文档库 最新最全的文档下载
当前位置:文档库 › 理论力学习题答案大全_____质点动力学

理论力学习题答案大全_____质点动力学

理论力学习题答案大全_____质点动力学
理论力学习题答案大全_____质点动力学

习题7-2图

习题7-1图

s F

第3篇 工程动力学基础

第7章 质点动力学

7-1 图示滑水运动员刚接触跳台斜面时,具有平行于斜面方向的速度40.2km/h ,忽略

摩擦,并假设他一经接触跳台后,牵引绳就不再对运动员有作用力。试求滑水运动员从飞离斜面到再落水时的水平长度。 解:接触跳台时 17113600

102403

0..v =?=

m/s 设运动员在斜面上无机械能损失

7688442892171122020....gh v v =??-=-=m/s

1418.c o s v v x ==θm/s, 2563.sin v v y ==θm/s 541

0221.g v h y ==m 33201.g

v t y ==

s

2

2012

1

)(gt h h =+

780.08

.9)

44.2541.0(2)

(2012=+=+=

g h h t s

112.121=+=t t t s

0591*******...t v x x =?==m

7-2 图示消防人员为了扑灭高21m 仓库屋顶平台上的火灾,把水龙头置于离仓库墙基15m 、距地面高1m 处,如图所示。水柱的初速度250=υm/s ,若欲使水柱正好能越过屋顶边缘到达屋顶平台,且不计空气阻力,试问水龙头的仰角α应为多少?水柱射到屋顶平台上的水平距离s 为多少? 解:(1) α

cos v t 0115

=

(1) 202

1sin 2110=-?gt t v α (2) (1)代入(2),得

01.44cos sin 375cos 5002=+-ααα ααα22cos 1cos 3751.44cos 500-=+ 081.1944cos 96525cos 39062524=+-αα 22497.0cos 2=α, ?=685.61α

(2) g

v t α

sin 02=

(到最高点所经过时间) 26.232)15cos (20=?-?=t v S αm

7-3 图示三角形物块置于光滑水平面上,并以水平等加速度a 向右运动。另一物块置于其斜面上,斜面的倾角为θ。设物块与斜面间的静摩擦因数为s f ,且tan θ>s f ,开始时物块在斜面上静止,如果保持物块在斜面上不滑动,加速度a 的最大值和最小值应为多少?

习题7-1解图

θ

v 0

v y

O

习题7-4图

g

(e)

..

x

k

F

(f)

解:1、物块不上滑时受力图(a) ma F F =+θθcos sin s N (1) 0sin cos s N =--θθF mg F (2) 临界:N s s F f F =

(3) (3)代入(1)、(2),消去N F ,得 θ

θθ

θsin cos cos sin max s s f f a -+=

(4) 2、物块不下滑时受力图(b): ma F F =-θθcos sin s N (5) 0sin cos s N =+-θθF mg F (6) 临界:N s s F f F =

(7) (7)代入(5)、(6),消去N F ,得 θ

θθ

θsin cos cos sin s s min f f a +-=

(8)

7-4 图示物体的质量为m ,悬挂在刚度系数为k 的弹簧上,平衡时弹簧的静伸长为δst 。开始时物体离开平衡位置的距离为a ,然后无初速度地释放。试对图中各种不同坐标原点和坐标轴列出物体的运动微分方程,写出初始条件,求出运动规律,并比较所得到的结果。 解:(a)受力图(e),且

st δk mg = (1) )(st x k F k +=δ (2) k F mg x m -=..

(3) (1)、(2)代入(3),得 0..

=+kx x m

0..

=+

x m k

x (4) 记m

k =2

n

ω,则 )s i n

(n ?ω+=t A x (5) 初始条件:0=t 时,a x =,0=?

x (6)

(6)代入(5),得 )2

πs i n (a +=t m k

a x ; (b)受力图(e) k F mg x m -=..

kx F k =

g x m k

x =+..

令m

k

=n ω,则

k

mg

t A x +

+=)sin(n ?ω 初始条件:0=t 时,st a x δ+=,0=x

k

mg

t m k a x +

+=)2πsin(

b

习题7-5图

(a)

(c)受力图(f) mg F x m k -=..

)(st x k F k -=δ 代入上式,即 0..

=+kx x m

0..

=+

x m

k

x )s i n

(n c ?ω+=t A x 当0=t 时,a x -=,0=x

)2

π

sin(c +-=t m k a x ; (d)受力图(f)

mg F x m k -=..

kx F k -= mg kx x m -=+..

g x m

k

x -=+

..

k

mg

t A x -

+=)sin(n ?ω 当0=t 时,)(st δ+-=a x ,0=x

k

mg t m k a x -

+-=)2πsin(

d ;

7-5 图示质量为m 的平板置于两个反向转动的滑轮上,两轮间的距离为2d ,半径为R 。若将板的重心推出,使其距离原对称位置O 为x 0,然后无初速度地释放,则板将在动滑动摩擦力的作用下作简谐振动。板与两滑轮间的动摩擦因数为f 。试求板振动的运动规律和周期。

解:1、图(a)

0=∑y F ,mg F F =+N2N1 (1)

0=∑O M ,0N1N2=--mgx d F d F

即 d x

mg

F F =-N1N2 (2)

由(1)、(2)解得:)1(21N2d x

mg F +=

)1(21N1d

x

mg F -=

)1(211N d x

fmg fF F -==1

)1(212N 2d

x

f m

g fF F +== ..

