 1is the rotational

speed in rpm.References

[1]H.Karbstein,H.Schubert,Chem.Eng.Process.34(1995)205.[2]R.A.Williams,Ingenia 7(February 2001)1.

[3]C.Cramer,P.Fischer,E.J.Windhab,Chem.Eng.Sci.59(2004)3045.[4]

B.Walther,

C.Cramer,A.Tiemeyer,L.Hamberg,P.Fischer,E.J.Wind-hab,A.Hermansson,J.Colloid Interface Sci.286(2005)378.

[5]S.Sugiura,M.Nakajima,N.Kumazawa,S.Iwamoto,M.Seki,J.Phys.

Chem.B 106(2002)9405.

[6]T.Nisisako,T.Torii,T.Higuchi,Chem.Eng.J.101(2004)23.

[7]J.D.Tice,H.Song,A.D.Lyon,R.F.Ismagilov,Langmuir 19(2003)9127.[8]T.Nakashima,M.Shimizu,M.Kukizaki,Adv.Drug Deliv.Rev.45(2000)

47.

[9]G.T.Vladisavljevi′c ,S.Tesch,H.Schubert,Chem.Eng.Process.41(2002)

231.

[10]G.T.Vladisavljevi′c ,https://www.wendangku.net/doc/f617806244.html,mbrich,M.Nakajima,H.Schubert,Colloids

Surf.A 232(2004)199.[11]G.T.Vladisavljevi′c ,H.Schubert,Desalination 144(2002)167.[12]G.T.Vladisavljevi′c ,H.Schubert,J.Membr.Sci.225(2003)15.[13]G.T.Vladisavljevi′c ,H.Schubert,J.Dispersion Sci.Technol.24(2003)

811.

[14]R.A.Williams,S.J.Peng,D.A.Wheeler,N.C.Morley,D.Taylor,M.

Whalley,D.W.Houldsworth,Chem.Eng.Res.Des.A 76(1998)902.[15]G.T.Vladisavljevi′c ,R.A.Williams,Adv.Colloid Interface Sci.113(2005)

1.

[16]G.T.Vladisavljevi′c ,M.Shimizu,T.Nakashima,J.Membr.Sci.244(2004)

97.

[17]S.Omi,A.Matsuda,K.Imamura,M.Nagai,G.H.Ma,Colloids Surf.

A 153(1999)373.

[18]J.Zhu,D.Barrow,J.Membr.Sci.261(2005)136.

[19]I.Kobayashi,M.Nakajima,K.Chun,Y .Kikuchi,H.Fujita,AIChE J.48

(2002)1639.

[20]I.Kobayashi,S.Mukataka,M.Nakajima,J.Colloid Interface Sci.279

(2004)277.

[21]V .Schadler,E.J.Windhab,Chem.Ing.Technol.76(2004)1392.

[22]V .Schadler,E.J.Windhab,Proceed.10th Aachen Membrane Colloquium,

March 2005,p.585.

[23]J.Engler,M.R.Wiesner,Chem.Eng.Sci.34(2000)557.

[24]C.K.Choi,J.Y .Park,W.C.Park,J.J.Kim,J.Membr.Sci.157(1999)177.[25]A.Brou,M.Y .Jaffrin,L.H.Ding,J.Courtois,Biotechnol.Bioeng.82

(2003)429.

中国姓氏英文翻译大全S-Z

A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong 焦--Chiao 金/靳--Jin/King 景/荆--King/Ching

衣服尺码尺寸对应表

说明:裤子上的尺码,如160/68A,160是指身高,68表示腰围,A代表体型;体型分类:A正常体B偏胖体C肥胖体Y偏瘦体 说明:34号到38号是属于超大尺寸的超大号牛仔裤 尺寸、裤长测量方法: 1、腰围 裤子腰围:两边腰围接缝处围量一周;净腰围:在单裤外沿腰间最细处围量一周,按需要加放尺寸; 2、臀围 裤子臀围:由腰口往下,裤子最宽处横向围量一周;净臀围:沿臀部最丰满处平衡围量一周,按需要加放松度;

