文档库 最新最全的文档下载
当前位置:文档库 › 矿井通风课程设计

矿井通风课程设计

矿井通风课程设计
矿井通风课程设计

《煤矿开采学》课程设计

姓名:

班级:

学号:

指导老师:

二〇〇八年一月十八日

目录

论 (3)

第一章采区巷道布置 (5)

第一节采区储量与服务年限 (5)

第二节采区内的再划 (7)

第三节确定采区内准备巷道布置及生产系统 (9)

第二章采煤工艺设计 (12)

第一节采煤工艺方式的确定 (12)

第二节工作面合理长度的确 (17)

第三节采煤工作面循环作业图表的编制 (18)

表 (20)

设计总结………………………………………………………………

22

绪论

一、目的

1、初步应用《采矿学》课程所学的知识,通过课程设计加深对《采矿学》课程的理解。

2、培养采矿工程专业学生的动手能力,对编写采矿技术文件,包括编写设计说明书及绘制设计图纸进行初步锻炼。

3、为毕业设计中编写毕业设计说明书及绘制毕业设计图纸打基础。

二、设计题目

1、设计题目的一般条件

某矿第一开采水平上山某采(带)区自下而上开采K1、K2和 K3煤层,煤层厚度、层间距及顶底板岩性见综合柱状图。

该采(带)区走向长度2100米,倾斜长度1000米,采(带)区内各煤层埋藏平稳,地质构造简单,无断层,K1和K2煤层属简单结构煤层,硬度系数 f=2,K2和K3煤层属于中硬煤层,各煤层瓦斯涌出量也较小。

设计矿井的地面标高为+30米,煤层露头为-30米。第一开采水平为该采(带)区服务的一条运输大巷布置在K3煤层底版下方25米处的稳定岩层中,为满足该采(带)区生产系统所需的其余开拓巷道可根据采煤方法不同由设计者自行决定。

2、设计题目的煤层倾角条件

(1)设计题目的煤层倾角条件1

煤层倾角条件1:煤层平均倾角为8°,阶段倾斜长度1200m

(2)设计题目的煤层倾角条件2

煤层倾角条件2:煤层平均倾角为16°,阶段倾斜长度1000m

三、课程设计内容

1、采区或带区巷道布置设计;

2.采煤工艺设计及编制循环图表。

四、进行方式

学生按设计大纲要求,任选设计题目条件中的煤层倾角条件1或煤层倾角条件2,综合应用《采矿学》所学知识,每个人独立完成一份课程设计。

设计者之间可以讨论、借鉴,但不得相互抄袭,疑难问题可与指导教师共同研究解决。

本课程设计要求方案进行技术分析与经济比较。

附表1:设计采区综合柱状图

柱状

厚度

(m)

岩性描述8.60

灰色泥质页

岩,砂页岩互

------------------------------------------------------------------------------------------------------8.40

泥质细砂岩,

碳质页岩互

------------------------------------------0.20碳质页岩,松

6.90K1煤层,γ=1.30t/m3

4.20

灰色砂质泥岩,细砂岩互层,坚硬

------------------------------------------------------------------------------------------------------7.80

灰色砂质泥

3.0

K2煤

层,γ=1.30t/m

3

------------------------------------------ 4.60薄层泥质细砂岩,稳定

·················· 3.20灰色细砂岩,中硬、稳定

2.2K3煤层,煤质中硬,γ=1.30t/m3

。。。。。。。。。。。。。。。。。。 3.50

灰白色粗砂岩、坚硬、抗压强度60—80Mps

。。。。。。。。。。。。。。。。。。24.68灰色中、细砂

岩互层

第一章采区巷道布置

第一节区储量与服务年限

1、采区生产能力选定为150万t/a

2、采区的工业储量、设——计可采储量

(1) 采区的工业储量

Z g=H×L×(m1+m2+m3)×γ………………………………………(公式1-1)式中: Z g---- 采区工业储量,万t; H---- 采区倾斜长度,1000m; L---- 采区走向长度,2100m;γ---- 煤的容重,1.30t/m3; m1---- K1煤层煤的厚度,为6.9米;

m2---- K2煤层煤的厚度,为3.0米;

m3---- K3煤层煤的厚度,为2.2米;

Z g=1000×2100×(6.9+3.0+2.2)×1.3=3303.3万t/a

Z g1=1000×2100×6.9×1.3=1883.70万t

Z g2=1000×2100×3.0×1.3=819.00万t

Z g3=1000×2100×2.2×1.3=600.60万t

(2) 设计可采储量

Z K=(Z g-p)×C ……………………………………………………(公式1-2)式中:Z K---- 设计可采储量, 万t;

Z g---- 工业储量,万t;

p---- 永久煤柱损失量,万t;

C---- 采区采出率,厚煤层可取75%,中厚煤层取80%,薄煤层85%。本设计条件下取80%。

P m1=30×2×2100×6.9×1.3+15×2×(1000-30×2)×6.9×1.3=138.32万t P m2=30×2×2100×3.0×1.3+15×2×(1000-30×2)×3.0×1.3=73.34万t P m3=30×2×2100×2.2×1.3+15×2×1000-30×2)×2.2×1.3=52.17万t P---- 上下两端永久煤柱损失量,左右两边永久煤柱损失量,万t;

Z K1=( Z g1-p1)× C1=(1883.70-183.32)×0.75=1275.29万t

Z K2=( Z g2-p2)× C2=(819.00-73.34)×0.80=596.53万t

Z K3=( Z g3-p3)× C3=(600.60-52.17)×0.80=438.74万t

(3)采区服务年限

T= Z K/A×K ……………………………………………………………(公式

1-3)

式中: T---- 采区服务年限,a;

A---- 采区生产能力,150万t;

Z K---- 设计可采储量,2315.7万t;

K----储量备用系数,取1.3。

T1= Z K1/A×K=1275.29万t/(150万t ×1.3)=6.54a

T2= Z K2/A×K=596.53万t/(150万t ×1.3)=3.06a

T3= Z K3/A×K=438.74万t/(150万t ×1.3)=2.25a

T= T1+ T2 +T3 =11.85a ,取12年。

(4)、验算采区采出率

1、对于K1厚煤层:

