文档库 最新最全的文档下载
当前位置:文档库 › Protoplanetary disk fragmentation with varying radiative physics, initial conditions and nu

Protoplanetary disk fragmentation with varying radiative physics, initial conditions and nu

a r

X

i

v

:07

1

.

3

5

9

v

1

[

a

s

t

r

o

-

p

h

]

1

9

O

c

t

2

7

**FULL TITLE**ASP Conference Series,Vol.**VOLUME**,**YEAR OF PUBLICATION****NAMES OF EDITORS**Protoplanetary disk fragmentation with varying radiative physics,initial conditions and numerical techniques Lucio Mayer Institute for Theoretical Physics,University of Zurich and Institute f¨u r Astronomie,ETH Zurich,Switzerland Artur J.Gawryszczak Max Planck Institute f¨u r Astronomie,Heidelberg,Germany and Nicolaus Copernicus Astronomical Center,Warsaw,Poland Abstract.We review recent results of SPH simulations of gravitational instability in gaseous protoplanetary disks,emphasizing the role of thermodynamics in both isolated and binary systems.Contradictory results appeared in the literature regarding disk fragmentation at tens of AU from the central star are likely due to the di?erent treatment of radiation physics as well as re?ecting di?erent ini-tial conditions.Further progress on the subject requires extensive comparisons between di?erent codes with the requirement that the same initial conditions are adopted.It is discussed how the local conditions of the disks undergoing frag-mentation at R <25AU in recent SPH simulations are in rough agreement with the prediction of analytical models,with small di?erences being likely related to the inability of analytical models to account for the dynamics and thermo-dynamics of three-dimensional spiral shocks.We report that radically di?erent adaptive hydrodynamical codes,SPH and adaptive mesh re?nement (AMR),yield very similar results on disk fragmentation at comparable resolution in the simple case of an isothermal equation of state.A high number of re?nements in AMR codes is necessary but not su?cient to correctly follow fragmentation,rather an initial resolution of the grid high enough to capture the wavelength of the strongest spiral modes when they are still barely nonlinear is essential.These tests represent a useful benchmark and a starting point for a forthcoming code comparison with realistic radiation physics.

1.Overview

Physical fragmentation in astrophysical systems such as gravitationally unstable protoplanetary disks depends on the competition between gravity and thermal pressure,at least in the limit in which the contribution of magnetic ?elds is neglected.Knowing whether existing numerical simulations are modeling cor-rectly both gravity and pressure is then of paramount importance in this context.Thermal pressure is a?ected by the details of cooling and heating,either by ra-diation,convection or viscosity.The increasingly more sophisticated simulations designed in the last few years have explored the e?ect of thermodynamics on disk fragmentation.?nding in general that this is less likely than in older models in which the gas was evolved using a locally isothermal equation of state (Boss

1

2

2002a,b;Mayer et al.2002;Rice et al.2003).Currently,it is debated whether fragmentation into Jupiter-sized clumps is possible,especially at distances less than50AU from the central star(Durisen et al.2007;Stamatellos&Whitworth 2007).It is well understood that the disk must cool on a timescale compara-ble to the orbital time in order for fragmentation to occur(Rice et al.2003, Gammie2001;Johnson&Gammi2003;Clarke et al.2007).At a few tens of AU the optically thick disk midplane cools via radiation on a timescale longer than the local orbital time,hence the only chance for disks to cool e?ciently is via a non-radiative mechanism.This could be either convection or turbulent di?usion associated with shock bores(Boss2004;Mayer et al.2007;Boley& Durisen2006).Finally,analytic calculations that include convection predict no fragmentation at radii<50AU for disks with masses signi?cantly smaller than the mass of the central star,as it is the case in T Tauri disks(Ra?kov2005, 2007).

Four groups have implemented a scheme for radiative transfer in three di-mensional simulations.Two of them,using,respectively,an SPH and a?nite-di?erence polar grid code,and similar initial conditions,?nd that fragmentation can happen at R<20AU(Boss2004;Mayer et al.2006),while the two other groups use,respectively,an SPH(Stamatellos&Whitworth2007)and a cylin-drical grid code(Boley et al.2006)with nearly identical initial conditions and ?nd that disk fragmentation does not happen at R<50AU(Stamatellos& Whitworth2007?nd that fragmentation is possible at larger radii,R~100 AU).These contradictory results were obtained with four di?erent codes.The two sets of initial conditions were also signi?cantly di?erent,the disks in Mayer et al.(2007)and Boss(2006)having much higher surface densities than those in Boley et al.(2006)and Stramatellos&Whitworth(2007),and thus being more prone to fragmentation.Numerical codes di?er not only in the way they implement radiative transfer but also in more basic aspects of the algorithm such as how they compute gravity and how they solve the energy equation.Further progress in elucidating whether disk instability is a possible formation mecha-nism for giant planets clearly require that the di?erent codes adopted in this area are compared on identical conditions,?rst in simple models with a?xed equation of state and then on progressively more sophisticated models with ra-diative transfer.Here we summarize the results recently obtained with the SPH code GASOLINE(Wadsley,Stadel&Quinn2004)with a scheme for radiative transfer for the case of both isolated and binary systems.Then we discuss the results of the?rst stage of a code comparison project in which the isothermal disks are evolved with GASOLINE and with one of the most advanced grid codes currently available,the adaptive mesh re?nement(AMR)code FLASH(Fryxell et al.2000).

2.Flux-limited di?usion simulations with GASOLINE

In Mayer et al.(2007)we have performed SPH simulations using a?ux-limited di?usion solver recently implemented in GASOLINE.The scheme follows from Cleary&Monaghan(1997),uses the?ux-limiter by Bodenheimer et al.(1990) and includes tabulated Rosseland mean opacities by d’Alessio et al.(1997). The edge of the disk cools as a blackbody.To?nd particles that are“on the

3 edge”of the disk,we examine the directions to all of the neighbors used in smoothing sums.If a particle has no neighbors within a certain fraction of a solid angle from a preferred direction(edge detection angle,EDA)it is considered an edge particle.From the geometry of a disk,the preferred directions(treated independently)are out of the plane of the disk(both up and down)and radially outward.

Hence to model the radiation from edge particles we add the following term to the energy equation of each particle

˙U

a=f a SσT 4

a/m a.(1) where S=4πh2a is the surface through which the particle radiates,with h a the smoothing length of the particle.The“edgeness factor”f a represents the fraction of their surface area over which a particle radiates.It is usually zero, and takes value1/2for particles on one of the up,down,or out boundaries,1 for those on the edge in both the up,down and out directions,and3/4for those on the edge in the out and either up or down direction.More details on the scheme can be found in Mayer et al.(2007).

Several simulations with di?erent values of EDT are performed,withμ= 2.4,an adiabatic indexγ=1.4,and an opacity consistent with solar metallicity. Some simulations are restarted with a higher molecular weight after spiral shocks begin to develop.In the spiral shocks a molecular weight higher than solar could result from the combination of three factors,i.e.a higher mean metallicity of the gas,an increased dust-to-gas ratio and the vaporization of dust grains.Water ice can be vaporized in the spiral shocks of a gravitationally unstable disk,where temperatures can rise above150K(Nelson et al.2000;Mayer et al.2005)and accounts for about30?40%of the dust content.The dust/gas ratio is expected to increase by an order of magnitude in the spiral arms as grains larger than micron size rapidly migrate towards gaseous overdensities(Rice et al.2004; Haghighipour&Boss2003).An order of magnitude enhancement in the gas-to-dust ratio and the vaporization of water ice would produceμ~2.5in a disk with mean solar metallicity,whileμ~2.85would be achieved in a disk with a mean metallicity three times larger than solar.

The disk grows uniformly in mass at the rate of~10?4M⊙/yr,approaching 0.1M⊙after about103years.When its mass grows above0.05M⊙the Toomre parameter Q drops below2in the outer part of the disk and strong spiral patterns begin to appear.The shocks occurring along the spiral arms limit the growth of their amplitude as the increasing pressure counteracts self-gravity. Yet,fragmentation occurs at R~15AU in some of the simulations once the disk mass is in the range0.12?0.15M⊙(Figure1).

Previous works have shown that fragmentation happens only if the disk is able to cool on a timescale comparable to the local orbital time(up to50%longer for runs in whichγ=1.4according to Mayer et al.(2005)and Lodato&Rice (2005)).The disk midplane heats to temperatures larger than200K as a result of spiral shocks,these being also the sites more favourable to fragmentation based on the increased local density.In runs in which fragmentation happens

4

Figure1.Color coded logarithmic density plots of the disk seen face-on

after1300years of evolution.We show the runs withμ=2.4,EDT(edge

detection angle)=30degrees(top left),μ=3,EDT=60degrees(top right),

μ=2.4,EDT=40degrees(bottom left)andμ=2.7,EDT=40degrees(bot-

tom right).The maximum densities shown,at the clumps position,reach

values higher than10?9g/cm3.

we observe vertical gas motions,due to either convection of shock bores(Boley et al.2006),fast enough to redistribute thermal energy on the the orbital timescale at10?15AU,30?50years.Such cooling time is short enough for fragmentation to happen(Mayer et al.2004a;Rice et al.2003)provided that the radiation can leave the disk over a timescale also shorter than the orbital time.It is then not surprising that fragmentation depends on the value of EDT in our runs which determines the ultimate cooling rate of the disk once the heat generated by compressional and viscous heating has been transported to the disk surface(see Figure1).We also evolved some disks with an opacity reduced by a factor of 10-50and found no di?erence,in agreement with the?ndings of Boss(2002b). This is because that radiative cooling rate in the optically thick part of the disk,

5 which is controlled by opacity,remains smaller than the compressional heating rate even for small opacities,which is further evidence that heat ought to be transported from the midplane to the surface by some other mechanism.