3、裤长 由腰口往下到裤子最底边的距离;休闲裤、牛仔裤裤长不含脚口贴边,脚口贴边另预留3-4CM长供自行缭边使用; 4、净裤长 由腰口到您裤子的实际缭边处的距离;男士净裤长标准测量长度在:皮鞋鞋帮 身高裤长对照表 身高(CM) 裤长(市尺) 裤长(CM) 160~165 2尺9寸97 165~170 3尺100 170~175 3尺1寸103 175~180 3尺2寸107 180~185 3尺3寸110 男式衬衫尺码对照表单位(厘米) 身高/胸围尺码身高腰围肩宽胸围衣长袖长165/84Y 37165 94 44 104 78 58 165/88Y 38165 98 45 108 78 59.5

170/92Y 39170 102 46 112 79 59.5 175/96Y 40175 106 47 115 79 60.5 175/100Y 41175 110 48 118 80 60.5 180/104Y 42180 113 49 121 81 61.5 180/108Y 43180 116 50 124 81 61.5 185/112Y 44185 119 51 126 82 62.5 185/116Y 45185 122 51 128 82 62.5 185/120Y 46185 124 52 130 83 64 注:(身高/胸围)为净尺寸。一般实际紧腰围和成衣相差12~22厘米。 女式衬衫尺码对照表单位(厘米) 规格尺码肩宽胸围腰围下摆围后衣长短袖长短袖口长袖长长袖口155/80 3537 86 71 89 56 19.5 30 54 21 155/83 3638 89 74 92 57 19.5 31 55 22 160/86 3739 92 77 95 58 20 32 56 22 160/89 3840 95 80 98 59 20 33 56 23 165/92 3941 98 83 101 60 20.5 34 57 23 165/95 4042 101 86 104 61 20.5 35 57 24 170/98 4143 104 89 107 62 21 36 58 24 170/101 4244 107 92 110 63 21 37 58 25 173/104 4345 110 95 113 64 21.5 38 59 25 注:尺寸表中的规格表示为(身高/胸围净尺寸)的参考尺寸。 男士西服尺码对照表单位(厘米)

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

男装、女装衣服尺码对照表

男装、女装衣服尺码对照表
1、男装尺码对照表
身高 (cm)
衬衣尺码 (领围 cm)
西服尺码夹克尺码西裤尺码
(肩宽 (胸围 (腰围
cm)
cm)
cm)
西(腰裤围尺寸码) T
恤尺码
毛衣尺码 内裤尺码 统计比例
160 37(S) 44(S) 80(S) 72
28
S
S
S
0
165 38(M) 46(M) 84(M) 74,76 29
M
M
M
1
170 39(L) 48(L) 88(S) 78
30
L
L
L
2
175 40(XL) 50(XL) 92(M) 80
31
XL
XL
XL
3
180 41(2XL) 52(2XL) 96(L) 82
32
2XL
2XL
2XL
3
185 42(3XL) 54(3XL) 100(XL) 84,86 33
3XL
3XL
3XL
2
190 43(4XL) 56(4XL) 104(4XL) 88
34
4XL
4XL
4XL
1
195 44(5XL)
90
35
5XL
5XL
5XL
0
2、衬衫尺寸(除个别款尺寸,买前询问)
平铺尺寸 M
XL
胸围 97cm 99cm 101cm
肩宽 43cm 44cm 45cm
衣长 67cm 68cm 69cm
袖长 62cm 64cm 65cm
3、裤装尺码为: 26 代表腰围为:“尺” 28 代表腰围为:“尺” 30 代表腰围为:“尺” 32 代表腰围为:“尺” 34 代表腰围为:“尺” 38 代表腰围为:“尺” 42 代表腰围为:“尺” 50 代表腰围为:“尺” 54 代表腰围为:“尺”
27 代表腰围为:“尺” 29 代表腰围为:“尺” 31 代表腰围为:“尺” 33 代表腰围为:“尺” 36 代表腰围为:“尺” 40 代表腰围为:“尺” 44 代表腰围为:“尺” 52 代表腰围为:“尺”
4.女装尺码对照表
上装尺码
“女上装”尺码对照表(cm)
S
M
L
155/80A
160/84A
165/88A
XL 170/92A