C1=(Z g1-p1)/Z g1 -----(公式1-4)

式中: C1-----采区采出率,% ;

Z g1 ---- K1煤层的工业储量,万t ;

p1 ---- K1煤层的永久煤柱损失,万t ,取Z g1×6% ;

C1=(Z g1-p1)/Z g1

=(1000×2100×6.9×1.3-(30×2×2100×6.9×1.3+15×2×(1000-30×2)×6.9×1.3))/1000×2100×6.9×1.3= 92.66% > 75%满足要求

2、对于K2中厚煤层:

C2=(Z g3-p3)/Z g3………………………………………………………(公式1-5)式中:C2----采区采出率,% ;

Z g2----K2煤层的工业储量,万t ;

P2---- K2煤层的永久煤柱损失,万t ,取Z g2×4% ;

C2=(Z g2-p2)/Z g2

=〔(1000×2100×3.0×1.3)-(30×2×2100×3.0×1.3+15×2×(1000-30×2)×3.0×1.3)〕/ 1000×2100×3.0×1.3= 91.05%> 80%满足要求

3、对于K3中厚煤层:

C3=(Z g3-p3)/Z g3………………………………………………………(公式1-5)式中: C3----采区采出率,% ;

Z g3----K3煤层的工业储量,万t ;

P3 ---- K3煤层的永久煤柱损失,万t ,取Zg3×4% ;

C3 =(Z g3-p3)/Z g3

=((1000×2100×2.2×1.3)-(30×2×2100×2.2×1.3+15×2×(1000-30×2)×2.2×1.3))/1000×2100×2.2×1.3 =91.31% > 80%满足要求

第二节采区内的再划

1、确定工作面长度

放顶煤工作面长度的确定应主要考虑顶煤破碎、顶煤放出和减少煤炭损失等三个因素的影响。

顶煤破碎主要取决于支承压力及顶板活动的作用,由工作面长度对支承压力及矿压显现的影响分析可知,工作面长度不得少于80m,但工作面长度大于200m以后,其变化趋于缓和。

合理的工作面长度应是在一个生产班内能将工作面内的顶煤全部放完。据此原则,工作面长度可以用下列式表示:

L=n(T/t)Bη=175m

式中:L--------工作面长度,m;

n--------同时放煤支架数;

T--------每班工作时间,min;

t---------每架支架放煤所需时间,min;

B-------支架宽度,m;

η-------每班工作时间利用率。

取:n=2, B=1.5m, T·η=300min , t= 5min

2、确定采区内工作面数目

回采工作面是沿倾斜方向布置,沿走向推进,采用走向长壁法开采。

工作面数目: N=(L-S0)/(l+l0) ……………………………………(公式1-4)式中:L ----- 煤层倾斜方向长度(m);

S0 ---- 采区边界煤柱宽度(m);

l ----- 工作面长度(m);

l0 ---- 回采巷道宽度,因采用综采,故 l0取5(m)。

N=(1000-30×2)/(175+10) =5.08,取5.

3、工作面生产能力

Q r = A/T×1.1 ………………………………………………………(公式1-5)式中:A----采区生产能力,150万t/a ;

Q r ----工作面生产能力,万t ;

T----每年正常工作日,330天。

故: Q r = A/T×1.1 =150/330×1.1 =4132.23 t

4、确定采区内同采工作面数及工作面接替顺序

生产能力为150万t/a,且工作面生产能力为4132.23t。目前开采准备系统的发展方向是高产高效生产集中化,采用提高工作面单产,以一个工作面产量保证采区产量,所以定为采区内一个工作面生产。以K1煤层为例,5个区段工作面接替顺序,采用下行开采顺序

K1工作面接替顺序图

区段1001002

区段2001002

区段3001002

区段4001002

区段5001002

图.1

对于K1布置一个综放工作面便可以满足生产设计的要求。

K1煤层:区段1(001-002)→区段2(001-002)→区段3(001-002)→区段4(001-002)→区段5(001-002)

(说明:以上箭头表示方向为工作面推进顺序。)

第三节确定采区内准备巷道布置及生产系统

1、完善开拓巷道

为了减少煤柱损失提高采出率,利于灭灾并提高经济效益,根据所给地质条件及采矿工程设计规划,在第一开采水平中,把为该采区服务的运输大巷和回风大巷均布置在K3煤层底板下方25m的稳定岩层中,两巷水平间距相距961.26m 。

2.确定巷道布置系统及采区布置方案分析比较

首先确定回采巷道布置方式,由于地质构造简单,煤层赋存条件好,涌水量较小,瓦斯涌出量较小,直接顶较厚且易跨落。同时为减少煤柱损失,提高采出率,降低巷道维护费用,采用沿空掘巷的方式。因此采用工作面布置图1所示工作面接替顺序,就能弥补沿空掘巷时工作面接替复杂的缺点。

确定采区巷道布置系统,采区内有3层煤,每一层都布置5个工作面,根据相关情况初步制定以下两个方案进行比较:

方案一:两条岩石上山

在距K3煤层底板15m处岩石中布置两条岩石上山,一条为运输上山,另一条为轨道上山,两上山层位有一定差距,使其分别联结两翼的区段;平巷不交叉;石门联系各煤层。通风路线:新风从阶段运输大巷→采区主石门→采区下部车场→轨道上山→中部甩车场→区段轨道集中平巷→区段联络巷道→区段运输平巷→工作面→区段回风平巷→回风石门→阶段回风大巷。该方案的特点是:岩石工程量大,掘进费用高,联络石门长,但维护条件好,维护费用低,有利于通风,运输能力大。

方案二:一煤一岩上山

在距K3煤层底板15m处岩石中布置一条岩石运输上山,在K3煤层中布置另一条轨道上山,石门联系各煤层。通风路线:新风从阶段运输大巷→采区主石门→采区下部车场→轨道上山→中部甩车场→区段轨道集中平巷→区段联络巷道→区段运输平巷→工作面→区段回风平巷→回风石门→阶段回风大巷。该方案的特点是:节省了一条岩石上山,相对减少了岩石工程量,但轨道上山不易维护,维护费用高,需要保护煤柱。