2.1.Dependence on atmospheric cooling

Disk fragmentation is seen to depend sensibly on how fast the disk atmosphere cools,which highlights the importance of modeling correctly the net radiative loss at the disk boundary(Boley et al.2006).Disks fragment more easily for smaller EDTs,which e?ectively correspond to a larger emitting surface area and hence to a larger cooling rate.Small changes in EDT(e.g.from60to40degrees, corresponding to an increase in the emitting surface area of less than50%)can bring the disk from fragmentation to thermal self-regulation and subsequent stability.At a?xed height above the midplane di?erent regions of the disks can have temperatures di?erent by up to a factor of4,with hotter regions along spiral shocks often surrounded by much colder regions.This is not surprising since the disk has low optical depths over a larger fraction of its vertical height in such underdense inter-arm regions.The di?erent optical depths pro?les in these two types of regions can be seen in Figure2.The study of the vertical structure and local variations in optical depth warrants further investigation and strongly suggests that the cooling is really local in these disks.On the other end it appears that the colder gas surrounding the spiral shocks accretes onto the midplane overdensities in the arm,contributing to their growth.This shows that just the knowledge of the local thermodynamical conditions,such as the local cooling time,is not enough to understand the nonlinear evolution of overdensities.The latter is an example of an aspect of disk instability that only three-dimensional simulations can describe properly.

2.2.Dependence on molecular weight

We?nd thatμ≥2.4is a necessary condition for fragmentation(Figure1). Larger molecular weights can have two e?ects;they lower the value of the pres-sure gradients in the adiabatic compression term of the internal energy equation, since for an ideal gas P~T/μwhenμis increased while holding T?xed,and they increase the cooling rate at the surface(see eq.1)since T~μwhen P is held?xed.We veri?ed that it is the?rst e?ect that dominates the e?ect of changing the molecular weight(see Mayer et al.2007).The fact that even a small reduction of compressional heating can change the result is not suprising; the same e?ect is seen when the adiabatic index is change between5/3and7/5, as was previously shown(Rice,Lodato&Armitage2005;Mayer et al.2005). The fact that the system is so sensitive to the details of heating and cooling shows once more why it is crucial to compare carefully the di?erent implemen-tations in the di?erent codes.It also suggests that a self-consistent description of how the molecular weight and the adiabatic index should change in space and time is desirable in future simulations.The implementation of a variable adia-batic index that re?ects the di?erent states of molecular hydrogen at di?erent temperatures(Boley et al.2007)is a?rst important step in this direction.

6

Figure2.Optical depth pro?les as a function of the height above the

disk midplane in a region within a spiral shock that will later produce a

clump(solid line)and in a neighboring,underdense region between spiral arms

(dot-dashed line).The optical depth is azimuthally averaged in a cylindrical

column that cuts through a selected region of the disk,the main axis of the

cylinder being perpendicular to the midplane.

https://www.wendangku.net/doc/f618360803.html,parison with analytical predictions and other comments We compared the conditions of the disks in the simulations that lead to fragmen-tation in Mayer et al.(2007)with the analytical predictions of Ra?kov(2007), which include convective cooling.We?nd that the typical midplane surface densities of our disks in the spiral arms just before fragmentation,2500?3000 g/cm3,are sefely above the minimum surface densities necessary for fragmenta-tion predicted by Ra?kov at distances of about20AU,and the same applies to the optical depth at the midplane,which isτ~103in our simulations.At the same radii midplane temperatures in spiral shocks before fragmentation reach 300K,about a factor of2lower than those predicted by the analytical model assuming Q0=1.4for the threshold of fragmentation andμ=2.7(simula-

7 tions withμ=2.7require less restrictive choice of EDT in order to fragment). While such a mismatch between midplane temperatures has to be investigated further,if we take into account that the analytical models do no treat a crucial aspect of disk thermodynamics,namely shock dissipation in three dimensions, the overall agreement is quite satisfactory.We emphasize that in the simulated disks the disk surface density pro?le evolves away from the simple power-law as a result of transport of angular momentum by spiral modes(Mayer et al. 2005),explaining why very high local surface densities can coexist with a total disk mass<0.2M⊙,almost an order of magnitude lower than that predicted by analytic models assuming the standard density pro?le of the minimum solar nebula(Ra?kov2005).The masses of the simulated disks are thus still com-patible with the most massive among T Tauri disks(Beckwith et al.1990). Nevertheless,these massive disks,and thus gravitational instability,are likely more representative of the earlier stages of disk evolution(Class0to Class1), currently almost unexplored by observations.

Recently Nelson(2006)has emphasized the importance of resolving the vertical structure of the disk in fragmentation simulations.Our edge detection scheme is in principle resolution dependent since the surface of identi?ed edge particles,that appear explicitly in the cooling calculation,depend on the local SPH smoothing length.Recently we have run again one simulation with up to6 times more particles,for a total of6×106particles,now the highest resolution SPH disk fragmentation simulation available,and found that fragmentation is even more vigorous compared to the original run(with EDA=40degrees and μ=2.7).

3.Disk fragmentation in binaries

When a massive disk(0.1M⊙)around a solar mass star interacts with a compan-ion of comparable mass at separations of less than60AU a cooling time2to3 times shorter than the orbital time is needed to counteract shock heating along the spirals arms and allow fragmentation(see Mayer et al.2005).Tidally forced spiral arms reach indeed a much higher amplitude relative to their counterparts in isolated disks,and hence shock heating in the arms is stronger.Such cooling times are too short to be realistic,hence Mayer et al.(2005)concluded that fragmentation is suppressed in tightly bound binaries,a separation>100AU being necessary for the disk to behave as in the non-interacting case.Instead, in disks with intermediate masses(0.05M⊙)the lower self-gravity was found to compensate for the tidal forcing,producing less shock heating and allowing fragmentation for more realistic cooling times,comparable with the orbital time. However,newer calculations with?ux-limited di?usion show that the same disks cannnot cool fast enough and thus do not fragment(Mayer,Boss&Nelson2007). Conversely,Boss(2006)?nds that disk in binaries with separation of about50 AU fragment more easily than in isolation,even when radiative transfer is in-cluded.The comparison between these di?erent works is complicated by the fact that di?erent types of initial conditions are used,namely disks that are not fragmenting in isolation are chosen by Boss(2006)for the most part while Mayer et al.(2005)studied predominantly disks that were known to fragment in isolation.Perhaps heating by arti?cial viscosity present in the SPH calculations

8

of Mayer et al.(2005)plays a role in suppressing fragmentation,although the good match between SPH and AMR calculations(see next section)suggests that arti?cial viscosity can hardly have a major e?ect in high resolution calculations. We defer the reader to the recent review by Mayer,Boss&Nelson2007for a detailed discussion of fragmentation in binaries.

Figure3.Grey-scale logarithmic density plots showing the disk in a run

with FLASH(left)and a run with GASOLINE(right)with comparable spatial

resolution(n ref=8was used in FLASH,see text).The top panel show the

disks after1.5orbital times(orbital time measured at20AU)and the bottom

panel shows the disks at2.5orbital times,when a clump has formed in both

cases at nearly identical positions(at about4o’clock.)

9 4.The Wengen code comparison:GASOLINE vs.FLASH

.

In this section we report on how GASOLINE and FLASH were used to evolve identical disk initial conditions with varying resolution and a locally isothermal equation of state.GASOLINE(Wadsley,Stadel&Quinn2004)is a parallel hydrodynamics code that uses a fairly standard implementation of SPH with the Monaghan form for arti?cial viscosity and the Balsara switch to reduce viscosity in shear?ows.It performs smoothed sums over a?xed num-ber of neighbors(=32),solves the energy equation using the asymmetric form and gravity is computed using a binary tree.It adopts a?xed particle gravita-tional softening and a leapfrog integrator with multiple hierarchical timesteps. The FLASH code(Fryxell et al.2000)is a?nite di?erence code which employs parallelized,block-oriented Adaptive Mesh Re?nement(AMR)technique.The hydrodynamical equations are solved using PPM coupled with an isothermal Riemann solver in the tests shown here.Re?nement was done whenever the number of cells per Jeans length,n J has dropped below a?xed threshold n ref. For practical reasons the maximum level was limited,so regions where density was higher than

The re?nement criterion was such that n ref=8,and the resolution was limited to min?x=min?y=25/1024AU,?z=?x/2.The computational domain was a periodic box[?50AU,50AU]3.The choice of n ref=8guaranteed that resolution in the volume occupied by the disc at t=0,was?x=25/256 AU,comparable to the initial spatial resolution of the SPH calculation(a lower resolution initial grid was used in one of the runs to study and the results are shown in Fig.4).Note that this is twice as much as required according to Truelove et al.(1997).