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha

常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H:

韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong

衣服尺码尺寸对应表

裤子尺寸对照表1 裤子尺寸对照表2 说明:裤子上的尺码,如160/68A,160是指身高,68表示腰围,A代表体型;体型分类:A正常体B偏胖体C肥胖体Y偏瘦体 牛仔裤尺码对照表:(以下测量误差在+-2cm) 说明:34号到38号是属于超大尺寸的超大号牛仔裤

尺寸、裤长测量方法: 1、腰围 裤子腰围:两边腰围接缝处围量一周;净腰围:在单裤外沿腰间最细处围量一周,按需要加放尺寸; 2、臀围 裤子臀围:由腰口往下,裤子最宽处横向围量一周;净臀围:沿臀部最丰满处平衡围量一周,按需要加放松度; 3、裤长 由腰口往下到裤子最底边的距离;休闲裤、牛仔裤裤长不含脚口贴边,脚口贴边另预留3-4CM长供自行缭边使用; 4、净裤长 由腰口到您裤子的实际缭边处的距离;男士净裤长标准测量长度在:皮鞋鞋帮和鞋底交接处;

男式衬衫尺码对照表 单位(厘米) 身高/胸围 尺码 身高 腰围 肩宽 胸围 衣长 袖长 165/84Y 37 165 94 44 104 78 58 165/88Y 38 165 98 45 108 78 59.5 170/92Y 39 170 102 46 112 79 59.5 175/96Y 40 175 106 47 115 79 60.5 175/100Y 41 175 110 48 118 80 60.5 180/104Y 42 180 113 49 121 81 61.5 180/108Y 43 180 116 50 124 81 61.5 185/112Y 44 185 119 51 126 82 62.5 185/116Y 45 185 122 51 128 82 62.5 185/120Y 46 185 124 52 130 83 64 注:(身高/胸围)为净尺寸。一般实际紧腰围和成衣相差12~22厘米。

毕业设计(论文)外文资料翻译〔含原文〕

南京理工大学 毕业设计(论文)外文资料翻译 教学点:南京信息职业技术学院 专业:电子信息工程 姓名:陈洁 学号: 014910253034 外文出处:《 Pci System Architecture 》 (用外文写) 附件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 该生外文翻译没有基本的语法错误,用词准确,没 有重要误译,忠实原文;译文通顺,条理清楚,数量与 质量上达到了本科水平。 签名: 年月日 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 64位PCI扩展 1.64位数据传送和64位寻址:独立的能力 PCI规范给出了允许64位总线主设备与64位目标实现64位数据传送的机理。在传送的开始,如果回应目标是一个64位或32位设备,64位总线设备会自动识别。如果它是64位设备,达到8个字节(一个4字)可以在每个数据段中传送。假定是一串0等待状态数据段。在33MHz总线速率上可以每秒264兆字节获取(8字节/传送*33百万传送字/秒),在66MHz总线上可以528M字节/秒获取。如果回应目标是32位设备,总线主设备会自动识别并且在下部4位数据通道上(AD[31::00])引导,所以数据指向或来自目标。 规范也定义了64位存储器寻址功能。此功能只用于寻址驻留在4GB地址边界以上的存储器目标。32位和64位总线主设备都可以实现64位寻址。此外,对64位寻址反映的存储器目标(驻留在4GB地址边界上)可以看作32位或64位目标来实现。 注意64位寻址和64位数据传送功能是两种特性,各自独立并且严格区分开来是非常重要的。一个设备可以支持一种、另一种、都支持或都不支持。 2.64位扩展信号 为了支持64位数据传送功能,PCI总线另有39个引脚。 ●REQ64#被64位总线主设备有效表明它想执行64位数据传送操作。REQ64#与FRAME#信号具有相同的时序和间隔。REQ64#信号必须由系统主板上的上拉电阻来支持。当32位总线主设备进行传送时,REQ64#不能又漂移。 ●ACK64#被目标有效以回应被主设备有效的REQ64#(如果目标支持64位数据传送),ACK64#与DEVSEL#具有相同的时序和间隔(但是直到REQ64#被主设备有效,ACK64#才可被有效)。像REQ64#一样,ACK64#信号线也必须由系统主板上的上拉电阻来支持。当32位设备是传送目标时,ACK64#不能漂移。 ●AD[64::32]包含上部4位地址/数据通道。 ●C/BE#[7::4]包含高4位命令/字节使能信号。 ●PAR64是为上部4个AD通道和上部4位C/BE信号线提供偶校验的奇偶校验位。 以下是几小结详细讨论64位数据传送和寻址功能。 3.在32位插入式连接器上的64位卡