经济技术比较:

巷道硐室掘进费用表1-1

方案工程名称

方案一方案二

单价

(元)

工程量费用

(万元)

单价

(元)

工程量费用

(万元)

上山(m)1578 1.2×1000189.361284 1.2×1000154.08联络巷(m)1152 1.2×54.42×430.09----------合计2730 1461.22 219.45--------154.08

巷道及硐室维护费

表1-2

方案工程名称

方案一方案二

单价

(元)

工程量费用

(万元)

单价

(元)

工程量费用

(万元)

上山(m)40 1.2×1000×2096.0090 1.2×1000×

20

216.00

联络巷(m)80 1.2×54.42×4×

20

41.79----------

合计 12029224.32137.79--------216.00

井巷辅助费

表1-3

方案方案一方案二

工程名称单价

(元)

工程量费用

(万元)

单价

(元)

工程量费用

(万元)

上山(m)--------------------

联络巷(m)951 1.2×54.42×4×2024.84----------合计 9515224.32 24.84------------

费用汇总表

表1-4

方案

总费用

方案一方案二

掘进(万

元)

219.45154.08

维护(万

元)

137.79216.00

井巷辅助

费(万元)

24.840

合计(万

元)

382.08370.08

方案一:岩石工程量达,掘进费用高,联络石门长,但维护条件好,维护费用低,有利于通风,运输能力大

方案二:节省了一条岩石上山,相对减少了岩石工程量,但轨道上山不易维护,维护费用高,需要保护煤柱。

由此可见,一煤一岩上山不但节省了费用,而且具有超前探煤作用。随着我国巷道锚喷技术的提高对煤巷的维护能够起到很好的效果,另外,本例中K3煤层顶地板效果比较好,易于维护,所以采用一煤一岩上山采区联合布置方式。巷道布置情况见巷道布置图、采区巷道平面图、剖面图,以K1煤层为例。

3.确定工作面回采巷道布置方式及工作面推进终点位置

回采巷道布置方式.:单巷沿空掘巷掘进方式。

分析:已知采区内各煤层埋藏平稳,地质构造简单,无断层,同时,各煤层瓦斯涌出量较低,自然发火倾向较弱,涌水量也较小。因此有利于综合机械化作业,可以充分发挥棕采高产高效的优势。同时,为减小煤柱损失,提高采出率。综合考虑各种因素,采用单巷沿空掘巷掘进方式。这种方式掘出的巷道正处在应力降低区,即好维护又提高了采出率,有取代沿空留巷的趋势。

说明:在采区巷道布置平面图内,工作面布置和推进的位置应以达到采区设计产量及安全为准。工作面推进到距回风大巷30米处的位置,即为避开采掘超前影响所留设的30m护巷。

第二章采煤工艺设计

第一节采煤工艺方式的确定

1、选第一煤层,即K1煤层为对象设置采煤工艺。

由于K1煤层厚度为6.9m,属于厚煤层,硬度系数f=2,结构简单,无断层,故可用综合机械化采煤工艺,放顶煤采煤法。综采放顶煤工作面“三八”制作业形式,即两班采煤,一班准备。采煤机截深为0.6m,割两刀放一次顶煤,放煤步距为1.2m。采煤机割煤高度为2.6m放煤高度平均为4.3m,采放比为1:1.65。

工作面回采工艺流程为:采煤机向上割煤、移架→采煤机向下装煤→推移刮板输送机→斜切进刀→推移刮板输送机。放顶煤河割煤交叉作业,同时进行。

2、综采工作面的设备选用国产设备。

3、采煤与装煤

(1)落煤方式与采煤机的选择

采用综合机械化采煤,双滚筒采煤机直接落煤和装煤。依据采区的设计生产能力确定工作面每天的推进度为:

选择采煤机的滚筒截深为600mm,每天正规循环推进六刀,每个循环

0.600m,可满足每天至少推进2.90米的要求。

根据煤层的实际情况,经查《采矿设计手册》,选用采煤机。

采煤机的型号为:MXP—240W

采高 1.35~2.84m

适应煤层硬度 1~3

煤层倾角α≤ 25°

截深 600mm

滚筒直径 1.4m

卧底量 140 mm

牵引方式液压无链

牵引力 196KN

牵引速度 0~7.5 m/min

滚筒中心距 6120 mm

电机功率 2×100kw

总质量 15吨

制造厂西安煤矿机械厂

(2)进刀方式:为了合理利用工作时间,提高效率。采用端头斜切割三角煤进刀方式,双向割煤。

(3)采放比=1:1.65

(4)放顶步距:割两刀放一次顶煤,放顶步距0.6×2=1.2m。据《采矿工程设计手册》,一般情况下,当采用小截深(0.5~0.6m)时,割两刀放一次顶煤,放煤步距为2倍的采煤机截深。

(5)放煤方式:单轮、间隔、多口放煤。这种方式工艺简单,便于工人掌握,并可在实践中逐步提高采出率。

4、运煤

(1)工作面采用可弯曲刮板输送机运煤,运输平巷采用转载机和胶带运输机运煤。

工作面可弯曲刮板输送机型号:SGD—630/180

适用条件:缓斜2.8~4.5m综采工作面

出厂长度: 200米

运输能力: 400吨/h

刮板链形式:双边链

电动机型号: DSB—90

电机功率: 2×90kw

电机电压: 1140V

总质量 117.31吨

制造厂张家口厂、西北一厂、昆明厂

2转载机型号 SZD—730/160

适用条件:中厚煤层

出厂长度:~40米

运输能力: 700吨/h

刮板链形式:中双链

电动机型号: YSB—160

电机功率: 160kw

电机电压: 1140V

总质量: 25.6吨

制造厂:西北厂

(2)以设备选用配套原则为基础并结合采煤工作面采煤能力具体情况,工作面采用支撑掩护式液压支架支护,从《采矿设计手册》选用如下设备:

支架型号 ZZS6000-17/37

外形尺寸(长×宽×高) 5725mm×1450mm×1700mm

支撑高度 1.7~3.7 m

工作阻力 6000 KN

初撑力 5105 KN

支架中心距 1500 mm

支护强度 0.81~0.91 Mpa

支架移架步距 900~1100 mm

支架重量 19吨

生产厂重庆庆江机械厂

(3)移架方式

由于采用及时支护方式,而且工作面每天推进6刀,故选择顺序移架方式进行移架。顺序移架方式移架速度快,能满足采煤机快速牵引的需要,适用于顶板比较稳定的高产工作面。

(4)支护方式:由于K2煤层属中硬煤层,顶板有7.8m厚的灰色砂质泥岩,采高为3.0m,为防止片帮和冒顶,选用及时支护方式进行支护。

(5)工作面的支架需求量:

由n = L / E

式中: n ——工作面支架数目,取整数;

L ——工作面长度,m;

E ——架中心距;

得: n= (175+5+5)/1.5=122.33,取123架。

(6)端头支架

由于巷道宽4.5m,而架宽为1.5m,因此选3架,左右两端共需6架。从《采矿设计手册》选用如下设备:

端头支架型号:PDZ(掩护式)

外形尺寸(长×宽×高) 5925mm×1450mm×1700mm

适用条件:倾角α≤30°的中厚煤层

支撑高度: 1.6~3.8

工作阻力: 9000 KN

初撑力: 7070 KN

支护强度: 0.51 Mpa

制造厂:郑州煤机厂

(7)超前支护方式和距离

由于采用综采工艺开采,支撑压力分布范围为20~30m,峰值点距煤壁前方 5-15m,所以超前支护的距离为20m。选用单体支柱和金属铰接顶梁支护。

(8)校核支架的强度和高度

①校核高度

经查《采矿设计手册》得到:

在实际使用中,通常所选用的支架的最大结构高度比最大采高大

200mm左右,即: H max= M max+0.2m;最小结构高度应比最小的采高小250—350mm,即:H min= M min-(0.2 5~0.35)m

已知选用的 ZZS6000—17/37 支撑掩护式液压支架的最大结构高度为3.7m>(3.0+0.2)m,满足要求。支架的最小结构高度为1.7m<2.2-(0.2 5~0.35)m,满足要求。

②校核强度

由q=K×M×ρ×g×10-6

式中: q ——支护强度,Mpa;

K ——作用于支架上的顶板岩石厚度系数,取6;

M ——采高,m;

ρ——岩石密度,取 2.5×103Kg/m3;

g——取10N/Kg。

q=6×3.0×2.5×103×10×10-6=0.45Mpa

由Q=q×F×103KN

式中:F——为支架支护面积,F = 5.725×1.450 = 8.30m2

Q=0.45×8.30×103=3735 KN

由P = Q / η

式中:P ——支架的工作阻力,KN;

Q ——支架的有效工作阻力,KN;

η——支架的支撑效率,取80%

P=3735÷0.8=4688.75 KN <支架工作阻力6000 KN,满足要求。

5、处理采空区

一般采用全部跨落法处理采空区。

第二节工作面合理长度的验证

1.从煤层地质条件考虑

该采区内的三层可采煤层的地质条件较好,无断层,煤层倾角为16°,煤层厚度适中,顶底板较稳定,瓦斯涌出量较低,自然发火倾向较弱,涌水量也较小,所以布置175米的工作面比较合适。

2.从工作面生产能力考虑

工作面的设计生产能力为150万吨/年。正规循环每天进六刀,采煤机滚筒截深为600mm,所以K1煤层的工作面实际年生产能力为:

330×0.600×6×6.9×175×1.3×0.93=173.43 (万吨)

能够满足设计生产能力的要求,一个工作面生产就能够满足设计生产能力的要求,并且考虑到其他各个方面对生产的影响,工作面的长度确定的合理。

3.从运输设备及管理水平角度考虑

采区生产选用的设备均为国内先进的的生产设备,工作面选用的200米刮板输送机能够利用国内先进的技术,能够与时俱进的跟上技术的发展。

由于现在提倡管理人员的知识化、年轻化,所以工作面长度为200米在管理上是毫无问题的。

4.从顶板管理及通风能力考虑

该采区的顶板较稳定,工作面可以适当的加长,综采工作面的长度一般在150~250m,所以选择的工作面的长度为175米较合适。另外,工作面的瓦斯涌出量较低,通风问题能够解决。

5.从巷道布置角度考虑

由于采区倾斜方向长为1000米,除去煤柱宽及巷道宽125米,剩余875米,把每个工作面长度定为175米,875÷175=5,正好为5工作面。

6. 经济合理的工作面

工作面的长度与地质因素及技术因素的关系十分的密切,直接影响生产效率,所以根据条件,以高产量、高效率为原则选择合理的工作面长度。合理的工作面以生产成本低,经济效益高为目标。尽量加快工作面的推进速度,减少巷道的维护时间,降低回采总成本,使设备、资源得到最高利用。

第二章采煤工艺设计

第一节采煤工艺方式的确定

1、选第一煤层,即K1煤层为对象设置采煤工艺。

由于K1煤层厚度为6.9m,属于厚煤层,硬度系数f=2,结构简单,无断层,故可用综合机械化采煤工艺,放顶煤采煤法。综采放顶煤工作面“三八”制作业形式,即两班采煤,一班准备。采煤机截深为0.6m,割两刀放一次顶煤,放煤步距为1.2m。采煤机割煤高度为2.6m放煤高度平均为4.3m,采放比为1:1.65。

工作面回采工艺流程为:采煤机向上割煤、移架→采煤机向下装煤→推移刮板输送机→斜切进刀→推移刮板输送机。放顶煤河割煤交叉作业,同时进行。

2、综采工作面的设备选用国产设备。

3、采煤与装煤

(1)落煤方式与采煤机的选择

采用综合机械化采煤,双滚筒采煤机直接落煤和装煤。依据采区的设计生产能力确定工作面每天的推进度为:

选择采煤机的滚筒截深为600mm,每天正规循环推进六刀,每个循环

0.600m,可满足每天至少推进2.90米的要求。

根据煤层的实际情况,经查《采矿设计手册》,选用采煤机。

采煤机的型号为:MXP—240W

采高 1.35~2.84m

适应煤层硬度 1~3

煤层倾角α≤ 25°

截深 600mm

滚筒直径 1.4m

卧底量 140 mm

牵引方式液压无链

牵引力 196KN

牵引速度 0~7.5 m/min

滚筒中心距 6120 mm

电机功率 2×100kw

总质量 15吨

制造厂西安煤矿机械厂

(2)进刀方式:为了合理利用工作时间,提高效率。采用端头斜切割三角煤进刀方式,双向割煤。

(3)采放比=1:1.65

通风工程课程设计

目录 1 设计目的 (1) 2 设计内容 (1) 3 相关数据 (1) 4 解题步骤 (2) 4.1 计算管段管径、实际流速、单位长度摩擦阻力 (2) 4.2计算各段的摩擦阻力和局部阻力 (4) 5 通风除尘日常管理措施 (8) 6 课程设计总结 (8) 7 参考文献 (9)

1 设计目的 通过本次设计实习进一步认识通风除尘系统,熟悉其设计计算方法,熟练掌握通风管道摩擦阻力、局部阻力计算,管道尺寸计算,初步掌握风机与布袋的选择方法。 2 设计内容 有一通风除尘系统如图所示,风管全部用钢板制作,管内输送含有耐火泥 =1200Pa。对该系统进行设采用袋式除尘器进行排气净化,除尘器压力损失P 计计算。 3 相关数据 表1 一般通风系统风管内的风速(m/s) 生产厂房机械通风民用及辅助建筑物风管部位 钢板及塑料风管砖及混凝土风道自然通风机械通风干管6~14 4~12 0.5~1.0 5~8 支管2~8 2~6 0.5~0.7 2~5

表2 除尘通风管道最低空气流速(m/s) 4 解题步骤 1、绘制通风系统轴侧图(工程上管道常用单线表示),对个管段进行编号,标注各管段的长度和风量。 2、选择最不利环路;本系统选择1-3-5-除尘器-6-风机-7为最不利环路 3、根据各管段的风量及选定的流速,确定各段管径的断面尺寸和单位长度摩擦阻力。 4.1 计算管段管径、实际流速、单位长度摩擦阻力 解:据表2,输送含有耐火泥的空气时,风管内最小风速为:水平风管17m/s、垂直风管14m/s。 管段1: 根据q v,1=1200m3/h(0.33m3/s)、v=14m/s,求出管径。所选管径应尽量符合附

矿井通风设计改

矿井通风设计改

矿井通风设计 学院:湘潭大学职业技术学院 专业班级:煤矿开采技术(通风与安全方向)0801 姓名:胡秦 学号:20089217132 指导老师:何廷山

目录前言 (一)、矿井概况 (二)、拟定矿井通风系统 (三)、矿井总风量计算与分配 1、矿井需风量计算原则 2、矿井需风量计算方法 3、矿井总风量的分配 (四)、矿井通风总阻力计算 1、矿井通风总阻力计算的原则 2、矿井通风总阻力的计算方法 3、绘制矿井通风网络图(五)、选择矿井通风设备 1、选择矿井通风设备的要求 2、主要通风机的选择 (六)、通风耗电费用概算 1、主要通风机的耗电量 2、局部通风机的耗电量 3、通风总耗电量 4、吨煤通风耗电量 5、吨煤通风耗电成本 (七)、矿井通风系统评述

1、系统的合理性 2、阻力分布的合理性 3、主要通风机工作的安全性、经济性 前言 《矿井通风》设计是学完《矿井通风》课程后进行,是学生理论联系实际的重要实践教学环节,是对学生进行的一次综合性专业设计训练。通过课程设计使学生获得以下几个方面能力,为毕业设计打下基础。 1、进一步巩固和加深我们所学矿井通风理论知识,培养我们设计计算、工程绘图、计算机应用、文献查阅、运用标准与规范、报告撰写等基本技能。 2、培养学生实践动手能力及独立分析和解决工程实际的能力。 3、培养学生创新意识、严肃认真的治学态度和理论联系实际的工作作风。 依照老师精心设计的题目,按照大纲的要求进行,要求我们在规定的时间内独立完成计算,绘图及编写说明书等全部工作。 设计中要求严格遵守和认真贯彻《煤炭工业设计政策》、《煤矿安全规程》、《煤矿工业矿井设计规范》以及国家制定的其它有关煤炭工业的方针政策,设计力争做到分析论证清楚,论据确凿,并积极采用切

矿井通风课程设计报告书

题目2: 某煤矿井田东西走向长约 3 Km,南北倾向宽约 1.7Km,井田面积约4.5519Km2,井田总体呈单斜构造,煤层倾角大部分小于15°,属缓倾斜煤层。顶板为黑色泥岩,致密而均一,底板为灰白色细—中粒砂岩,煤层厚度0.84~6.12米,平均5.9米,以镜煤、亮煤为主,含黄铁矿,煤层夹矸0~3层,倾角10°~14°。矿井煤层自燃发火期为1个月,自燃趋势较突出的是2月~3月。煤尘具有爆炸性,爆炸指数为40.3%。矿井属低瓦斯矿井。设计生产能力为90万t/年。 矿井采用斜井单水平上下山开拓,矿井的采煤方法为走向长壁,采煤工艺为综采放顶煤。采用中央边界式通风方式。风井设在采区的边界。主、副井进风,风井回风。采区采用轨道上山、运输上山进风,专用回风巷回风。工作面采用U 型后退式开采,采煤工作面风流流动形式是上行通风。综放面平均控顶距为3.96m,实际采高4.1 m,工作面面长150米,工作面温度20℃,回采工作面同时作业人数最多90人。矿井掘进工作面平均瓦斯涌出量为1.2 m3/min,掘进工作面一次炸破所用的最大炸药量7.2kg,掘进工作面同时工作的最多人数40人。