21x m F F =- 即 0..

=+

x d

fmg

x m 0..

=+x d

fg

x

d fg =

n ω 振动周期:fg

d T π

2n

==

ω

习题7-6图

(a)

习题7-7图

运动方程:)sin(n ?ω+=t A x

当0=t 时,0x x =,0=x

运动规律:)2

π

sin(

0+=t d fg x x

7-6 图示升降机厢笼的质量m =3×103

kg ,以速度v =0.3m/s 在矿井中下降。由于吊索上端突然嵌住,厢笼中止下降。如果索的弹簧刚度系数k =2.75kN/mm ,忽略吊索质量,试求此后厢笼的运动规律。 解:图(a ): K

mg

=

st δ (1) k F mg x m -=..

(2) )(st δ+=x k F k (3)

(1)、(3)代入(2),得 0..

=+kx x m

0..=+x m

k

x

)s i n

(n ?ω+=t A x (4)

t =0时,x =0,3.0.

==v x m/s (5)

代入(4),得 t v

x n n

s i n ωω=

(6) 3.301031075.23

6n =??==

m

k ωrad/s

(7)

将(5)、(7)代入(6)得

)3.30sin(9.9t x =(mm ,t 以秒计)

7-7 质量m =2kg 的物体从高度h =0.5m 处无初速地降落在长为l =1m 的悬臂木梁的自由端上,如图所示。梁的横截面为矩形,高为30mm ,宽为20mm ,梁的弹性模量E =106MPa 。若不计梁的质量,并设物体碰到梁后不回弹,试求物体的运动规律。 解:物体作用在梁端点产生的静变形

m 1045.1343

st -?==EI

mgl δ

(1) st δk mg =

(2) 当量刚度:3

3l EI k =

(3)

任意位置弹性恢复力 )(st x k F k +=δ (4) 物体运动微分方程 k F mg x m -=..

(5)

将(1)、(2)、(3)代入(4),得 0..

=+kx x m

0..=+x m

k

x

令26033

n ===

ml EI m k ωrad/s (6) 则理学 )s i n

(n ?ω+=t A x (7)

习题7-8图 45

(a) τ

(b) 习题7-9图

Ie F 0

e a a = (a) 当t = 0时,st δ-=x ,13.32.

===gh v x m/s 012.0tan st

n -=-=v

δω?,012.0-=?rad

012.0sin st

=-

=?

δA m =12mm )012.0260sin(12-=t x mm

7-8 图示用两绳悬挂的质量m 处于静止。试问:

1. 两绳中的张力各等于多少?

2. 若将绳A 剪断,则绳B 在该瞬时的张力又等于多少? 解:1、图(a ) 0=∑y F ,mg F B 2= 0=∑x F ,mg F A = 2、图(b ) 绳A 剪断瞬时,0n =a

0n =∑F ,mg F B 2

2=

7-9 质量为1kg 的滑块A 可在矩形块上光滑的斜槽中滑动,如图所示。若板以水平的等加速度a0=8m/s2运动,求滑块A 相对滑槽的加速度和对槽的压力。若滑块相对于槽的初速度为零,试求其相对运动规律。

解:滑块A 为动点,矩形板为动系,牵连加速度0e a a =,相对加速度r a ,A 块受力如图(a ),其中

80Ie ==ma F N 8.9=mg N r r I ma F =

由滑块相对“平衡”: 0r =∑F ,83.119.43430sin 30cos e I Ir =+=?+?=mg F F N 0N =∑F ,49.4449.830sin 30cos Ie N =-=?-?=F mg F N

A

习题7-11图

..

θ

g

m Ie

F τr

习题7-11解图

习题7-10图

a

x

(a)

习题7-12图

相对加速度:83.11Ir r ==

m F a m/s 2

相对运动规律:22r r 91.52

1

t t a x ==(m )

7-10 图示质量为m 的质点置于光滑的小车上,且以刚度系数为k 的弹簧与小车相联。若小车以水平等加速度a 作直线运动,开始时小车及质点均处于静止状态,试求质点的相对运动方程(不计摩擦)。

解:设质点m 对车的相对位移为x (设向右为正), 质点受力: i F kx k -= i F ma =Ie

质点相对运动微分方程: ma kx x m +-=..

a x m

k

x =+..

m

k

=2n

ω a k

m

t A x +

+=)c o s (αω (1)

初始条件:0=t 时,0.