男装女装衣服尺码对照表

男装、女装衣服尺码对照表1、男装尺码对照表 2、衬衫尺寸(除个别款尺寸,买前询问)

3、裤装尺码为: 26代表腰围为:“尺” 27代表腰围为:“尺” 28代表腰围为:“尺” 29代表腰围为:“尺” 30代表腰围为:“尺” 31代表腰围为:“尺” 32代表腰围为:“尺” 33代表腰围为:“尺” 34代表腰围为:“尺” 36代表腰围为:“尺” 38代表腰围为:“尺” 40代表腰围为:“尺” 42代表腰围为:“尺” 44代表腰围为:“尺” 50代表腰围为:“尺” 52代表腰围为:“尺” 54代表腰围为:“尺” 4.女装尺码对照表 “女上装”尺码对照表(cm)

“女下装”尺码详细对照表(cm) 其他算法

裤子尺码对照表 26号------1尺9寸臀围2尺632号------2尺6寸臀围3尺2 27号------2尺0寸臀围2尺734号------2尺7寸臀围3尺4 28号------2尺1寸臀围2尺836号------2尺8寸臀围3尺5-6 29号------2尺2寸臀围2尺938号------2尺9寸臀围3尺7-8 30号------2尺3寸臀围3尺040号------3尺0寸臀围3尺9-4尺 31号------2尺4寸臀围3尺142号------3尺1-2寸臀围4尺1-2 牛仔裤尺码对照表 5.尺码换算参照表 女装(外衣、裙装、恤衫、上装、套装) 标准尺码明细 中国 (cm) 160-165 / 84-86 165-170 / 88-90 167-172 / 92-96 168-173 / 98-102 170-176 / 106-110 国际 XS S M L XL

双语:中国姓氏英文翻译对照大合集

[ ]

步Poo 百里Pai-li C: 蔡/柴Tsia/Choi/Tsai 曹/晁/巢Chao/Chiao/Tsao 岑Cheng 崔Tsui 查Cha 常Chiong 车Che 陈Chen/Chan/Tan 成/程Cheng 池Chi 褚/楚Chu 淳于Chwen-yu

D: 戴/代Day/Tai 邓Teng/Tang/Tung 狄Ti 刁Tiao 丁Ting/T 董/东Tung/Tong 窦Tou 杜To/Du/Too 段Tuan 端木Duan-mu 东郭Tung-kuo 东方Tung-fang F: 范/樊Fan/Van

房/方Fang 费Fei 冯/凤/封Fung/Fong 符/傅Fu/Foo G: 盖Kai 甘Kan 高/郜Gao/Kao 葛Keh 耿Keng 弓/宫/龚/恭Kung 勾Kou 古/谷/顾Ku/Koo 桂Kwei 管/关Kuan/Kwan

郭/国Kwok/Kuo 公孙Kung-sun 公羊Kung-yang 公冶Kung-yeh 谷梁Ku-liang H: 海Hay 韩Hon/Han 杭Hang 郝Hoa/Howe 何/贺Ho 桓Won 侯Hou 洪Hung 胡/扈Hu/Hoo