矿井通风课程设计 第一章、局部通风设计 (一)设计原则及掘进通风方法的选择 1、设计原则 根据开拓、开采巷道布置、掘进区域煤岩层的自然条件以及掘进工艺,确定合理的局部通风方法及其布置方式,选择风筒类型和直径,计算风筒出入口风量,计算风筒通风阻力,选择局部通风机。 局部通风是矿井通风系统的一个重要组成部分,其新风取自矿井主风流,其污风又排入矿井主风流。其设计原则可归纳如下: (1)矿井和采区通风系统设计应为局部通风创造条件; (2)局部通风系统要安全可靠、经济合理和技术先进; (3)尽量采用技术先进的低噪、高效型局部通风机; (4)压人式通风宜用柔性风筒,抽出式通风宜用带刚性骨架的可伸缩风筒或完全刚性的风筒。风筒材质应选择阻燃、抗静电型。 (5)当一台风机不能满足通风要求时可考虑选用两台或多台风机联合运行。 2、掘进通风方法的选择 掘进通风方法分为利用矿井总风压通风和利用局部动力设备通风的方法,局部通风机通风是矿井广泛采用的掘进通风方法,它是由局部通风机和风筒(或风障)组成一体进行通风,按其工作方式可分为: (1)压入式通风 (2)抽出式通风 (3)混合式通风 压入式通风新风经过风机,安全系数高,可用柔性风筒,柔性风筒重量轻,易于贮存和搬运,连接和悬吊也简单,胶布和人造革风筒防水性能好,是大多数矿井局部通风的选择,结合本设计故选择压入式通风。 (二)掘进工作面所需风量计算及设计 根据《规程》规定:矿井必须采用局部通风措施 1、掘进工作面所需风量 按下列因素分别计算,取其最大值。 1)按瓦斯(二氧化碳)涌出量计算 60 1004掘 掘K Q Q CH m 3/s 式中:Q 掘——掘进工作面实际需风量,m 3/s ; Q ch4——掘进工作面平均绝对瓦斯涌出量,m 3/s ; K 掘——掘进工作面因瓦斯涌出量不均匀的备用风量系数。即掘进工作面最大绝 对瓦斯涌出量与平均绝对瓦斯涌出量之比。通常,机掘工作面取 1.5~2.0;炮掘工作面取1.8~2.0。此处取2.0 所以:

通风课程设计

《通风工程》 课程设计计算书课题名称地下室1通风设计 院(系)城建学院暖通工程系 专业建筑环境与设备工程专业 姓名王安顺 学号1901100122 起讫日期2013.1.2—2013.1.18 指导教师陆青松 2013 年 1 月 11 日

目录第一章工程概况1 第二章建筑、动力与能源资料1 第三章系统设计内容1 3.1 确定通风方式1 3.2 送风量与排风量的计算1 3.2.1 送风排风面积确定1 3.2.2 送风量与排风量计算2 3.3 管道系统的布置与水力计算3 3.3.1 车库部分送风水力计算4 3.3.2 车库部分排风水力计算6 3.4 通风设备与构件的选用3 3.4.1 风管10 3.4.2 弯头10 3.4.3 三通10 第四章小结10 第五章参考文献11

第一章工程概况 本工程为营业及办公建筑。地下一层,建筑面积2700m2。地下一层为车库。要求进行地下室的通风排烟设计。 第二章建筑、动力与能源资料 本工程位于市中心,动力与能源完备,照明用电充足,自来水和天然气由城市管网供应。土建专业提供地下室平面图一张。 第三章设计内容 3.1 确定通风方式 地下一层的有害气体主要是由地下停车场产生,而地下停车场内汽车排放的有害物主要是一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOX)等有害物。怠速状态下,CO、HC、NOX三种有害物散发量的比例大约为7:1.5:0.2。由此可见,CO 是主要的。根据TT36-79《工业企业设计卫生标准》,只要提供充足的新鲜的空气,将空气中的CO浓度稀释到《标准》规定的范围以下,HC、NOX均能满足《标准》的要求。 在考虑地下汽车库的气流分布时,防止场内局部产生滞流是最重要的问题。因CO较空气轻,再加上发动机发热,该气流易滞流在汽车库上部,因此在顶棚处排风有利,排风口的布置应均匀,并尽量靠近车体。新风如能从汽车库下部送,对降低CO浓度是十分有利的,但结构上很难做到,因此,送风口可集中布置在上部,进排风进行交叉布置。在保证满足设计要求的前提下,尽量使系统安装简单,造价低廉,性能可靠,维护方便。 3.2 送风量与排风量的计算 3.2.1送风排风面积的确定 面积 =2700 m2 3.2.2 送风量与排风量计算 通风量=面积×层高×换气次数 m/h 地下车库送风量L=2700*5.75*5=77625 3 m/h 送风系统一:L3=38812.5 3 m/h 送风系统二:L3=38812.5 3 m/h 单个送风口风量:2425.83 m/h 地下车库排风量L=2700*5.75*6=486003 m/h 排风系统一:L1=243003 m/h 排风系统二:L2=24300 3 m/h 单个排风口风量:7763 3

第七章---矿井通风系统与通风设计

第七章 矿井通风系统与通风设计 本章主要内容 1、矿井通风系统----类型、适应条件、主要通风机工作方式 、安装地点、通风系统的选择 2、采区通风----基本要求、进回风上山选择、采煤工作面通风系统 3、通风构筑物及漏风----风门、风桥、密闭、导风板;矿井漏风、漏风率、有效风量率、减少漏风措施 4、矿井通风设计----内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择 5、可控循环通风 第一节 矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的通风网路、通风动力和通风控制设施的总称。 一、矿井通风系统的类型及其适用条件 按进、回井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。 1、中央式 进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)。 2、对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果 只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。 2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。 在井田的每一个生产区域开凿进、回风井, 分别构成独立的通风系统。如图。 4、混合式 由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。 二、主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式、压入式、压抽混合式。 1、抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。 2、压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。 3、压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。 三、矿井通风系统的选择 根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全、兼顾中、后期生产需要的前提下,通过对多种个可行的矿井通风系统方案进行技术经济比较后确定。 中央式通风系统具有井巷工程量少、初期投资省的优点。因此,矿井初期宜优先采 用。