=x ,0=x

代入(1),得:0=α,a k

m

A -=

)cos 1(t k

m a k m x -=

7-11 图示单摆的悬挂点以等加速度a 沿铅垂线向上运动。若摆长为l ,试求单摆作微振动的周期。

解:牵连惯性力ma F =Ie 相对运动微分方程: θθsin )(..

a g m ml +-= 1<<θ时,上式为 0)(..=++θθa g m ml

0..=++θθl a g

l a

g +=n ω 周期a

g l

T +==

π

2n

ω

7-12 图示圆盘绕轴O 在水平面内转动,质量为1kg 的滑块A 可在圆盘上的光滑槽中运动。盘和滑块在图示位置处于静止,这时圆盘开始以等角加速度α=40rad/s 2转动,已知b =0.1m 。试求圆盘开始运动时,槽作用在滑块A 上的侧压力及滑块的相对加速度。 解:运动开始时,0=ω,0r =v

0n e =a ,0C =a

4τe ==αb a m/s 2

,r a 未知。

k

τ

Ie

F

N

F r a τ

e

a 习题7-12解图 k

k

k

m

(b)

k k

m

m m

(a)

m

m m

k

k

(c)

k

k

k

m

(d)

m

m

k k

k

(e)

物块受力如图,槽的侧压力方向如图,大小未知,牵连惯性力:

4τe τ

Ie ==ma F N (1) 相对运动微分方程:

?=30cos τ

Ie r F ma

(2) 030sin τIe N =?-F F

(3) (1)代入(2)、(3)解得

46.3r =a m/s 2

2N =F N

7-13 现有若干刚度系数均为k 且长度相等的弹簧,另有若干质量均为m 的物块,试任

意组成两个固有频率分别为

m

k 32和

m

k 23的弹簧质量系统,并画出示意图。

答:1.m

k

32n =ω,见图(a )或(b)或(c). 2. m

k

23n =

ω,见图(d )或(e)

7-14 分析图中所示7组振动模型,判断哪几组中的两个系统具有相同的固有频率。

答:图(a)、(b)、(e)、(g)均具有相同的固有频率。

习题7-14图

习题7-15图

7-15 图示匀质摇杆OA 质量为1m ,长为l ,匀质圆盘质量为2m ,当系统平衡时摇杆处在水平位置,而弹簧BD 处于铅垂位置,且静伸长为st δ,设OB=a ,圆盘在滑道中作纯滚动。试求系统微振动固有频率。

解: 1、弹簧刚度k

静平衡时,轮缘摩擦力 0s =F ,由系统平衡。

0=∑O M ,

02

12=-+a F l

g

m gl m k 即 ()gl m m a k 21st 22

1

+=

δ ()st

2122δa gl m m k += (1)

2、n ω

22

2222

12121θω O A A A OA A J J v m T T T ++=+=杆轮

()

()22122212222264331212212θθθθ l m m l m l R l l R m l m ??? ??+=?+???????

????? ??-?-+= 由于以平衡位置为θ角的起始位置,弹簧静位移st δ产生的弹性力与重力g 1m ,g 2m 相

抵消,故此后计算时,只考虑弹簧偏离平衡位置产生的弹性力,从平衡位置到θ角,弹力功:

()2122

θa k

W -=, 01=T

1212W T T =-

习题7-16图

(a) max

(b)

习题7-17图

即 2222122

6

14

3θθ

a k

l m m -=??

? ??+ t d d : θθθθ

?-=??? ??+2212314

3ka l m m ()

02961222=++m m l ka θθ

()

122

2

0296m m l ka +=ω (2) (1)代入(2),得

()()

21st 2109223m m l m m ag ++=

δω

7-16 一单层房屋结构可简化为如图所示的模型:房顶可视为质量为m 的刚性杆,柱子可视为高为h 、弯曲刚度为EI 的梁,不计柱子的质量。试求该房屋水平振动的固有频率。

解:柱子两端都是固定端,可看作两根长2

h

的悬臂梁坚固对接,见(图a )。

悬臂梁的最大挠度为EI l F w 33

P max =

见(图b ) 本题中2h l = ,2

max x

w =

于是有 EI

h F x 32

23

P ??? ??=

由上可算出 3

P 12h EIx

F =

在层顶位移x 时,两根立柱产生P 2F 的弹性阻力,故屋顶的运动微分方程为

即 0243

=+x mh EI x 这是简谐振动方程,其固有频率为 3

024mh

EI =

ω

7-17 长为l 、质量为m 匀质杆两端用滑轮A 和B 安置在光滑的水平和铅垂滑道内滑动,并联有刚度系数为k 的弹簧,如图所示。当杆处于水平位置时,弹簧长度为原长。不计滑轮A 和B 的质量,试求AB 杆绕平衡位置振动的固有频率。 解:设杆在水平位置时,势能为0,则势能

()[]()22sin 2

cos 12sin 2θθθl k

l k l mg V +-+-=

()θθcos 1sin 221-+-=kl mgl

324h

EIx x m -=

习题7-18图

1δ2δO

x

(a)