花/华Hua 宦Huan 黄Wong/Hwang 霍Huo 皇甫Hwang-fu 呼延Hu-yen J: 纪/翼/季/吉/嵇/汲/籍/姬Chi 居Chu 贾Chia 翦/简Jen/Jane/Chieh 蒋/姜/江/ Chiang/Kwong 焦Chiao 金/靳Jin/King 景/荆King/Ching

衣服尺寸对照表

衣服尺寸对照表 女款上装 女裤 尺码XL 3XL

女式内裤 女式泳装 女鞋 2尺4 2尺6 2尺7 2尺8 2尺9 3尺 3尺1 (市尺) 尺码 S M L XL 3XL 光脚长度 女裙对应臀围 尺码 XS/32 S/34 M/36 L/38 XL/40 腰围 63-70 70-76 80-86 86-93 93-100

文胸 80,83,85,88,9 85,88,90,93,95,9 90,93,95,98100,1 95,98,100,103,105,1 103,105,108,110,1 胸 女袜胸 68-72(cm) 73-77(cm) 78-82(cm) 83-87(cm) 88-92(cm) 03 08 13 A,B,C,D,DD A,B,C,D,DD,E 型 A,B,C,D,DD,E A,B,C,D,DD,E B,C,D,DD,E 尺 70A,70B,70C 75A,75B,75C, 80A,80B,80C 85A,85B,85C 90B,90C,90D 码 70D,70DD 75D,75DD,75E 80D,80DD,80E 85D,85DD,85E 90DD,90E 英 32A,32B,32C 34A,34B,34C 36A,36B,36C 38A,38B,38C 40B,40C,40D

女式衬衫 数目为12.5公分者为B 罩杯。以此类推计算,即下胸围尺寸为 75公分者,可容许+/-2.5公分的误差,凡 介于72.5?77.5公分者皆可穿75。假设您的下胸围尺寸为 72.5公分,则建议选购75的胸罩而非70,因 为在 穿着时会比较舒适,二来也比较耐穿。 臀围 型号 80-88cm (约 34 85-93cm (约 36 90-98cm (约 38 100-108cm (约 罩杯 【罩杯的尺寸】上胸围尺寸减去下胸围尺寸之数目为 10.0公分者为A 罩杯。上胸围尺寸减去下胸围尺寸之 式 32D,32DD 34D,34DD,34E 36D,36DD,36E 38D,38DD,38E 40DD,40E XL 范围

工程造价外文翻译(有出处)

预测高速公路建设项目最终的预算和时间 摘要 目的——本文的目的是开发模型来预测公路建设项目施工阶段最后的预算和持续的时间。 设计——测算收集告诉公路建设项目,在发展预测模型之前找出影响项目最终的预算和时间,研究内容是基于人工神经网络(ANN)的原理。与预测结果提出的方法进行比较,其精度从当前方法基于挣值。 结果——根据影响因素最后提出了预算和时间,基于人工神经网络的应用原理方法获得的预测结果比当前基于挣值法得到的结果更准确和稳定。 研究局限性/意义——因素影响最终的预算和时间可能不同,如果应用于其他国家,由于该项目数据收集的都是泰国的预测模型,因此,必须重新考虑更好的结果。 实际意义——这项研究为用于高速公路建设项目经理来预测项目最终的预算和时间提供了一个有用的工具,可为结果提供早期预算和进度延误的警告。 创意/价值——用ANN模型来预测最后的预算和时间的高速公路建设项目,开发利用项目数据反映出持续的和季节性周期数据, 在施工阶段可以提供更好的预测结果。 关键词:神经网、建筑业、预测、道路、泰国 文章类型:案例研究 前言 一个建设工程项普遍的目的是为了在时间和在预算内满足既定的质量要求和其他规格。为了实现这个目标,大量的工作在施工过程的管理必须提供且不能没有计划地做成本控制系统。一个控制系统定期收集实际成本和进度数据,然后对比与计划的时间表来衡量工作进展是否提前或落后时间表和强调潜在的问题(泰克兹,1993)。成本和时间是两个关键参数,在建设项目管理和相关参数的研究中扮演着重要的角色,不断提供适当的方法和