The base simulations evolved a3D isothermal disk with an initial Q min~1.0 (https://www.wendangku.net/doc/f618360803.html,rger than the critical Q min=0.67for fragmentation in three dimensions, see Nelson et al.2000).The disk has a mass of0.055M⊙and a temperature of 20K,and extends from4to25AU.A similar comparison for a single resolution has been shown in Durisen et al.(2007).There the disk had a slightly lower initial Q min~0.8and was fragmenting after just one orbital time for all codes. The fact that the disk starts somewhat below the threshold for fragmentation in the new runs discussed here made it harder to reach a reasonable convergence between the two codes since the initial marginally unstable state can be rapidly stabilized or destabilized depending on the details of how the density evolves in the?rst one or two orbital times.In other words,small perturbations of the state produced by small di?erences in the forces at play,gravity,pressure and,in the case of SPH,arti?cial viscosity,can produce rapidly diverging evolutionary trajectories when di?erent implementations are used.It is then remarkable that, when the spatial resolution is su?ciently high to resolve the wavelength of the most unstable modes in both codes,the results given by AMR and SPH are very similar(Fig.3).The power in the various modes obtained via Fourier

10

1 10

ρp e a k

t Figure 4.Maximum density of the ?rst clump that forms as a function of time in a subset of the runs performed.Time is in simulation units (1disk orbital time at 10AU corresponds to ?t ?4).Letter F and G stand for FLASH and GASOLINE runs,respectively.Strings ’M2’and ’M10’in run names indicate that initial density was increased uniformly by 2%and 10%,respectively,’X128’means that maximum resolution was limited to ?x =25/512AU,’HR’and ’LR’for FLASH runs de?ne re?nement criterion n ref =12and 4,respectively,’HR’for GASOLINE runs indicates that number of particles was 1.3×106instead of 1.65·105.Density ρpeak =1corresponds to

2.4·10?10g/cm

3.

decomposition of the density ?eld was also found to be almost identical.The degree of similarity is such that the ?rst clump has nearly the same location and characteristic density in GASOLINE and FLASH runs with comparable spatial resolution both at the beginning and during the simulation (Fig.3).The peak densities also di?er by less than 30%at comparable resolution (Fig.4,compare “F”and “G”runs).Clumps are indeed slightly sharper (i.e.have higher peak densities)in the FLASH runs,perhaps due to the lower arti?cial viscosity.This suggests that,contrary to previous claims but in agreement with the analysis of Mayer et al.(2004),arti?cial viscosity suppresses rather than enhances fragmentation.

For both codes results also change in a similar way with increasing resolution since the density pro?le of the clumps becomes progressively steeper (this is shown by the increasing peak density reported in Fig.4).The latter result is not surprising given the fact that an isothermal equation of state is adopted –it is in some sense as an artifact of such idealized thermodynamical assumption.In reality the clumps will become nearly adiabatic at su?ciently high density and

11 their density pro?le should converge with increasing resolution as such density is approached.

After several orbital times small di?erences in the computation of the den-sity?eld produce an increasingly di?erent pattern of fragmentation and conver-gence would have to be sought in a statistical sense,https://www.wendangku.net/doc/f618360803.html,paring a large set of initial conditions rather than a single speci?c case.The agreement between the two codes persist when we perturb slightly the initial state of the disk by increasing or decreasing the initial mass by a few percent(Fig.4),suggesting that substantial convergence has been reached at least for the?rst few orbital times of the disk evolution.

Another important result that we obtained is that the initial spatial reso-lution,namely the grid spacing in AMR or the initial gravitational softening in SPH,a?ects signi?cantly the outcome.For example,in the FLASH runs many re?nements are useless if the initial grid is coarse and is not able to resolve the wavelength of the strongest modes well enough from the beginning(Fig.4,com-pare runs“F”and“F-X128’).Resolving the single most unstable mode only might not be enough if the nonlinear evolution is partially determined by mode coupling(see Laughlin,Korchagin&Adams1998).A similar e?ect is seen in SPH if the gravitational softening is initially too large,independently on whether it is well matched or not with the smoothing length.This implies that SPH sim-ulations adopting adaptive softening are not necessarily better than simulations with?xed softening because they also need a high enough mass resolution to enforce that the softening be smaller than the wavelength of the relevant disk modes since the beginning of the calculation.This requirement is complimen-tary to the Bate&Burkert(1997)resolution criterion based on resolving the local Jeans length,and will in general be much stricter since the wavelength of the strongest non-axisymmetric modes is typically shorter than the local Jeans length.We will attempt to formalize the new criterion in a forthcoming paper.

The excellent match betwen FLASH and GASOLINE suggests that in cir-cumstances in which self-gravity plays a crucial role in the dynamics and ther-modynamics of a system,SPH is a robust technique which is not more di?usive than a PPM code despite the use of arti?cial viscosity,at least at the fairly high resolutions adopted here(from105to>106particles).It is noteworthy that GASOLINE runs were a factor of10less time consuming than FLASH runs at comparable resolution,mostly thanks to the faster gravity calculation.In other types of astrophysical situations,such as those involving hydrodynamical insta-bilities,AMR codes capture the physics more correctly compared to standard SPH(Agertz et al.2007).

5.Final remarks

The two main obstacles towards establishing clearly how likely is that giant planets form by gravitational instability are the fact that all the radiation physics models introduced so far rely on a number of simpli?cations and the fact that the initial conditions of protoplanetary disks are poorly constrained.The two issues partially overlap.Indeed disks are evolved as if they were in isolation while both their formation and their evolution will be a?ected by the properties of the collapsing molecular cloud core,including the local radiation environment and

12

magnetic?elds.External irradiation can heat the disk and stabilize it(Boley et al.2006),but its overall e?ecton disk thermodynamics could be even more subtle.For example,if the molecular envelope has been mostly dispersed strong UV and X-ray heating from nearby young massive stars could penetrate down to the disk,increasing its temperature towards the opacity gap at T~103K,thus triggering rapid cooling and possibly fragmentation as in the scenario envisioned by Johnson&Gammie(2003).

A lumpy collapse,as expected if cores are turbulent,could also favour disk instability if massive gas clumps hit the disk episodically.In addition,cores themselves are not isolated systems.In some models of star formation dynami-cal interactions between cores can be frequent and can translate into interactions between the disks themselves.Therefore there is a need of multi-scale simula-tions that study the formation and evolution of disks starting from the collapse of turbulent cores.Magnetic?elds also will play a role in setting the initial con-ditions,and their e?ect on disk evolution,in particular whether they favour or disfavour the onset of gravitational instability,is hard to predict without simula-tions that incorporate simultaneously MHD,self-gravity and realistic radiation physics(see Fromang2005on?rst attempts to study the combined e?ect of magnetorotational and gravitational instabilities in isothermal protoplanetarty disks).Considering that all this is still missing in the models it is quite possible that we have just begun to understand the role of gravitational instability in planet formation both as a possible mechanism to form giant planets and as a key process responsible for the evolution of protostellar disks.These are issues relevant to any model of planet formation.

Acknowledgments

The AMR software(FLASH)used in this work was in part developed by the DOE–supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago.Simulations were performed on the Zbox2cluster at the University of Zurich,on the Gonzales cluster at ETH Zurich and on the PIA cluster at the Rechenzentrum Garching.LM was supported by a grant of the Swiss National Science Foundation.AJG was supported by Alexander von Humboldt Foundation and by Polish Ministry of Science through grant1P03D 02626.

References

Agertz,O.,et al.,MNRAS,380,963

Bodenheimer,P.,Yorke,H.W,Rozyczka,M.,&Tohline,J.E.,1990,ApJ,355,651 Bate M.R.and Burkert A.1997,MNRAS,228,1060

Boley,A.C.,&Durisen,R.H.,2006,ApJ.,641,534

Boley,A.C.,Mej′?a,A.C.,Durisen,R.H.,Cai.K.,Pickett,M.,&D’Alessio,P.,2006, ApJ.,651,517

Boley,A.C.,Hartquist,T.W.,Durisen,R.H.,Michael,S.,2007,ApJ,660,L89

Boss A.P.2002a,ApJ.,567,L149

Boss A.P.2002b,ApJ.,576,462

Boss,A.P.2004,ApJ.,610,456

Boss,A.P.2006,ApJ,641,1148

13 Clarke,C.,Harper-Clark,E.,&Lodato,G.,2007arXiv0708.0742C,MNRAS in press Cleary P.W.&Monaghan J.J.,1999,JCAP.,148,227

D’Alessio P.,Calvet N.,and Hartmann L.1997,ApJ.,474,397

Durisen,R.H.,Boss,A.P.,Mayer,L.M.,Nelson,A.F.,Rice,W.K.M.,&Quinn,T.R., 2007,in“Protostars and Planets”,V,B.Reipurth,D.Jewitt,and K.Keil(eds.), University of Arizona Press,Tucson,951pp.,2007.,p.607-622

Fryxell,B.,Olson,K.,Ricker,P.,et al.2000,ApJS,131,273

Fromang,S.,2005,A&A,441,1F

Gammie,C.F.,2001,ApJ.,553,174

Haghighipour,N.,&Boss,A.P.,2003,ApJ,586,144

Johnson,B.M.,&Gammie,C.F.,2003,ApJ,597,131

Laughlin,G.,Korchagin,V.,&Adams,F.,1998,ApJ,504,945

Lodato G.and Rice W.K.M.(2004)Mon.Not.R.Astron.Soc.,351,630-642. Mayer L.,Quinn T.,Wadsley J.,and Stadel J.2002,Science,298,1756

Mayer L.,Wadsley J.,Quinn T.,and Stadel J.2004a,In“Extrasolar Planets:Today and Tomorrow”(J.-P.Beaulieu et al.,eds.),290.ASP Conference Series,San Francisco.