通风除尘课程设计报告书

工业通风与除尘课程设计 小组成员:熊静宜 3 润婉 3 吴博 4 晗 6 雒智铭0

专业班级:安全12-5 指导老师:鲁忠良 完成日期:2015.7.11 目录 1 引言 2 第一工作区的通风除尘系统设计计算 2.1 各设备排风罩的排风量计算 2.1.1 焊接平台1排风量计算 2.1.2 焊接平台2排风量计算 2.1.3 焊接平台3排风量计算 2.1.4 加热炉排风量计算 2.2 系统排风量及阻力计算 2.2.1 通风除尘系统布置简图 2.2.2 管段阻力计算 2.3 管道压力平衡核算 2.4 选择通风机和除尘器 3 第二工作区的通风除尘系统设计计算 3.1 各设备排风罩的排风量计算

3.1.1 镀铬1排风量计算3.1.2 镀铬2排风量计算3.1.3 镀铬3排风量计算3.1.4 酸洗排风量计算 3.2 系统排风量及阻力计算3.2.1 通风除尘系统布置简图3.2.2 管段阻力计算 3.2.3 管道阻力平衡校核3.3 风机的选择 3.4 管道计算汇总

1 引言 工业通风就是利用技术手段将车间被生产活动所污染的空气排走,把车间悬浮的粉尘捕集除去,把新鲜的或经专门处理的清洁空气送入车间。它起着改善车间生产环境,保证工人从事生产所必需的劳动条件,保护工人身体健康的作用。 本课程设计目的和任务在于对一个金属制造加工生产车间进行全面通风以及针对焊接台加热炉镀槽酸洗工艺进行局部通风的设计以期达到车间厂房的通风与除尘。本设计的大体思路是,了解各工艺所产生的有害气体成分并选择局部通风方式。之后对参数进行设计计算需风量并进行相关管道计算,最后选择合适的通风机对厂房进行有效通风。

矿井通风设计范例.

4 矿井通风 4.1 通风系统 4.1.1 通风系统 4.1.1.1 通风方式和通风方法 根据煤层赋存条件,矿井采用平硐开拓,根据矿井开拓方式,本矿井走向较短,只有一个采区的走向长度,采用分列式通风方式,抽出式通风方法,采煤工作面利用全矿井负压通风,采用“U”型通风方式,掘进工作面采用局部通风机压入式通风。 4.1.1.2 通风系统 根据矿井开拓部署,该矿为平硐开拓方式,主平硐、副平硐和后期排水进风行人平硐进风,回风平硐回风。 矿井初期主要通风线路为: 主平硐/副平硐→+1690m水平运输巷/+1690m双龙炭运输巷 /+1728m运输巷/+1728m双龙炭运输巷→+1690m运输石门/+1728m运输石门→一采区轨道上山/一采区行人上山→+1756m运输石门→11011工作面运输巷→11011采煤工作面→11011工作面回风巷→回风石门 →+1798m正炭回风巷→总回风斜巷→+1788m总回风巷→回风平硐→ 地面。 矿井后期主要通风线路为: 主平硐/副平硐/排水进风行人平硐→+1690m水平运输大巷/+1728m运输巷和通风行人斜巷/+1630m排水行人巷→二采区轨道上山/二采区行人上山→+1548m水平运输巷→三采区轨道上山/三采区行人上山→区段运输石门→23013工作面运输巷→23013采煤工作面→23013工作面回风巷→区段回风石门→三采区回风上山→回风暗斜井→总回风斜巷→+1788m总回风巷→回风平硐→地面。

矿井初期开采一采区时为通风容易时期,后期二、三采区同采时为通风困难时期。通风系统图(初、后期)和通风网络图(初、后期)详见图C1795-171-1(修改)、C1795-171-2(修改)。 4.1.1.3 井筒数目、位置、服务范围及时间 矿井开采一采区时有3个井筒,即:主平硐、副平硐和回风平硐,主平硐、副平硐进风,回风平硐回风。矿井二、三采区开采时4个井筒,即主平硐、副平硐、排水进风行人平硐和回风平硐。主平硐、副平硐和排水进风行人平硐进风,回风平硐回风。各井筒均位于井田东部。主平硐为改造利用原基地一号井主平硐;副平硐为改造利用原基地一号井副主平硐;回风平硐为改造利用原基地一号井回风平硐;排水进风行人平硐为改造利用原顺风煤矿主平硐。矿井回风平硐井口坐标为:X=3278284,Y=18267648,Z=+1788.867,服务于全矿井生产期间。 通风系统(初、后期)详见图4-1-1、4-1-2; 通风网络(初、后期)详见图4-1-3、4-1-4。

采区设计(矿井通风系统)课程设计任务书(doc 6页)

采区设计(矿井通风系统)课程设计任务书 1、设计依据 给定矿井开拓系统和某一采区区域范围及煤层地板等高线图,矿井概况及生产情况,以及采区生产能力(产量)、瓦斯涌出量等条件,进行采区巷道布置及采区通风系统设计。 设计题目及资料来源 由具体指导老师确定。 2、设计内容 1)采区设计:采区巷道布置(采区上下山、主要进回风、运输巷道),回采巷道布置,回采工作面布置,明确巷道之间的联接关系;简单进行采煤方法、回采工艺设计; 2)采区(或矿井)通风系统设计:采区通风系统确定(要有相应的通风构筑物)、用风地点风量计算与分配(采用由内向外四算一校核的方法),计算采区巷道通风阻力。进行简单的矿井通风系统设计(通风机选型和工况点分析)。 3)安全工程设计【推荐选作】:瓦斯抽采设计、防灭火灌浆设计、注氮气设计、阻化剂设计等。 3、设计要求 完成采区通风系统设计说明书一份,采区巷道布置图,矿井(采区)通风系统图、网络图。(说明书和图纸格式按照学校毕业设计要求的格式完成) 4、提交材料 采区设计及通风系统设计说明书,采区巷道布置图,矿井(采区)通风系统图、通风网络图。(包括草稿、电子文档) 5、指导要求 设计主要分为两个内容:采区巷道布置和矿井(采区)通风设计。 本着今后实施“课程设计进行简单矿井通风设计,毕业设计进行有针对性的老矿井改造通风设计和侧重安全系统设计,加强学生能力培养”的教学计划改革探索,也为适应当前煤矿集约化开采体系的需求,使学生尽早熟悉矿井通风设计的方法,及时消化《矿井通风与空气调节》课中的矿井通风设计内容,本次设计可根据学生情况可适当要求进行简单的矿井通风系统设计(通风机选型和工况点分析); 在制定设计题目时,原始CAD图纸给出水平大巷、井底车场及主要硐室等矿井开拓布置