工具,使施工经理有效处理一个项目,以实现其在前期建设和在施工阶段的目标。在施工阶段,一个常见的问题要求各方参与一个项目,尤其是一个所有者,最终项目的预算到底是多少?或什么时候该项目能被完成? 在跟踪和控制一个建设项目时,预测项目的性能是非常必要的。目前已经提出了几种方法,如基于挣值技术、模糊逻辑、社会判断理论和神经网络。将挣值法视为一个确定的方法,其一般假设,无论是性能效率可达至报告日期保持不变,或整个项目其余部分将计划超出申报日期(克里斯坦森,1992;弗莱明和坎普曼,2000 ;阿萨班尼,1999;维卡尔等人,2000)。然而,挣值法的基本概念在研究确定潜在的进度延误、成本和进度的差异成本超支的地区。吉布利(1985)利用平均每个成本帐户执行工作的实际成本,也称作单位收入的成本,其标准差来预测项目完工成本。各成本帐户每月的进度是一个平均平稳过程标准偏差,显示预测模型的可靠性,然而,接受的单位成本收益在每个报告期在变化。埃尔丁和休斯(1992)和阿萨班尼(1999)利用分解组成成本的结构来提高预测精度。迪克曼和Al-Tabtabai(1992)基于社会判断理论提出了一个方法,该方法在预测未来的基础上的一组线索,源于人的判断而不是从纯粹的数学算法。有经验的项目经理要求基于社会判断理论方法的使用得到满意的结果。Moselhi等人(2006)应用“模糊逻辑”来预测潜在的成本超支和对建设工程项目的进度延迟。该方法的结果在评估特定时间状态的项目和评价该项目的利润效率有作用。这有助于工程人员所完成的项目时间限制和监控项目预算。Kaastra和博伊德(1996)开发的“人工神经网络”,此网络作为一种有效的预测工具,可以利用过去“模式识别”工作和显示各种影响因素的关系,然后预测未来的发展趋势。罗威等人(2006)开发的成本回归模型能在项目的早期阶段估计建筑成本。总共有41个潜在的独立变量被确定,但只有四个变量:总建筑面积,持续时间,机械设备,和打桩,是线性成本的关键驱动因素,因为它们出现在所有的模型中。模型提出了进一步的洞察了施工成本和预测变量的各种关系。从模型得到的估计结果可以提供早期阶段的造价咨询(威廉姆斯(2003))——最终竞标利用回归模型预测的建设项目成本。 人工神经网络已被广泛用在不同的施工功能中,如估价、计划和产能预测。神经网络建设是Moselhi等人(1991)指出,由Hegazy(1998)开发了一个模型,该模型考虑了项目的外在特征,估计加拿大的公路建设成本: ·项目类型 ·项目范围

衣服尺码对照(最全的一份)

男装、女装衣服尺码对照表 1、男装尺码对照表 身高(cm)衬衣尺码 (领围cm) 西服尺码 (肩宽cm) 夹克尺码 (胸围cm) 西裤尺码 (腰围cm) 西裤尺码 (腰围寸) T恤尺码毛衣尺码内裤尺码统计比例 16037(S)44(S)80(S)7228S S S0 16538(M)46(M)84(M)74,7629M M M1 17039(L)48(L)88(S)7830L L L2 17540(XL)50(XL)92(M)8031XL XL XL3 18041(2XL)52(2XL)96(L)82322XL2XL2XL3 18542(3XL)54(3XL)100(XL)84,86333XL3XL3XL2 19043(4XL)56(4XL)104(4XL)88344XL4XL4XL1 19544(5XL)90355XL5XL5XL0

2、衬衫尺寸(除个别款尺寸,买前询问) 3、裤装尺码为: 26代表腰围为:“尺”27代表腰围为:“尺”28代表腰围为:“尺”29代表腰围为:“尺”30代表腰围为:“尺”31代表腰围为:“尺”32代表腰围为:“尺”33代表腰围为:“尺”34代表腰围为:“尺”36代表腰围为:“尺”38代表腰围为:“尺”40代表腰围为:“尺”42代表腰围为:“尺”44代表腰围为:“尺”50代表腰围为:“尺”52代表腰围为:“尺”54代表腰围为:“尺” 4.女装尺码对照表