Mayer L.,Quinn T.,Wadsley J.,and Stadel J.2004b,ApJ,609,1045

Mayer L.,Wadsley J.,Quinn T.,and Stadel J.2005MNRAS,363,641

Mayer,L.,Lufkin,G.,Quinn,T.,&Wadsley,J.,2007,ApJ,661,L77

Mayer,L.,Boss,A.P.,&Nelson,A.F.,2007,review chapter to appear in the book ”Planets in Binary Star Systems”,ed.Nader Haghighipour,Springer,2007 Nelson A.F.,Benz W.,and Ruzmaikina T.V.2000,ApJ,529,357

Nelson,A.F.,2006,MNRAS,373,1039

Ra?kov R.R.2005,ApJ,621,L69

Ra?kov R.R.2007,ApJ,622,642

Rice W.K.M.,Armitage P.J.,Bate M.R.,and Bonnell I.A.2003,MNRAS,339, 1025-1030.

Rice,W.K.M.,Lodato,G.,Pringle,J.E.,Armitage,P.J.,&Bonnell,I.A.,2004,MN-RAS,355,543

Rice,W.K.M.,Lodato,G.,&Armitage,P.J.,2005,MNRAS,364,L56 Stamatellos,D.,Whitworth,D.,Ward-Thompson,D.,2007,MNRAS,379,1390 Stamatellos,D.,Whitworth,A.P.,2007,A&A,submitted,2007arXiv0709.0966S Truelove,J.K.et al.,1997,ApJ,489,L179

Wadsley,J.,Stadel,J.,&Quinn,T.2004,NewA.,9,137

硬盘开盘数据恢复教程图解 已开盘的硬盘数据恢复方法

硬盘开盘数据恢复教程图解已开盘的硬盘数据恢复方法 导读:硬盘磁头虽然几乎没有磨损的情况,但小小的振动就可能让磁头受到严重的损坏,当硬盘因为磁头损坏而造成硬盘不读盘的情况下,硬盘就只能使用硬盘开盘数据恢复教程来重新“复活”硬盘。 在开始学习教程前先了解下相关的知识,一般来说数据是以磁记方式存储在盘片上,磁头主要是完成数据的读取和写入。磁头并不是贴在盘片上读取的,由于磁盘的高速旋转,使得磁头利用“温彻斯特/Winchester”技术悬浮在盘片上。这使得硬盘磁头在使用中几乎是不磨损的,数据存储也会非常稳定,硬盘寿命也大大增长。但磁头也是非常脆弱的,在硬盘工作状态下,即使是再小的振动,都有可能使磁头受到严重损坏。由于盘片是工作在无尘环境下,所以,我们在处理磁头故障,也就是更换磁头时,都必须在无尘室内完成,而且还要有扎实的基本功,熟练的技巧,才能使成功率大大提高。 硬盘开盘数据恢复教程图解: 1、首先,开盘需要特定的条件和工具,无尘环境是必不可少的,其次我们可以从图中看到还需要医用手套,美工刀,尖嘴钳,直头和弯头镊子,螺丝刀(一字和t8) 2、这次我们要更换磁头的硬盘是迈拓120g 硬盘,故障情况是工作后不认

盘,电机转,有敲头声。首先,我们用美工刀小心地揭开硬盘上的保修标签。 3、接下来当然是拆除top上的所有螺丝,为了工作效率,外面不是要求很高的螺丝,我们可以用电动起子去卸。

4、我们小心的将螺丝放在培养皿里,打开top,我们就可以一览无遗地看到硬盘的内部结构了,我们可以清楚地看到组成硬盘的各个组件,包括底座base,马达moter,磁盘disc,磁头eblk,和已经打开的顶盖。

我的移动硬盘坏了怎样恢复数据

我的移动硬盘坏了怎样恢复数据 移动硬盘不小心摔坏了。外表是没什么破裂,但是重新插上电脑后,没有显示有硬件,我的电脑里也找不到任何东西。里面有很多重要资料啊。电脑能识别硬盘,并能读出根目录,也可以拷贝根目录的文件,但是不能打开文件夹,用资源管理器打开文件夹时,显示“由于I/O 设备错误,无法运行此项请求”的错误,一时间我不知道该怎么办了。 很多的数据资料,和临时工作,平时都在移动硬盘里做的,有四十多个G的。昨天下午正常打开工作文档,突然提示无法打开。移动硬盘变成了raw格式,原先设定的磁盘卷标也无影无踪,可用空间和剩余空间都成了0字节,打开硬盘提示要进行格式化。近期的临时工作都在,绝对不能做格式化。 40多个G的文件,两分钟不到,修复完成。打开我的电脑,再次看到了熟悉的硬盘卷标名,双击打开,一切都恢复了正常,开心很多的问题,到了关键时候,还是老的好使遇到过这种情况,千万不要选择格式化该分区,因为这时分区中的数据并没有被清除,只是暂时不能访问。既然是分区格式问题,那我们就用分区修复软件来解决这个问题。无敌数据恢复软件就能够让分区格式恢复为正常的FAT32,并且数据也能够正常的存取。 经过各项评测,我们特别向大家推荐一款安全易用、功能强大的数据恢复软件----硬盘数据恢复软件(全能文件恢复软件)。可以让大家轻松数据恢复。 硬盘数据恢复软件(全能文件恢复软件)有以下显著特点: 安全:目前恢复软件良莠不齐,往往因为自己的操作不当,或者使用软件不当,对数据造成二次破坏,影响恢复效果。此软件用只读的模式来扫描数据,在内存中组建出原来的目录文件名结构,不会破坏源盘内容. 易用:软件采用向导式的操作界面,很容易就上手,普通用户也能做到专业级的数据恢复效果。只需经过选择模式、扫描数据、预览恢复简单三步,数据轻松恢复! 第一步选择模式第二步扫描数据第三步预览恢复 人性化:此软件提供了预览文件功能和恢复小文件功能。恢复以前就可以直接预览里面的图片、表格、word等文档。所见即所得,可以避免很多恢复软件找到文件,但是恢复出来以后打开乱码等情况。 数据恢复软件更是一款恢复能力非常全面的硬盘文件恢复软件,支持普通硬盘、移动硬盘、SD卡、U盘、内存卡等数据恢复,能扫描出被误删除、误格式化、重新分区、分区表损坏、一键Ghost重新分区、分区变成RAW类型、目录损坏且无法读取、杀毒、卸载软件、ChkDsk 磁盘检查等情况下丢失的数据文件。支持原目录文件结构名字的恢复,完美支持中文长文件名的恢复。支持Windows常用的NTFS/FAT32/FAT/exFAT等盘符类型,支持Word/Excel/PowerPoint/DWG/CDR/PSD/JPG/A VI/MPG/MP4/3GP/RMVB/PDF/WA V/ZIP/RAR 等多种文件的恢复。

win7开机启动项设置-服务

下面我说的是WIN7的服务.... Adaptive Brightness 监视氛围光传感器,以检测氛围光的变化并调节显示器的亮度。如果此服务停止或被禁用,显示器亮度将不根据照明条件进行调节。该服务的默认运行方式是手动,如果你没有使用触摸屏一类的智能调节屏幕亮度的设备,该功能就可以放心禁用。 Application Experience 在应用程序启动时为应用程序处理应用程序兼容性缓存请求。该服务的默认运行方式是自动,建议手动。 Application Information 使用辅助管理权限便于交互式应用程序的运行。如果停止此服务,用户将无法使用辅助管理权限启动应用程序,而执行所需用户任务可能需要这些权限。该服务的默认运行方式是手动,不建议更改。 Application Layer Gateway Service 为Internet 连接共享提供第三方协议插件的支持

如果装有第三方防火墙且不需要用ICS方式共享上网,完全可以禁用掉。 Application Management 为通过组策略部署的软件处理安装、删除以及枚举请求。如果该服务被禁用,则用户将不能安装、删除或枚举通过组策略部署的软件。如果此服务被禁用,则直接依赖于它的所有服务都将无法启动。该服务默认的运行方式为手动,该功能主要适用于大型企业环境下的集中管理,因此家庭用户可以放心禁用该服务。 Ati External Event Utility 装了ATI显卡驱动的就会有这个进程,建议手动。 Background Intelligent Transfer Service 使用空闲网络带宽在后台传送文件。如果该服务被禁用,则依赖于 BITS 的任何应用程序(如 Windows Update 或 MSN Explorer)将无法自动下载程序和其他信息。这个服务的主要用途还是用于进行WindowsUpdate或者自动更新,如果是采用更新包来更新的话,完全可以禁用。 Base Filtering Engine

删除的文件如何恢复 电脑盲轻松恢复硬盘数据教程

删除的文件如何恢复电脑盲轻松恢复硬盘数据教程发布时间:2012-11-14 18:21作者:电脑百事网来源:https://www.wendangku.net/doc/f618360803.html, 在日常使用电脑的过程中,有时不小心把有用的文件误删除;有时格式化U盘时忘记备份有用的文件;有时遇到病毒,U盘或磁盘分区里的文件瞬间消失或全部变成乱码,甚至需要重新格式化,这总是让人防不胜防;遇到这些情况就需要数据恢复,将丢失的文件找回来。这里就介绍一些简单实用的数据恢复的方法。 类似阅读:如何检测硬盘坏道被屏蔽过坏道硬盘检测方法 一、误删除文件的恢复 对于文件被误删除的情况,如果能记得清楚该文件所在的磁盘分区,建议使用DiskGenius,如果不能,建议使用Recuva,下面我们先说Recuva,DiskGenius将放到从已格式化的磁盘中恢复文件一起讨论。当然在使用工具前记得先找找是否已删除,是不是在回收站。 recuva是一个免费的Windows 平台下的文件恢复工具,可以用来恢复那些被误删除的任意格式的文件,能直接恢复硬盘、闪盘、存储卡(如SD 卡,MMC 卡等等)中的文件,只要没有被重复写入数据,无论格式化还是删除均可直接恢复,支持FAT12,FAT16,FAT32,NTFS,exFat 文件系统,涵盖了我们日常所用到的所有文件系统。 Recuva下载地址:点此进入下载Recuva专业数据恢复软件 软件安装很简单,直接点击下一步就是,但第三个界面有谷歌浏览器的可选安装,不需要的记得取消。在第一次使用会弹出向导页面,在第一个界面上点击下一步,移动到文件选项界面。如下图(红字为我添加的注):