平衡: ()0s i n c o s 21

2=+-='θθθkl mgl V

kl

mg 2tan =

θ, kl mg

2arctan 0=θ (平衡位置角) 设杆偏离平衡位置0θ一微小角度?,则杆的动能

223

1

21???=ml T

弹簧势能 ()()[]?θ?θ+-++-=020cos 1sin 2

kl mg l

V

保守力场(理想约束)机械能守恒: C V T =+

即 ()()[]C kl mg l

ml =+-++-?θ?θ?02022cos 1sin 2

61 t

d d : ()()0sin sin 2310202=?+++-??θ?θ?? kl mg l

ml 即 ()()0sin 3cos 2300=+++-?θ?θ?m

k l g (1)

微振动,1<

()00000sin cos sin sin cos cos cos θ?θ?θ?θ?θ-≈-=+

()00000cos sin sin cos cos sin sin θ?θ?θ?θ?θ+≈+=+ 代入(1)得, 0000s i n 3c o s 23c o s 3s i n 23θθ?θθ?m k l g m k l g -=??

?

??++

000cos 3sin 23θθωm k l g +=∴ 其中 kl

mg

2arctan 0=θ

7-18 质量为1m 的质块用刚度系数为k 的弹簧悬挂,在1m 静止不动时有另一质量为2m 的物块在距1m 高度为h 处落下,如图所示。2m 撞到1m 后不再分开。试求系统的振动频率和振幅。 解:两质块在一起振动时,其固有频率为:

2

1m m k

+=

ω (1)

2m 块下落至碰撞前速度 gh v 2=

相碰后,21m m +的速度 gh m m m v 22

12+=

' (动量守恒)

弹簧加上1m 时,已伸长了 k g

m 11=

δ 再加2m 后,需再伸长 k

g

m 22=δ

其重力和弹性力才能平衡,若以静平衡位置为坐标原点,如图,则系统振动方程为

?

??

? ??++=αt m m k

A x 21sin (2)

???

? ??+++=αt m m k

A m m k x 2121cos (3)

振动开始于21,m m 碰撞之末,此时(t =0)它们的坐标为:

k g

m x t 220

-=-==δ (4)

gh m m m v x

t 22

12

0+='== (5)

0=t 时,由(2)

、(3)得 αsin 0A x t == (6)

αc o s 2

10A m m k

x

t +== (7)

比较(3)、(6)和(5)、(7)得,

k g

m A 2sin -=α, gh m m k m A 2cos 2

12+=

α

两边平方,相加得 ()212

2

22222

2m m k g h m k

g m A ++=

()g m m hk

k

g m A 21221++

=

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第2章 质点动力学习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ f 1 N 1 m 1T a F N 2 m 2 T a N 1 f 1 f 2

大学物理质点动力学习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4 一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解] 卫星所受的向心力即是卫星和地球之间的引力 由上面两式得() () () N 1082.710 85.110 63781063788.9132732 63 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 h R v m f +=e 2

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

质点动力学习题解答1

作业05(质点动力学3) 1..21t t >。 2. 人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B ,用L 和K E 分别表示卫星对地心的角动量及动能,则应有[ ]。 A . K B KA B A E E L L >>, B. KB KA B A E E L L >=, C. KB KA B A E E L L <=, D. KB KA B A E E L L <<, 答:[B ] 解:人造地球卫星绕地球做椭圆轨道运动时,它们之间的引力沿着径向,因此角动量守恒 B A L L = 同时,由角动量的定义 B B A A v r v r = 由于B A r r <,所以B A v v > 因此 KB B A KA E mv mv E =>=222 121 3. 体重相同的甲乙两人,分别用双手握住跨过无摩擦滑轮绳子两端。忽略滑轮和绳子的质量。当它们由同一高度向上爬时,相对于绳子,甲的速率是乙的两倍,则到达顶点的情况是 [ ]。 A . 甲先到达 B. 乙先到达 C. 同时到达 答:[C ] 解:由于此二人受到的力相同,质量相同,则加速度就相同。同时到达。 4. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F +=作用在质点上,该质点从坐标原点运动到)2,0(R 位置的过程中,此力F 对它做的功为_____。 答: 2 02R F A = 解:如图首先进行坐标变换,即将坐标原点移到圆周轨道的圆心/o 处,实际上,就是将x 轴平移R 。在新的坐标系中,圆周轨道θ角处(矢径r ),质点受到的力为 ] )1(sin [cos ])([)(0//00j i R F j R y i x F j y i x F F ++=++=+=θθ 在新的坐标系中,矢径为 j R i R r θθsin cos += θθθRd j i r d )cos sin ( +-= 元功表示为 θ θθθθθθd R F Rd j i j i R F r d F dA cos )cos sin (])1(sin [cos 200=+-?++=?= 所以,质点从坐标原点运动到)2,0(R 位置的过程中,F 对它做的功为 2022 /2/02cos R F d R F dA A ===??-θθππ 5. 一个半径为R 的水平圆盘以恒定角速度ω作匀速转动,一质量为m 的人要从圆盘边缘走到圆盘中心处,圆盘对他做的功为_______。