“女下装”尺码详细对照表(cm) 其他算法

裤子尺码对照表 26号------1尺9寸臀围2尺6 32号------2尺6寸臀围3尺2 27号------2尺0寸臀围2尺734号------2尺7寸臀围3尺4 28号------2尺1寸臀围2尺836号------2尺8寸臀围3尺5-6 29号------2尺2寸臀围2尺938号------2尺9寸臀围3尺7-8 30号------2尺3寸臀围3尺040号------3尺0寸臀围3尺9-4尺 31号------2尺4寸臀围3尺142号------3尺1-2寸臀围4尺1-2 牛仔裤尺码对照表 5.尺码换算参照表 女装(外衣、裙装、恤衫、上装、套装) 标准尺码明细 中国(cm) 160-165 / 84-86 165-170 / 88-90 167-172 / 92-96 168-173 / 98-102 170-176 / 106-110

衣服尺寸对照表

衣服尺寸对照表 女款上装 上衣S M L XL XXL XXXL 服装384042444648胸围(cm)78-8182-8586-8990-9394-9798-102腰围(cm)62-6667-7071-7475-7980-8485-89 肩宽(cm)363840424446适合身高(cm)153/157158/162163/167168/172173/177177/180, 女裤 尺码24 26 27 28 29 30 31 对应臀围(市 2尺4 2尺6 2尺7 2尺8 2尺9 3尺3尺1 尺) 对应臀围 80 87 90 93 97 100 103 (cm) 对应腰围(市 1尺8 1尺9 2尺2尺1 2尺2 2尺3 2尺4 尺) 对应腰围 59 63 67 70 74 78 82 (cm) 女式背心 尺码S M L XL 3XL

胸围72-80 79-87 86-94 94-97 98-102 腰围58-64 64-70 69-77 77-85 85-93 臀围82-90 87-95 92-100 97-105 102-110 女式内裤 尺码S M L XL 3XL 型号150-155 155-160 160-165 165-170 170-175 腰围55-61 61-67 67-73 73-79 79-85 臀围80-86 85-93 90-98 95-103 100-108 女式泳装 尺码XS/32 S/34 M/36 L/38 XL/40 腰围63-70 70-76 80-86 86-93 93-100 女鞋 光脚长度 22.0 22.5 23.0 23.5 24.0 24.5 25.0 (cm) 鞋码(中国) 34码35码36码37码38码39码40码 鞋码(美国) 4.5 5 5.5 6 6.5 7 7.5 鞋码(英国) 3.5 4 4.5 5 5.5 6 6.5 女裙 尺码24 26 27 28 29 30 31 对应臀围 2尺4 2尺6 2尺7 2尺8 2尺9 3尺3尺1 (市尺)

外国历史文学外文翻译 (节选)