Recuva恢复误删文件非常简单方便

超级硬盘维修工具PC3000介绍

超级硬盘维修工具PC3000介绍 PC-3000是由俄罗斯著名硬盘实验室-- ACE Laboratory研究开发的商用的专业修复硬盘综合工具。它是从硬盘的内部软件来管理硬盘,进行硬盘的原始资料的改变和修复。可进行的操作: 1 伺服扫描 2 物理扫描 3 lba地址扫描 4 屏蔽成工厂坏道(p-list) 5 屏蔽磁头 6 屏蔽磁道 7 屏蔽坏扇区 8 改bios的字(参数) 9 改lba的大小 10 改sn号 11 查看或者修改负头的信息 二、PC3000主要用途 软硬件综合工具“PC-3000"主要用来专业修复各种型号的IDE硬盘,容量从20MB 至200GB,支持的硬盘 生产厂家有: Seagate(希捷), Western Digital(西部数据), Fujitsu (富士通), Quantum(昆腾), Samsung(三星), Maxtor(迈拓), Conner, IBM, HP, Kalok, Teac, Daeyoung,and Xebec等。 使用РС-3000有可能修复 50-80% 的缺陷硬盘。如此高的修复率是通过使用特别的硬盘工作模式来达到的(比如工厂模式),在特别的工作模式下可以对硬盘进行如下操作: 内部低级格式化; 重写硬盘内部微码模块(firmware); 改写硬盘参数标识; 检查缺陷扇区或缺陷磁道,并用重置、替换或跳过忽略缺陷的等方式修复; 重新调整内部参数; 逻辑切断(即禁止使用)缺陷的磁头; S.M.A.R.T参数复位.... 其中,重写内部微码(Firmware)模块对在一些情况下对数据恢复有特别的功效, 如: Maxtor美钻、金钻、星钻系列硬盘加电后不能被正确识别(无磁头杂音);

硬盘维修工具大全

硬盘维修工具详细说明 俄罗斯PC3000硬盘维修系统 一、PC3000介绍 PC-3000是由俄罗斯著名硬盘实验室--ACE Laboratory研究开发的商用的专业修复硬盘综合工具。 它是从硬盘的内部软件来管理硬盘,进行硬盘的原始资料的改变和修复。可进行的操作: 1、伺服扫描; 2、物理扫描; 3、lba地址扫描; 4、屏蔽成工厂坏道(p-list); 5、屏蔽磁头; 6、屏蔽磁道; 7、屏蔽坏扇区; 8、改bios的字(参数); 9、改lba的大小; 10、改sn号; 11、查看或者修改负头的信息。 二、PC3000主要用途 软硬件综合工具“PC-3000"主要用来专业修复各种型号的IDE硬盘,容量从20MB至200GB,支持的硬盘生产厂家有:Seagate(希捷),WesternDigital(西部数据),Fujitsu (富士通),Quantum(昆腾),Samsung(三星),Maxtor(迈拓),Conner,IBM,HP,Kalok,Teac,Daeyoung,andXebec等。 使用РС-3000有可能修复50-80%的缺陷硬盘。此高的修复率是通过使用特别的硬盘工

作模式来达到的(比如工厂模式),在特别的工作模式下可以对硬盘进行如下操作: 内部低级格式化; 重写硬盘内部微码模块(firmware); 改写硬盘参数标识; 检查缺陷扇区或缺陷磁道,并用重置、替换或跳过忽略缺陷的等方式修复; 重新调整内部参数 逻辑切断(即禁止使用)缺陷的磁头; S.M.A.R.T参数复位…… 其中,重写内部微码(Firmware)模块对在一些情况下对数据恢复有特别的功效,如:Maxtor 美钻、金钻、星钻系列硬盘加电后不能被正确识别(无磁头杂音);FujitsuMPG及MPF 系列硬盘加电后磁头寻道基本正常,但不能被正确检测到;IBM腾龙系列有磁头寻道声(无杂音),但不能被正确识别;Quantum硬盘能被检测到,但无法读写;WDEB及BB 系列硬盘能被检测到,但无法读写……以上所列的这些故障,一般不属于硬件故障。通过PC-3000的操作,可以解决大部分类似故障,而且大部分数据还完好无损。 三、PC3000工作基本原理 破解各种型号的硬盘专用CPU的指令集,解读各种硬盘的Firmware(固件),从而控制硬盘的内部工作,实现硬盘内部参数模块读写和硬盘程序模块的调用,最终达到以软件修复多种硬盘缺陷的目的。 最专业功能的有:重写硬盘Firmware模块;按工厂方式扫描硬盘内部缺陷并记录在硬盘内部相应参数模块;按工厂方式进行内部低级格式化;更改硬盘参数等。 ACE Laboratory经过十多年的不断研究,PC-3000?V14.01(最新版本)已经能够支持大部分新旧型号的IDE接口硬盘,容量从40MB至200GB的各类硬盘都可支持。 硬盘100级超净无尘开盘工作台

硬盘坏了怎么恢复数据,教你找回丢失的数据

硬盘坏了怎么恢复数据,教你找回丢失的数据 硬盘坏了怎么恢复数据?机械硬盘用久了难免会出现坏道的情况,症状是突然电脑卡得不行,不能创建文件,也拷贝不了数据到其他分区,或者蓝屏等各种症状,而出现硬盘坏道了一般都怎么解决呢? 硬盘坏了怎么恢复数据?其实很多时候都是因为我们的不正当操作,导致硬盘坏道,所以修复起来也相对麻烦,不过有很多数据恢复软件可以修复,这里分享给大家的方法可以直接使用数据恢复软件来进行修复。 方法一: 1.首先我们需要在电脑上下载最新版本的“互盾数据恢复软件”的安装包。之后将软 件进行安装好在我们的电脑上。安装完成之后软件会弹出窗口,点击“立即体验”即可运行软件。

2.然后将U盘连接电脑上。接下来我们就来运行这款软件,打开软件之后,在软件的界面当中可以看到有三种恢复选项以及每一种选项的具体描述可供选择。如果我们想要快速将删除的文件恢复,那么我们可以点击“深度扫描”进行扫描。

3、点击进入之后,我们需要点击删除文件所在的磁盘,如果我们删除的是回收站的文件,那么我们需要点击磁盘进行扫描。

4、软件扫描完成之后,即可在软件的界面里对我们删除的文件进行查找,找到需要恢复的文件后,点击“下一步”进行保存。

5、最后点击“浏览”选项选择文件保存位置,然后点击“恢复”按钮,那么我们不小心删除的文件就可以恢复了。

方法二: 硬盘文件恢复教程如下: 工具: 1)电脑 2)强力数据恢复软件 1.首先我们需要在电脑上下载最新版本的“强力数据恢复软件”的安装包。之后将软件进行安装好在我们的电脑上。安装完成之后软件会弹出窗口,点击“立即体验”即可运行软件。

自己动手更换硬盘磁头恢复数据

自己动手更换硬盘磁头恢复数据 页面 1 共 6 磁头故障对于硬盘上的数据来说无疑是一个噩梦,但是通过更换磁头来恢复 数据也绝不是那么神秘。就更换磁头这一方法来说,不仅需要洁净的环境, 还需要工程师具有一定的知识基础和经验技巧。这项工作似乎看起来很有 趣,不过,如果确实需要恢复硬盘上的数据,还是应该依靠专业的数据恢复 机构。 E 目的: 演示Maxtor d540x-4k020h1 (20GB 5400 RPM,单碟)更换磁头的方法。 警告/免责声明: 1) 如果使用本文的方法造成的损坏,本人不承担责任。所有风险应该由你自己承担。打开硬盘后你的硬盘的质保将失效! 成功的可能性是未知的,你读完本文后你会了解这一个工作的可行性。如果你有损坏的硬盘并且想卖掉,请联系我。 谢谢。 2)打开硬盘的盘体会对硬盘上的数据造成永久的损坏。 3)永磁体的姿态不能改变。在卸下上磁铁之前应记住它原来的位置。 问题描述: 我的一个开公司的朋友的硬盘上保存有大量的数据。他的一台Dell计算机在使用了仅一年,而且他从来没有备份那台计算机上的数据。 无须多言,他的硬盘突然损坏了。经过仔细观察,我发现那块硬盘在加电后没有起转。 似乎硬盘的电路板损坏了,或者主轴电机烧毁了。 硬盘上的数据并不是非常重要,只是想尽可能的进行恢复。他的公司负担不起专业数据恢复公司的服务报价--通常是$1500 到$5000 美元。他决定如果不能找到便宜的解决方案的话,就放弃他的数据。 我决定接受这一挑战;我知道即使失败那么事情也不会变的更糟。 困难: 我首先检查硬盘的电路板,看是否有明显的损坏(比如,烧痕)。但是并没有什么发现;我记起当硬盘加电后,硬盘有一丝抖动,所以主轴电机上应该是有电压的--至少在最开始的几秒钟。 如果主轴电机上有电压,而且它试图启动然后又停止,说明主轴电机或者是卡住了,或者是电压不足。我快速的打开硬盘的盘体,发现主轴电机并没有被卡住。 然后我合上硬盘的盘体,开始检查硬盘的电路板。我移开电路板逐个的用绝缘胶带盖住电路板和盘体之间的触点。