大学物理第二章(质点动力学)习题答案

习题二 2-1 质量为m得子弹以速率水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹得重力,求:(1)子弹射入沙土后,速度大小随时间得变化关系; (2)子弹射入沙土得最大深度。 [解] 设任意时刻子弹得速度为v,子弹进入沙土得最大深度为s,由题意知,子弹所受得阻力f= - kv (1) 由牛顿第二定律 即 所以 对等式两边积分 得 因此 (2) 由牛顿第二定律 即 所以 对上式两边积分 得到 即 2-2 质量为m得小球,在水中受到得浮力为F,当它从静止开始沉降时,受到水得粘滞阻力为f=kv(k为常数)。若从沉降开始计时,试证明小球在水中竖直沉降得速率v与时间得关系为 [证明] 任意时刻t小球得受力如图所示,取向下为y轴得正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 整理得 对上式两边积分 得 即 2-3 跳伞运动员与装备得质量共为m,从伞塔上跳出后立即张伞,受空气得阻力与速率得平方成正比,即。求跳伞员得运动速率v随时间t变化得规律与极限速率。 [解] 设运动员在任一时刻得速率为v,极限速率为,当运动员受得空气阻力等于运动员及装备得重力时,速率达到极限。 此时 即 有牛顿第二定律 整理得 对上式两边积分 得 整理得 2-4 一人造地球卫星质量m=1327kg,在离地面m得高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f得大小;(2)卫星得速率v;(3)卫星得转动周期T。 [解] 卫星所受得向心力即就是卫星与地球之间得引力

由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 ()() s m 1096.61327 1085.11063781082.736 33e ?=?+???=+= m h R f v (3) 卫星得运转周期 ()() 2h3min50s s 1043.710 96.61085.1106378223 3 63e =?=??+?=+=ππv h R T 2-5 试求赤道上方得地球同步卫星距地面得高度。 [解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 代入第一式中 解得 2-6 两个质量都就是m 得星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。已知轨道半径为R ,求:(1)每个星球所受到得合力;(2)每个星球得运行周期。 [解] 因为两个星球在同一轨道上作圆周运动,因此,她们受到得合力必须指向圆形轨道得圆心,又因星球不受其她星球得作用,因此,只有这两个星球间得万有引力提供向心力。所以两个星球必须分布在直径得两个端点上,且其运行得速度周期均相同 (1)每个星球所受得合力 (2) 设运动周期为T 联立上述三式得 所以,每个星球得运行周期 2-7 2-8 2-9 一根线密度为得均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面得瞬时作用力。 [解] 链条对桌面得作用力由两部分构成:一就是已下落得s 段对桌面得压力,另一部分就是正在下落得段对桌面得冲力,桌面对段得作用力为。显然 时刻,下落桌面部分长s 。设再经过,有落在桌面上。取下落得段链条为研究对象,它在时

理论力学动力学测试

第三篇 动力学 一、选择题(每题2分,共20分) 1.在铅直面内的一块圆板上刻有三道直槽AO ,BO ,CO ,三个质量相等的小球M 1,M 2,M 3在重力作用下自静止开始同时从A ,B ,C 三点分别沿各槽运动,不计摩擦,则________到达O 点。 (A )M 1小球先; (B )M 2小球先; (C )M 3小球先; (D )三球同时。 题1 题2 题3 2.质量分别为m 1=m ,m 2=2m 的两个小球M 1,M 2用长为L 而重量不计的刚杆相连。现将M 1置于光滑水平面上,且M 1M 2与水平面成?60角。则当无初速释放,M 2球落地时,M 1球移动的水平距离为____________。 (A )3L ; (B )4L ; (C )6L ; (D )0。 3.质量为m ,长为b 的匀质杆OA ,以匀角速度ω绕O 轴转动。图示位置时,杆的动量及对O 轴的动量矩的大小为________。 (A )2 ωmb p =,122ωmb L O =; (B )0=p ,122ωmb L O =; (C )2ωmb p =,22ωmb L O =; (D )2 ωmb p =,32ωmb L O =。 4.在_____情况下,跨过滑轮的绳子两边张力相等,即F 1=F 2(不计轴承处摩擦)。 (A )滑轮保持静止或以匀速转动或滑轮质量不计; (B )滑轮保持静止或滑轮质量沿轮缘均匀分布; (C )滑轮保持静止或滑轮质量均匀分布; (D )滑轮质量均匀分布。 题4 题5 5.均质杆长L ,重P ,均质圆盘直径D =L ,亦重P ,均放置在铅垂平面内,并可绕O 轴转动。初始时杆轴线和圆盘直径均处于水平位置,而后无初速释放,则在达到图示位置瞬时,杆的角速度ω1________圆盘的角速度ω2。 (A )大于; (B )小于; (C )等于; (D )小于或等于。