2100单词,11500英文字符,4300汉字 出处:Do?an E. New Historicism and Renaissance Culture*J+. Ankara üniversitesiDilveTarih-Co?rafyaFakültesiDergisi, 2005, 45(1): 77-95. 原文 NEW HISTORICISM AND RENAISSANCE CULTURE EvrimDogan Although this new form of historicism centers history as the subject of research, it differs from the "old" in its understanding of history. While traditional historicism regards history as "universal," new historicism considers it to be "cultural." According to Jeffrey N. Cox and Larry J.Reynolds, "new" historicism can be differentiated from "old" historicism "by its lack of faith in 'objectivity' and 'permanence' and its stress not upon the direct recreation of the past, but rather the process by which the past is constructed or invented" (1993: 4). This new outlook on history also brings about a new outlook on literature and literary criticism. Traditional literary historicism holds that the proper aim of literary criticism is to attempt to reconstruct the past objectively, whereas new historicism suggests that history is only knowable in the same sense literature is—through subjective interpretation: our understanding of the past is always conducted by our present consciousness’s. Louis Montrose, in his "Professing the Renaissance," lays out that as critics we are historically bound and we may only reconstruct the histories through the filter of our consciousness: Our analyses and our understandings necessarily proceed from our own historically, socially and institutionally shaped vantage points; that the histories we reconstruct are the textual constructs of critics who are, ourselves, historical subjects (1989: 23). For Montrose, contemporary historicism must recognize that "not only the poet but also the critic exists in history" and that the texts are "inscriptions of history" and furthermore that "our comprehension, representation, interpretation of the texts of the past always proceeds by a mixture of estrangement and appropriation.". Montrose suggests that this kind of critical practice constitutes a continuous dialogue between a "poetics" and a "politics" of culture. In Montrose's opinion, the complete recovery of meanings in a diverse historical outlook is considered necessary since older historical criticism is "illusory," in that it attempts to "recover meanings that are in any final or absolute sense authentic, correct, and complete," because scholarship constantly "constructs and delimits" the objects of study and the scholar is "historically positioned vis-a-vis that object:" The practice of a new historical criticism invites rhetorical strategies by which to foreground the constitutive acts of textuality that traditional modes of literary history efface or misrecognize. It also necessitates efforts to historicize the present as well as the past, and to historicize the dialectic between them—those reciprocal historical pressures by which the past has shaped the present and the present reshapes the past. The new historicist outlook on literary criticism is primarily against literary formalism that excludes all considerations external to the "text," and evaluates it in isolation.The preliminary concern of new historicism is to refigure the relationship between texts and the cultural system in which they were produced. In terms of new historicism, a literary text can only be evaluated in its social, historical, and political contexts. Therefore, new historicism renounces the formalist conception of literature as an autonomous aesthetic order that transcends the needs and interests of

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi

成人服装码数对照表

成人服装尺码对照表 女装(外衣、裙装、恤衫、上装、套装) 标准尺码明细 中国 (cm) 160-165 / 84-86 165-170 / 88-90 167-172 / 92-96 168-173 / 98-102 170-176 / 106-110 国际 XS S M L XL 美国 2 4-6 8-10 12-14 16-18 欧洲 34 34-36 38-40 42 44 男装(外衣、恤衫、套装)标准尺码明细 中国 (cm) 165 / 88-90 170 / 96-98 175 / 108-110 180 / 118-122 185 / 126-130 国际 S M L XL XXL 男装(衬衫) 标准尺码明细 中国 (cm) 36 - 37 38 - 39 40 - 42 43 - 44 45 - 47 国际 S M L XL XXL 男装(裤装) 标准尺码明细 尺码 42 44 46 48 50 腰围 68 - 72 cm 71 - 76 cm 75 - 80 cm 79 - 84 cm 83 - 88 cm 裤度 99 cm 101.5 cm 104 cm 106.5 cm 109 cm 看不懂的还可以参照下面的: 男装尺码 分类小码中码大码加大码 身高 165 170 175 180 胸围 84 90 96 102

腰围 75 81 87 93 臀围 88 90 92 100

女装尺码 分类小码中码大码加大码 身高 155 160 165 170 胸围 80 84 88 92 腰围 60 64 68 72 臀围 84 88 92 96 儿童服装尺码 分类小码中码大码加大码 适合年龄 0-2岁 2-4岁 5-7岁 7-10岁 身高 80 110-110 110-130 140-150 胸围 50 55 60-65 70 腰围 40 42 44 46 臀围 55 60 65-70 75 单位:厘米CM 衣服尺码对照表---鲁宾汉尺码对照表 1、上装尺码为: 01码表示代码为:“XXS” 02码表示代码为:“XS” 03码表示代码为:“S” 04码表示代码为:“M” 05码表示代码为:“L” 06码表示代码为:“XL” 07码表示代码为:“XXL” 2、茄克装尺码为: 70表示代码为:“48”(M) 71表示代码为:“50”(L) 72表示代码为:“52”(XL) 73表示代码为:“54”(XXL) 3、裤装尺码为:

相关文档