电脑硬盘恢复数据恢复,数据恢复如此简单

电脑硬盘恢复数据恢复,数据恢复如此简单 对于移动硬盘来说,相信大家也都并不陌生,不管是上班族,还是开公司的老板或者学生,往往也都会有一个属于自己的硬盘或者U盘,用来存储一些重要的数据文件。虽然移动硬 盘在目前生活中比较常见,使用的时候也都是比较方便的,但是很多人往往也都认为移动 硬盘存储数据比较安全,认为存储在里面也都可以确保万无一失,但是在日常使用时,往 往也都会由于一些外界因素的影响,而导致它内部数据出现丢失或者误删除的现象,并且 此时所删除的文件也都将直接被系统所隐藏。那么对于这种现象来说,当数据误删除后, 我们又该如何恢复呢?下面就为大家介绍一种常见的数据文件恢复技巧,主要分为以下几点: 硬盘打不开的原因: 1、硬盘系统驱动出现问题,如果是驱动出现问题的话,在插入硬盘时会有所提示,此时 也就需要重新安装对应的 USB3.0 驱动程序。 2、硬盘内部设备供电不足,导致硬盘无法打开。

3、人为因素导致接口出现问题,很多人在使用 USB 设备时,往往没有对硬盘进行定期的保养和维护,导致它内部的 USB 接口出现断针的现象。 4、文件或目录损坏,如果将硬盘插入电脑中,界面提示是否需要对硬盘进行格式化,此时也就说明硬盘的目录文件有损坏的现象, 以上就是移动硬盘打不开的几种原因介绍,相信大家也都有了一定的了解,为了能够找回我们所丢失的文件,当硬盘数据丢失后,也就需要结合丢失文件类型选择不同的方法进行数据的修复。以”嗨格式数据恢复大师“为例,可修复误删除,误清空,误格式化等多种情景下丢失的文件,在操作过程中也都比较简单方便。 希望以上内容对大家有所帮助,不管是哪种原因造成数据丢失或损坏,首先也就需要及时停止对都是数据的硬盘进行扫描和读写,避免文件出现覆盖丢失的现象。

继续免费10大硬盘数据恢复软件推荐.

继续免费!10大硬盘数据恢复软件推荐 作者:李熙 计算机失去响应,经过检测往往是由硬盘故障引起。这时就需要一种工具来更精确的诊断硬盘发生了何种故障;大多数情况下硬盘的故障不是物理性的或非致命的,使用简单的方法就可以修复;另外,硬盘修复和数据恢复工程师也需要一种工具来对故障硬盘进行初步的诊断和修复。 硬盘数据恢复软件可以帮助我们恢复被删除、被格式化、分区丢失、重新分区或者分区提示格式化的数据,让存在电脑的文档损失降至到最低。而一些功能强悍又免费的硬盘数据恢复软件多半是需要付费才可以使用的。本期软件周刊,我们为大家搜集了一些好用又免费的硬盘数据恢复和数码照片恢复软件,一起分享免费羹汤~ 1.DiskGenius DiskGenius也许大家不是很熟悉,它的前身就是DiskMan(这下知道了吧)。改名之后,体积变大了(原来几百K,现在变成几M了),界面做了改变,功能当然也变多变强了,但主要还是针对于磁盘的分区。点击此处下载DiskGenius

该软件使用简单,如果您被误删的文件在D盘,则选择D盘,然后按“Scan”键进行扫描,扫描结束后,您将会在扫描结果中找到被误删的文件,选中该文件,再选择文件恢复的路径(Undelete selectd),注意该路径要与待恢复文件的原路径不在同一个驱动器上,最后按“Undelete”键即可恢复该文件。 5.小哨兵一键恢复 小哨兵一键恢复是一款傻瓜式的系统备份和恢复工具。它具有安全、快速、保密性强、压缩率高、兼容性好等特点,独创的常用文件转移技术,特别适合电脑新手和担心操作麻烦的人使用,本软件提供DOS及Windows两种环境的界面,设计专业,操作简便,全面支持Windows7及Vista系统。点击此处下载小哨兵一键恢复

移动硬盘数据恢复_提示格式化_未分配_无法访问_回收站_误格式化_Ghost选错盘符_等数据恢复

移动硬盘数据恢复格式化数据恢复变成未分配提醒格式化ghost选错盘我推荐一款软件Diskgenius 先说一下我的遭遇吧,前两天因操作不当,丢失了移动硬盘的数据,具体是这样的想重装系统GHOST应选C盘,我却选了移动硬盘(傻了-.-)点击了开始。但我以为选了C盘,所以把移动硬盘的数据线拔下来,同时画面上出现错误信息!我才恍然大悟这可出大事了。假如我没有把硬盘数据线给拔下来等他运行完成以后除了被GHOST覆盖的文件以外其他的文件应该问题不大,可我这么一整里面的数据估计损坏了不少,果然我那移动硬盘乱套了先别说里面的文件好像连分区表引导什么玩意也都变了,变成如图1里那副德行,本来是一个分区的。更糟糕的是压根就无法访问硬盘,那个97g的也不行,更不用说变成未分配的部分了,还提示让我格式化,里面太多我的心血了好多资料现在都无法在网上找有些是自己制作,当初都有过想死的心(夸张了点-.-)于是在网上搜了很多关于恢复数据的资料和软件怕那些破解版软件功能不全注册过正版有一款安易数据恢复注册80元不贵,可是那些软件的共同点就是让我找回了图片音频视频文件可是怎么也找不回iso格式,在这里说的找不回不是说那些软件搜不到我的文件,看搜出来的文件总大小好几百个G应该包括我想要的东西,而且还能搜到我删除过得数据,要说的主要是是扫描结果显示方式,很散好像把一个镜像文件全分解了我上哪去问谁是谁啊好几万甚至更多个文件啊。。。而且因文件名破坏全部重命名FRS00333之类的当中找出需要在一起的那些文件?我是耶稣啊?(要重新下载那些300g 左右的东西太可怕了),加上软件要扫描500G的硬盘一扫就是好几个小时电脑3天2夜没关过,苦苦等了五六个小时候的结果总是让我失望,那些软件扫描结果都差不多有些软件也具备了以文件扩展名格式搜索的功能但是感觉速度没有提高多少,后来以死马当活马医的心态尝试Diskgenius这款软件,再不行就放弃!挂机后睡觉!第二天被外面的施工噪音也吵醒正闹心着,可是扫描结果一下让我的心情变得无比愉悦!太让我激动了,我的数据起死回生啦!这款软件太强悍啦!下面有图证,可在分类里轻松找到自己想到的文件格式,我这种情况下操作方式是工具里面已删除或者格式化后的文件恢复,要执行其他重新xx的命令时最好备份一下,操作不当破坏数据时可以恢复。这款软件还可以重新分区等很多其他功能但是因个人不需要也不是专业人士没有去研究过所以没法介绍,另外别的数据恢复软件也有以文件格式过滤搜索功能,可我用过的那些超级恢复,恢复大师,易我数据恢复等等近7~8款软件就是没能找回iso扫描结果都大同小异即使能扫出iso也就那么一两个看文件大小就知道不是我想找的。有款R-studio听说也非常强悍但是操作很麻烦,我也不懂复杂的专业术语看了那些使用说明也不太明白,最后提醒大家有重要的文件而且格式各异最好压缩成rar或者zip这样的话丢失以后在很多软件的扫描结果上都可以找到,即使文件名破坏也没关系解压工具看一下里面的细节就知道是什么了,好了希望能帮那些丢失文件的朋友们找回数据尽量减少没必要的损失,数据无价谨慎操作

完整的硬盘数据恢复方法

完整的硬盘数据恢复方法 不小心将自己电脑硬盘之内的重要文件和数据,以及重要的工作资料等删除,你会怎么办?根据最新的统计数据显示,超过六成以上的电脑玩家会选择放弃这批数据,不管这些数据的重要性和价值有多高。其中,绝大多数用户都并不了解其实硬盘数据丢失之后,选择网络上一些数据恢复软件,就可以帮助他们快速地找回这些文件。 选择哪款数据恢复软件比较好也是目前不少电脑用户普遍关心的问题之一。有的数据恢复软件恢复功能薄弱,有的数据恢复软件恢复出来的文件无法打开,甚至还有部分数据恢复软件其本身扫描出来的数据和文件都不齐全,结果就是用户以为该恢复软件已经找到了所有删除的文件,但是最终发现其实只是恢复出来30%~45%左右的数据和资料。实际上,根据行业之内的恢复技术专家介绍,恢复软件恢复出来的数据完整程度和质量,主要还是依靠软件本身的技术核心决定,如果该软件本身的技术核心体系不足,那么就很有可能造成上述情况。