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

反应动力学习题及答案

反应动力学习题 一、 判断题: 1催化剂只能改变反应的活化能,不能改变反应的热效应。 ............. () 2、 质量作用定律适用于任何化学反应 ........................... () 3、 反应速率常数取决于反应温度,与反应物、生成物的浓度无关。 ........ () 二、 选择题: 1?若反应:A + B T C 对A 和B 来说都是一级的,下列叙述中正确的 ^是????( )。 (A)此反应为一 级反应; (B)两种反应物 中,当其中任一种的浓度增大2倍,都将使反应速 率增大2倍; (C)两种反应物 的浓度同时减半,则反应速率也将减半; (D)该反应速率 系数的单位为s -1。 2.反应 A + B T 3D 的 E a (正)=m kJ mol -1, E a (逆)=n kJ mol -1 ,则反应 的厶r H m = ....... ( )) 1 1 1 1 (A) ( m^n) kJ md ; (B) (n-m) kJ mol ; (C) (m-3n) kJ mol ; (D) (3 n-m) kJ mol 。 3. 下? 列关于讣 催化齐U 的 叙述中,错 误的是 ....................... .......... ()。 (A) 在 几 个 反 应 中,某 催化剂可选择地加快其中某- 「反应的反应 速 率; (B) 催 化 剂 使 正、 逆反 应速率增大 的倍数相同; (C) 催 化 剂 不 能 改变反应的始态和 终态; (D) 催 化 剂 可 改 变某一 -反应的正向 与逆向的反应速 率之比。 4. 当速率常数的单位为 mol -1 dm 3 s -1时,反应级数为 ........................... () (A ) 一级; (B )二级; (C )零级; (D )三级 5. 对于反应2A + 2B T C 下列所示的速率表达式正确的是 ....................... ( ) (C) 6. 反应2A + B T D 的有关 实验数据在表中给出,此反应的速率常数 k/mol -2dm 6min -1约 为 ...................................................................... ( ) 初始浓度 最初速率 -3 -3 -3 -1 [A] /mol dm [B]/mol dm v/mol dm min -2 0.05 0.05 4.2 >102 -2 0.10 0.05 8.4 10 -1 0.10 0.10 3.4 10 2 2 3 3 (A) 3.4 11 (B) 6.7 11 (C) 3.4 11 (D) 6.7 11 7. 催化剂是通过改变反应进行的历程来加速反应速率。这一历程影响 .......... ( ) (A )增大碰撞频率; (B )降低活化能; (C )减小速率常数; (D )增大平衡常数值。 8. ................................................................................................................................................ 下列叙 述中正确的是 ................................................................... ( ) (A) _2 " [B] =3 " t (D)

理论力学之核心概念-动力学篇

本篇接着阐述理论力学动力学中的核心观念。阐述的方式依旧是回答几个问题。 问题1:动力学的基本问题是什么? 答案:虽然书上有关于动力学问题的许多说法,但是就实际应用而言,对于我们机械专业而言,我们所遇到的最常见的动力学问题是,在一个机构上的原动件受到了力(偶),我们要得到机构上各构件的速度和加速度。或者已知了速度和加速度,要反推这个力(偶)是多少。 下图就是这样一个例子。在OA杆上施加一个驱动力偶,各个杆件都有重力,我们要计算此时各约束处的约束力的大小,还需要计算CD杆的速度和加速度。 该问题中,力与运动交织在一起,这就是机构的动力学问题,也是机械中经常遇到的问题。 问题2:如何求解动力学问题? 答案: 解决动力徐问题的方法很多。我们只要谈两种方法:第一种是通用解法,第二种是动静法(达朗伯原理)。 通用解法,是指面对一个动力学问题,我们总是有一套很程序化的思路来求解它,这套思路中,我们会使用刚体平面运动的微分方程。使用这种方法,我们几乎不用思考,就可以列出所有的方程,解决所有的未知数。例如,对上面这个问题,如果它已知M,要求CD杆的加速度。则使用通用解法,我们可以同时求出AB杆,BE,CD杆的加速度,也可以求出A,B,C,D,E 处所有的约束力。使用通用解法,我们几乎不用关注题目要求什么,而总是可以求出所有的未知数。 动静法,是说把这个动力学问题从形式上变成静力学问题,然后再借用静力学的求解方法来计算所需要的未知数。动静法之所以能够把动力学问题变成静力学问题,是因为它把加速度变成了惯性力,然后对于系统中的每一个构件,形成了一个力系平衡的问题。而我们之所以使用动静法,是因为对于静力学问题,我们有很多解题技巧,例如取整体为对象,或者取某几个构件一起为对象,或者对任何一个点取力矩,这些优越性,都是刚体平面运动微分方程所不具备的。 问题3:如何使用通用解法求解动力学问题?

第2章 质点动力学习题解答

第2章质点动力学习题解答 2-1 如图所示,电梯作加速度大小为a 运动。物体质量为m ,弹簧的弹性系数为k ,?求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。 解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F += 2-2 如图所示,质量为10kg 物体,?所受拉力为变力2132+=t F (SI ) ,0=t 时物体静止。该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2, 求1=t s 时,物体的速度和加速度。 解:最大静摩擦力 )(20max N mg f s ==μ max f F >,0=t 时物体开始运动。 ma mg F =-μ,1.13.02+=-= t m mg F a μ 1=t s 时,)/(4.12s m a = dt dv a = ,adt dv =,??+=t v dt t dv 02 01.13.0 t t v 1.11.03+= 1=t s 时,)/(2.1s m v =

2-3 一质点质量为2.0kg ,在O x y 平面内运动, ?其所受合力j t i t F 232+=(SI ) ,0=t 时,速度j v 20=(SI ),位矢i r 20=。求:(1)1=t s 时,质点加速度的大小及方向;(2) 1=t s 时质点的速度和位矢。 解:j t i t m F a +== 22 3 22 3 t a x =,00=x v ,20=x ?? =t v x dt t dv x 020 23,2 3 t v x = ???==t x t x dt t dt v dx 03 202,284+=t x t a y =,20=y v ,00=y ? ? =t v y tdt dv y 02 ,22 2 +=t v y ???+==t y t y dt t dt v dy 02 00)22(,t t y 263+= (1)1=t s 时,)/(2 32 s m j i a += (2)j t i t v )22(22 3++= ,1=t s 时,j i v 2521+= j t t i t r )26 ()28(34 +++=,1=t s 时,j i r 613817+= 2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。

大学物理第二章质点动力学习题答案

习题二 2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。 [解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律t v m ma f d d == 即t v m kv d d ==- 所以t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0d d 0 得t m k v v -=0ln 因此t m k e v v -=0 (2)由牛顿第二定律x v mv t x x v m t v m ma f d d d d d d d d ==== 即x v mv kv d d =- 所以v x m k d d =- 对上式两边积分??=- 000d d v s v x m k 得到0v s m k -=- 即k mv s 0 = 2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向, 开始沉降处为坐标原点。由牛顿第二定律得 即t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得m kt F mg kv F mg -=---ln 即??? ? ??--= -m kt e k F mg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时2 T kv mg = 即k mg v = T 有牛顿第二定律t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得m t v k mg v k mg = +-ln 整理得T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解]卫星所受的向心力即是卫星和地球之间的引力 由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f

完整word版,理论力学动力学知识点总结,推荐文档

质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点O 的动量矩是矢量。 质点系对点O 的动量矩是矢量。 若z 轴通过点O ,则质点系对于z 轴的动量矩为 。 若 C 为质点系的质心,对任一点O 有。 2.动量矩定理。 对于定点O 和定轴z 有 若 C 为质心,C z 轴通过质心,有

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体血药浓度是多少?(已知k=0.01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0.5g,4小时测得血药浓度为 4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss C max (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

质点动力学习题解答

第2章 质点动力学 2-1. 如附图所示,质量均为m 的两木块A 、B 分别固定在弹簧的两端,竖直的放在水平的支持面C 上。若突然撤去支持面C ,问在撤去支持面瞬间,木块A 和B 的加速度为多大? 解:在撤去支持面之前,A 受重力和弹簧压力平衡, F mg =弹,B 受支持面压力向上为2mg ,与重力和弹簧压 力平衡,撤去支持面后,弹簧压力不变,则 A :平衡,0A a =; B :不平衡,22B F mg a g =?=合。 2-2 判断下列说法是否正确?说明理由。 (1) 质点做圆周运动时收到的作用力中,指向圆心的力便是向心力,不指向圆心的力不 是向心力。 (2) 质点做圆周运动时,所受的合外力一定指向圆心。 解:(1)不正确。不指向圆心的力的分量可为向心力。 (2)不正确。合外力为切向和法向的合成,而圆心力只是法向分量。 2-3 如附图所示,一根绳子悬挂着的物体在水平面内做匀速圆周运动(称为圆锥摆),有人在重力的方向上求合力,写出cos 0T G θ-=。另有沿绳子拉力T 的方向求合力,写出cos 0T G θ-=。显然两者不能同时成立,指出哪一个式子是错误的 ,为什么? 解:cos 0T G θ-=正确,因物体在竖直方向上受力平 衡,物体速度竖直分量为0,只在水平面内运动。 cos 0T G θ-=不正确, 因沿T 方向,物体运动有分量,必须考虑其中的一部分提供向心力。应为: 2cos sin T G m r θωθ-=?。 2-4 已知一质量为m 的质点在x 轴上运动,质点只受到 指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2k f x =-,k 为比例常数。设质点在x A =时的速度为零,求4A x = 处的速度的大小。 解:由牛顿第二定律:F ma =,dv F m dt =。寻求v 与x 的关系,换元: 2k dv dx dv m m v x dx dt dx -=?=?,