可以肯定的是,这些已经遭遇数据资料丢失的用户一定更愿意选择一款能够实现百分之百数据恢复的软件。从目前来说,专门针对存储设备数据扫描和恢复技术较为先进的领域之内,顶尖数据恢复软件作为国内首款率先实现百分之百数据恢复能力的恢复工具,自从发布之日起就一直受到不少用户的肯定与支持。截至9月份,顶尖数据恢复软件总体下载量和使用数量已经成为目前数据恢复行业之内的领先恢复工具。 顶尖数据恢复软件全面支持FAT16/32和NTFS,恢复完全删除的数据和目录,恢复主引导扇区和FAT表损坏丢失的数据,恢复快速格式化的硬盘和软盘中的数据,恢复CIH破坏的数据,恢复硬盘损坏丢失的数据,通过超线程技术数据恢复等等。利用这种原理可在回收站被清空之后进行数据恢复。可以恢复被删除的文件,也可以恢复病毒或者硬盘格式化所破坏的硬盘信息。即使目录结构已经部分破坏,只要实际数据仍保留在硬盘上该数据恢复软件都可以将它们恢复出来。

无需任何软件,简单修改Win7开机登陆界面背景图片

无需任何软件,简单修改Win7开机登陆界面背景图片,让您的电脑更为个性。 默认分类2010-09-27 15:48:45 阅读134 评论0 字号:大中小订阅 无需任何软件,自定义Win7开机登陆界面背景图片,让您的电脑更为个性。 Win7已经出来很长时间,其实类似修改Win7开机登陆界面举不胜举,比如ThoosjeLogonEditor等。但是用软件到底都修改了系统的什么文件?系统文件吗?会不会造成系统不稳定啊? 最近找到了这样一个方法,利用微软提供给各大厂商制作OEM版Win7时定制登陆界面的方法,自定义Win7开机登陆界面背景图片,方法很简单,也很实际,不修改任何文件,只要修改一下一个注册表键值,添加一张图片,即可。 以下操作请以管理员权限进行。 1.准备图片:将需要作为背景图片的图片格式转换成.jpg,文件大小控制在250KB以内(否则可能无法正常显示),图片分辨率调整成当前显示器分辨率,将图片命名为“backgroundDefault.jpg” 2.打开注册表编辑器regedit:可以“开始”→“运行”→键入“regedit”→“确定”→启动注册表编辑器。 3.展开到: [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\LogonUI\Ba ckground]→右侧新建一个双字节值“OEMBackground”(OEM版本的Win7已经有这个键值)→右击该双字节值→“修改”→将键值修改为“1”。 图:

无需任何软件,简单修改Win7开机登陆界面背景图片,让您的电脑更为个性。 4.分两种情况 A:普通用户(相对于OEM用户,登陆界面是Win7标准的,而不是OEM定制的) “我的电脑”→“C:\Windows\System32\oobe”→在该目录下创建一个名为“info”的文件夹并打开→在打开的目录下创建一个名为“backgrounds”的文件夹→将准备好的“backgroundDefault.jpg”复制到这个位置(即C:\Windows\System32\oobe\info\Backgrounds)。 B:OEM用户(登陆界面已由OEM定制) “我的电脑”→“C:\Windows\System32\oobe\info\Backgrounds”,用准备好的“backgroundDefault.jpg”覆盖已存在的文件(可以先把已存在的文件备份,随你喜欢)

计算机硬盘及数据恢复发展史

计算机硬盘及数据恢复发展史 简介:目前硬盘大体上分为三种,分别有固态硬盘(SSD盘,新式硬盘)、机械硬盘(HDD传统硬盘)、混合硬盘(HHD一块基于传统机械硬盘诞生出来的新硬盘)。不论网上如何调侃,请保持应有的理智与常识:频繁关掉电源是完全可能损坏硬盘的!下面我们以前回顾一下:计算机硬盘发展史、硬盘数据恢复十大神器(附下载链接)、中国硬盘简史、造一块理想的硬盘等知识。

目录 01 计算机硬盘发展史 02 硬盘数据恢复十大神器 03 中国硬盘简史 04 造一块理想的硬盘

01计算机硬盘发展史 目前硬盘大体上分为三种,分别有固态硬盘(SSD盘,新式硬盘)、机械硬盘(HDD传统硬盘)、混合硬盘(HHD一块基于传统机械硬盘诞生出来的新硬盘)。 硬盘制造过程视频,观看请自行百度 一、机械硬盘的发展史 1、1956年,世界上第一块硬盘诞生 世界上第一块硬盘出生在1956年,至今已有61年半个多世纪的历史。它由IBM公司制造,世界上第一块硬盘:350RAMAC。盘片直径为24英寸,盘片数为50片,重量则是上百公斤,相当于两个冰箱的体积。不过其储存容量只有5MB。

IBM 350,内含50个盘片,总容量为5MB 在那个时代,RAMAC是令人吃惊的计算机设备,被用于银行,医疗领域。虽然350RAMAC还不能称之为严格意义上的硬盘,但却为计算机发展史掀起了新一页。 2、1973年,温彻斯特(Winchester)硬盘诞生 由于RAMAC体积过于庞大,性能低效等缺点,IBM提出“温切斯特/Winchester”技术,并于1973年研制成功了一种新型的硬盘IBM 3340。这种硬盘拥有几个同轴的金属盘片,盘片上涂着磁性材料。它们与能够移动的磁头共同密封在一个盒子里面,磁头从旋转的盘片上读出磁信号的变化。 这就是我们今天使用的硬盘的祖先——IBM把它叫做温彻斯特(Winchester)硬盘,也称温盘。

六款强大的数据恢复软件.

六款数据恢复软件 1、强大的EasyRecovery 不得不先介绍它,因为它的确太强大了,都说它是专业的数据恢复软件呢!一款威力非常强大的硬盘数据恢复工具。能够帮你恢复丢失的数据以及重建文件系统。EasyRecovery 不会向你的原始驱动器写入任何东东,它主要是在内存中重建文件分区表使数据能够安全地传输到其他驱动器中。你可以从被病毒破坏或是已经格式化的硬盘中恢复数据。该软件可以恢复大于 8.4GB 的硬盘。支持长文件名。被破坏的硬盘中像丢失的引导记录、BIOS 参数数据块;分区表;FAT 表;引导区都可以由它来进行恢复。 2.老牌的数据恢复工具FinalData2.0企业版 在Windows环境下删除一个文件,只有目录信息从FAT或者MFT(NTFS)删除。 这意味着文件数据仍然留在你的磁盘上。所以,从技术角度来讲,这个文件是可以

恢复的。FinalData就是通过这个机制来恢复丢失的数据的,在清空回收站以后也不例外。另外,FinalData可以很容易地从格式化后的文件和被病毒破坏的文件恢复。甚至在极端的情况下,如果目录结构被部分破坏也可以恢复,只要数据仍然保存在硬盘上。利用“*.扩展名”方式搜索,更容易找到要恢复的文件哦。 3.Recover My Files_V3.98_5566 RecoverMyFiles下载介绍:Recover My Files可以恢复由于冒失删除的文档, 甚至是磁盘格式化后的文件恢复工具,它可以自定义搜索的文件夹、文件类型,以提高搜索速度及准确性节约时间。在搜索过程中,提供了大量的信息,包括:文件名、文件/目录、尺寸、相关日期、状态、对一般性文档可直接预览等,让你更好地选择要恢复的文件。搜索全面,方便查找。 4.易我数据恢复向导Drw_V2.1.0 《易我数据恢复向导》是首款国内自主研发的数据恢复软件,是一款功能强大

成功恢复格式化硬盘数据-原创

亲身成功—格式化4遍后,还能恢复硬盘数据? ——谨以此文献给那些因为重装系统或者硬盘格式化而丢失数据而苦恼的朋友们。 我不是电脑高手,其实就是个电脑菜鸟,菜鸟可能没有“大虾”的高超技艺,小小菜鸟仅仅是个电脑业余爱好者,话说前几天看到一条微博:“如果你打开电脑仸务管理器,你能清楚地说出里面每个迚程程序的作用或者关掉之后,有什么样的后果,那可以确定无疑地断定:你现在还没找到女朋友?。”O(∩_∩)O哈哈!哎!数据无价!特别是那些记录我们生活的点点滴滴的文字、照片、还有记忆等等,你们懂的!现在我将自己成功的恢复笔记本里那些被格式化的数据心得分享给朋友们,希望能帮助你们找回一些丢失的东西。 上大学期间买不起笔记本,于是大四时买了个移动硬盘,把我大学里的照片和资料全部放在里面,这可是我的宝贝,因为这是我青春和我的大学的全部纯真记忆。去年去广州工作后,为了一个“两个人缩短距离的约定”,努力工作迫不及待地买个笔记本(三星)。结果,笔记本有了,约定没有了。遂把移动硬盘里的照片全部拷贝到电脑里,我想这下安全吧,因为放移动硬盘很容易丢失数据。这台可怜的笔记本没有发挥他原来沟通缩短距离的作用,反而让我回到沉痛的回忆,本本成了我的试验品,再加上我是个菜鸟,经常开机、关机、重装系统等等,现在想来我的本本罢工定是在抗议我的“暴行”吧?沉默已久,他终于爆发了。。。。。。结果可想而知,数据全部丢失,320G的硬盘里面空空的,什么也没有?原来四个盘,瞬间变成了一个盘,我的大学照片?还有“学优教育”暑假课程资料?瞬间全部不见了?我急的像热锅上的蚂蚁,更像无头苍蝇,不知所措,我责骂自己菜鸟,于是我自己把硬盘格式化,再次重装系统,结果还是没有?于是打