结构动力学例题复习题

第十六章结构动力学 【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。 图16-6 【解】各刚架的自由度确定如图中所示。这里要注意以下两点: 1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。 2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。 【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。 设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则 )(R I y P D I P +δ+?=?+?+?= 式中,)t (q EI 38454P =?,EI 483 =δ。将它们代入上式,并注意到y m I -=,y c R -=,得 )(48)(38453 4y c y m EI t q EI y --+= 图16-7 经整理后可得 )(t P ky y c y m E =++ 式中,3EI 481k =δ= ,)(8 5)(t q k t P P E =?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和 实际动荷载引起的位移相等。图a 的相当体系如图f 所示。 【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和 3 m 质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。 【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。 这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1) 22 mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302 mv f s mgh f s mgs -=-?-=-?- 20 (2) (31) s g u ∴= - 把式(2)代入式(1)得, () 22 2 20 0.198 3u v v = + 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取

如图所示的自然坐标系,由牛顿定律得 2 2 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-= 由,,1ds rd rd v dt dt dt v αα = ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 90 2 n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g r r v mg mg r mg α αα αωααα α=-===+==-=-? ?得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向 2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放 一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止, 求斜面的加速度a 应满足的条件。 解:如图所示

质点动力学课后练习题答案

第二次作业 质点动力学 一、选择题 1. B,D ; 2. B,D ; 3. D ; 4. C ; 5. C ; 6.B ; 7.A ; 8.C ; 9.A ; 10.B 。 二、填空题 ⒈ 22t m B t m A + ; 3262t m B t m A + 。 ⒉ 22x A -ω ; )2s i n (πω+ t A ⒊ l m 221ω ; 53.3 。 ⒋ 234x x +; 64; 8; 16 。 ⒌ 10J 。 ⒍ 0.5s ; 24040t t - ; 10 ; 1000 。 ⒎ j m i m υυ+ ; m g r - ; υ m r ? 。 ⒏ R G m M 6 ; R GmM 3- 。 9. 39.929.8x b x a F -= 三、问答题 1. 答: 保守力:作功只与始末位置有关,而与运动路径无关的力称为保守力。 保守力作功的特点: (1)保守力作功与路经无关,只与始末位置有关,且p E A ?-=保。 (2)若物体在保守力场中沿闭合回路运动一周,则保守力作功为零,即0=??L d l F 。 2. 答:适用范围为 (1)牛顿运动定律中的物体是指质点; (2)牛顿运动定律适用于惯性系; (3)牛顿运动定律适用于低速领域的宏观物体。 四、计算题 1. 解:以箭为研究对象,建立如图坐标,则0=t 时,m 600.-=-=h y ,00=v 。 t m mg ky F d d υ=--=' y m t y y m mg ky d d d d d d υυυ=?=-- ??=+--υ υυ006.0d d )(m y mg ky 2216.018.0υm mg k = -

动力学(1)习题

第七章化学动力学(1)练习题 一、判断题: 1.在同一反应中各物质的变化速率相同。 2.若化学反应由一系列基元反应组成,则该反应的速率是各基元反应速率的代数和。3.单分子反应一定是基元反应。 4.双分子反应一定是基元反应。 5.零级反应的反应速率不随反应物浓度变化而变化。 6.若一个化学反应是一级反应,则该反应的速率与反应物浓度的一次方成正比。7.一个化学反应进行完全所需的时间是半衰期的2倍。 8.一个化学反应的级数越大,其反应速率也越大。 9.若反应A + B Y + Z的速率方程为:r=kc A c B,则该反应是二级反应,且肯定不是双分子反应。 10.对于一般服从阿累尼乌斯方程的化学反应,温度越高,反应速率越快,因此升高温度有利于生成更多的产物。 11.若反应(1)的活化能为E1,反应(2)的活化能为E2,且E1 > E2,则在同一温度下k1一定小于k2。 12.若某化学反应的Δr U m < 0,则该化学反应的活化能小于零。 13.对平衡反应A Y,在一定温度下反应达平衡时,正逆反应速率常数相等。 14.平行反应,k1/k2的比值不随温度的变化而变化。 15.复杂反应的速率取决于其中最慢的一步。 16.反应物分子的能量高于产物分子的能量,则此反应就不需要活化能。 17.温度升高。正、逆反应速度都会增大,因此平衡常数也不随温度而改变。 二、单选题: 1.1.反应3O 22O 3 ,其速率方程 -d[O 2 ]/d t = k[O3]2[O2] 或 d[O 3 ]/d t = k'[O3]2[O2],那么k与k'的关系是:(A) 2k = 3k' ; (B) k = k' ; (C) 3k = 2k' ; (D) ?k = ?k' 。 2.有如下简单反应a A + b,已知a < b < d,则速率常数k A、k B、k D的关系为: (A) ; (B) k A < k B < k D; (C) k A > k B > k D; (D) 。

相关文档
相关文档 最新文档