硬盘数据恢复—被删除文件恢复全攻略

电脑在使用过程中难免会遇到更换机器、中毒、系统崩溃、升级等情况,有时还需要进行硬盘的格式化,结果发现有些重要的数据忘记备份,那后悔也来不及了!难道真的没有办法了吗?不,能恢复的! 那数据为什么能恢复呢?这主要取决于硬盘数据的存储原理。先看一下硬盘上数据存放的原理吧。硬盘中由一组金属材料为基层的盘片组成,盘片上附着磁性涂层,靠硬盘本身转动和磁头的移动来读写数据的。其中最外面的一圈称为“0”磁道。上面记录了硬盘的规格、型号、主引导记录、目录结构等一系列最重要的信息。我们存放在硬盘上的每一个文件都在这里有登记,相当于文件的户口簿。在读取文件时,首先要寻找0磁道的有关文件的初始扇区,然后按图索骥,才能找到文件的老巢。但是删除就不一样了,系统仅仅对零磁道的文件信息打上删除标准。但这个文件本身并没有被清除。只是文件占用的空间在系统中被显示为释放,而且,当你下次往硬盘上存储文件时,系统将会优先考虑真正的空白区,只有这些区域被用完以后,才会覆盖上述被删文件实际占有的空间。另外,即使硬盘格式化后(如Format),只要及时抢救,还是有很大希望的。下面我就向大家做详细的介绍。 EasyRecovery是一个威力非常强大的硬盘数据恢复工具,能够帮你恢复丢失的数据以及重建文件系统。下面我们就以EasyRecovery为例,介绍删除软件恢复的过程。 一、回收站里被删除文件 首先我们启动EasyRecovery,点击左边列表中的“数据修复”。 数据修复里面有六个选项,我们点击“DeletedRecovery”,它的功能是查找并恢复已删除的文件。 选择要恢复文件所在的分区,在默认情况下软件对分区执行的是快速扫描,如果你需要对分区进行更彻底的扫描,就在“完成扫描”前打上勾就行了,选择好分区后,我们点击“下一步”。 点击下一步后,软件就开始扫描你刚才选择的分区了。 经过3~4分钟的扫描后结果就出来了,你点击左面文件夹列表中的文件夹,在右面列出来到文件就是能被恢复的删除文件,选择一个要恢复的文件,一定要把前面的勾打上,然后点击“下一步”。 选择好要恢复的文件后,我们就来选择恢复目标的选项,一般我们都是恢复到本地驱动器里的,那么我们点击后面的“浏览“来选择文件保存的目录(选择分区时请注意,保存的分区不能与文件原来所在的分区一样,否则不能保存)。 点击下一步后,文件就开始恢复了,恢复完成后,弹出一个对话框显示文件恢复摘要,你可以进行保存或者打印,然后点击“完成”。一个文件就被恢复了。 二、格式化后文件的恢复 如果要恢复格式化后的文件,以前我们想都不敢想,现在不用怕了,因为我们有了EasyRecovery。

计算机取证中的数据恢复技术综述

计算机取证中的数据恢复技术综述 摘要 传统数据恢复已经有很多成熟的技术,通过分析计算机取证中数据恢复技术与传统数据恢复的关系,我们证明了在计算机取证中应用数据恢复技术的可行性,实践也证明了其有效性和重要性。本文主要在介绍和分析磁盘在FAT32和NTFS两种不同文件系统的分区结构的前提下,在综述了各种计算机取证中基于FAT32和基于NTFS的数据恢复技术和原理、基于闪存的数据恢复技术、基于新型存储设备SSD固态盘的数据恢复技术。然后讨论了未来计算机取证中数据恢复技术的发展趋势和挑战,即文件碎片的重组和恢复和基于SSD的数据恢复。相比传统数据恢复,计算机取证中的数据恢复有其自己的特点和要求,最后本文从法律角度,总结了数据恢复技术在计算机取证中应用时所需要遵循的原则和流程规范。 关键字:计算机取证、数据恢复 Abstract Traditional data recovery has a lot of mature technologies, According to analysis the relationship between data recovery in computer forensics and traditional data recovery, feasibility of applying data recovery techniques to computer forensics has been proved,much practice also has proved its effectiveness and importance. This paper describes and analyzes the different disk partition structure respectively in the FAT32 and NTFS file systems, then reviews a variety of data recovery techniques and principles respectively based on FAT32 and NTFS, flash-based data recovery techniques, SSD-based data recovery techniques in computer forensics. Next we discuss the trends and challenges of data recovery technology in computer forensics in the future, namely restructuring and recovery of file fragmentation and SSD-based data recovery. Compared to traditional data recovery, data recovery in computer forensics has own characteristics and requirements, and finally from a legal point of view, this paper summed up the principles and process specifications that need to be followed when data recovery techniques are applied to computer forensics . Keywords: computer forensics, data recovery

讲解win7启动过程

:BIOS→MBR→Bootmgr→BCD→Winl oad.exe→内核加载 1.开机后,BIOS进行开机自检(POST),然后选择从硬盘进行启动,加载硬 盘的MBR并把控制权交给MBR(MBR是硬盘的第一个扇区,它不在任何一个分区内); 2.MBR会搜索64B大小的分区表,找到4个主分区(可能没有4个)的活动分 区并确认其他主分区都不是活动的,然后加载活动分区的第一个扇区 (Bootmgr)到内存; 3.Bootmgr寻找并读取BCD,如果有多个启动选项,会将这些启动选项反映 在屏幕上,由用户选择从哪个启动项启动。 4.选择从Windows7启动后,会加载C:\windows\system32\winload.exe, 并开始内核的加载过程,内核加载过程比较长,比较复杂,这里就不一一讲了。 在这个过程中,bootmgr和BCD存放在Windows7的保留分区里,而从Winload.exe开始,就开始进入到C盘执行内核的加载过程了。 ?MBR(Master Boot Record),中文意为主引导记录。 注意事项 硬盘的0磁道的第一个扇区称为MBR,它的大小是512字节,而这个区域可以分为两个部分。第一部分为pre-boot区(预启动区),占446字节;第二部分是Partition table区(分区表),占66个字节,该区相当于一个小程序,作用是判断哪个分区被标记为活动分区,然后去读取那个分区的启动区,并运行该区中的代码。 他是不属于任何一个操作系统,也不能用操作系统提供的磁盘操作命令来读取它。但我们可以用ROM-BIOS中提供的INT13H的2号功能来读出该扇区的内容,也可用软件工具Norton8.0中的DISKEDIT.EXE来读取 ?BCD=Boot Configuration Data (启动设置数据) ,BCD是操作系统中的启动设置数据, 在有vista或windows7的多重操作系统中,系统通bootmgr程序导入BCD 文件完成启动菜单的引导。 可用bcdedit.exe程序来编辑BCD文件,来调整开机默认操作系统和等待时间。 先让我们看一下windows7的启动过程的常识: 电脑加电后,首先是启动BIOS程序,BIOS自检完毕后,找到硬

免费电脑硬盘数据恢复软件

不知道当我们的领导大大咧咧的找我要年前的资料的时候他是怎么想的?明明知道我们的资料是不会存档的,明明知道这个东西我已经交给他过了,明明知道是自己弄丢的,现在却要反过来找我的麻烦。呵呵,似乎这个就是现在领导的通病吧!官大一级压死人!这句话似乎一点也不假。在领导高压的警告之下,多么完美的星期五下午,对我来说那就是一个炼狱! 找吧!可是从哪开始找起呢?电脑应该是经过清理的,所以大致的搜索了一下,没有找到,也就放弃了,我还是把希望放在我的硬盘上,好像以前是存到硬盘中的,可是在我花了九牛二虎之力找到硬盘后,却发现里面也是空的,我甚至记不起来自己是什么时候把它删除的。这下我算是彻底绝望了! 领导已经催了两次了,以我对他的了解,最多三次,绝对发飙,看来这个月的绩效奖金是玩完了!就在我快要绝望的时候,突然发现电脑上跳出来一个窗口:你的硬盘数据是否不见了?你想要找回它们吗?这个突如其来的惊喜彻底打动了我!点进去一看,原来是一款软件的介绍,无敌硬盘恢复软件,无论是格式化软件丢失的数据,还是被自己删除的数据,或者是因为各种原因受损无法打开的数据,使用无敌硬盘数据恢复软件,都可以轻松的帮你找回来,当然,这是广告语,至于广告和现实的差距有多大,只有自己试了才知道。 无敌硬盘数据恢复软件下载起来很快,安装运行也是一点也不妨碍网速,弄的挺快的,开始操作,其实个人建议不用太过花心思去看教程什么的,因为这个软件的智能化程度非常的高,使用起来特别的方便,至少我就是在软件的提示之下完成操作的,应该要比大家去花时间看教程要快上许多吧! 终于,在领导第三次发威之前,我顺利的恢复了资料,忐忑的周五,在惊喜和惊吓的双重打击之下终于结束了!下面给大家简单说一下丢失数据后的注意事项。 首先不要进行任何操作,包括不打开任何文件,不输入任何数据等,保留数据丢失现场,避免对数据造成二次破坏; 第二,不要做DskChk磁盘检查,一般系统出现了某些错误的时候,会弹出一个时候做磁盘的操作,此时要点击否,这样做的目的也是为了避免对数据造成

相关文档
相关文档 最新文档