地下车库通风排烟课程设计范例57123

一 建筑物概况 该工程为济南市某住宅楼地下车库通风排烟的设计,该地下车库层高3.5m,车库所用面积为5238.36m 2 ,车库总停放车辆为132辆。 二系统方案的划分确定 根据文献[1] 车库的防火分类表3.0.1,汽车库停车辆在50~150辆时,防火等级为三级。3.0.3地下汽车库的耐火等级应为一级。文献[1]汽车库防火分区最大允许建筑面积表5.1.1得,耐火等级为一级的地下车库的防火分区的最大允许建筑面积的2000m 2,5.1.2汽车库内设有自动灭火系统时,其防火分区的最大建筑面积可以按表5.1.1的规定增加一倍。7.1.2停车数超过十辆的地下车库应设置自动灭火系统。综上所述,此系统设置自动灭火系统,防火分区最大允许建筑面积为4000m 2。 根据文献[1]8.2.1面积超过2000m 2的地下车库应该设置机械排烟系统,排烟系统可与人防、排气、通风等合用。8.2.2设有机械排烟系统的汽车库,其每个排烟分区的建筑面积不宜超过2000m 2,且防烟分区不得跨越分防火分区。 根据上述,对此地下车库进行分区,防火分区共分两区,面积分别为1293.8m 2,3944.5m 2。在对防火分区进行防烟分区,防烟分区可采用挡烟垂壁、隔墙或从顶棚下突出不下于0.5m 的梁划分,防烟分区的面积依次为1277.6m 2,1277.6m 2,1389.3m 2,1293.8m 2。 三送排风和排烟的计算 1.排风量的确定 地下车库散发的有害物数量不能确定时,全面通风量可按换气次数确定。根据文献[2] 表13.2-2地下汽车库平时排风量的确定中,出入频率较小的住宅建筑单层车库换气次数取4次/h ,计算换气体积时,当层高≤3m 时,按实际高度计算,当层高>3m 时,按3m 计算。 该地下车库的层高为3.5m ,计算换气面积时取3m 。 根据文献[3] ,f nV L 式中 L —全面通风量,m 3 /h n —换气次数,1/h f V —通风房间体积,m 3 根据上述公式计算个防烟分区的排风量如下表:

矿井通风设计(毕业设计用)

矿井通风设计(河南理工大学) 矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。 一、矿井通风设计的内容与要求 矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。 矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。 (一)矿井基建时期的通风 矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 (二)矿井生产时期的通风 矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面

以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况: (1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。 (2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。 矿井通风设计所需要的基础资料如下: 矿井地形地质图;矿岩游离二氧化硅(矽)、硫、放射性物质及瓦斯和有害气体的含量;煤岩自然发火倾向性;煤尘爆炸性;矿区气候条件,包括年最高、最低、平均气温、地温、地热增深率及常年主导风向等;矿岩容重、块度、松散系数、含泥量及粘结性;矿区有无老窑旧巷及其所在地点和存在情形;矿井年产量、服务年限、开拓系统、回采顺序、开采方法;产量分配和作业布置,同时作业的工作面数及备用工作面个数;同时开动的各种型号的凿岩机台数及其分布;同时爆破的最多炸药量;同时工作的最多人数等。 (三)矿井通风设计的内容 (1)确定矿井通风系统

矿井通风课程设计

矿井通风技术课程设计 题目:矿井通风技术课程设计 姓名:王冰雨 学号: 1545203115 学院:能源与交通工程学院 专业:矿井通风与安全 班级:通风 15-1 学制:三年 指导教师:张修峰 二○一七年一月

目录 1. 概况 (1) 2. 矿井通风系统选择 (3) 2.1.矿井通风系统设计原则及步骤 (5) 2.2.掘进通风方法.................. 错误!未定义书签。 3. 风量计算及风量分配 (7) 3.1.矿井需风量的计算原则 (9) 3.2.矿井需风量的计算方法 (10) 3.3.矿井总风量分配 (13) 4. 矿井通风阻力计算 (15) 4.1.计算原则 (17) 4.2.计算方法 (18) 5. 选择矿井通风设备 (21) 5.1.选择矿井通风设备的基本要求 (24) 5.2.选择矿井主要通风设备 (27) 6. 概算矿井通风费用 (30) 6.1.吨煤的通风电费 (32) 6.2.通风设备的折旧费和维修费 (37) 6.3.专为通风服务的井巷工程折旧费和维修费 (43) 6.4.通风器材和通风仪表等材料的购置费和维修费 (47) 6.5.通风工作全体人员的工资 (52)

1.概况 矿井通风设计是在进行矿井开拓、开采设计的同时,依据矿井的自然条件及生产技术条件,确定矿井通风系统、供风量、通风阻力和矿井主要通风设备的工作。 矿井通风设计是整个矿井设计的主要组成部分,是保证矿井安全生产的重要环节。其基本任务是建立安全、可靠、技术先进和经济合理的矿井通风系统。通风系统是否合理,直接关系到整个矿井的通风状况的好坏和保障矿井安全生产。新建矿井通风设计的基本内容和步骤是:拟定矿井通风系统、矿井总风量的计算与分配、矿井通风阻力计算、选择矿井通风设备。矿井通风系统必须根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性等条件,通过优化或技术经济比较后确定。 矿井通风设计按照设计内容的实施步骤又可分为技术设计和施工设计。矿井通风技术设计是矿井初步设计或技术方案设计时进行的通风设计,其内容包括确定矿井通风系统、矿井总风量的计算和分配、矿井通风阻力计算、选择通风设备和概算通风费用。这也就是一般说的矿井通风设计。矿井通风施工设计是为通风构筑物和通风设备等安装施工进行的设计,其内容包括工程布置、设备布置和施工布置等。 矿井通风设计的主要依据是:矿区气象资料:井田地质地形:煤层瓦斯风化带垂深、各煤层瓦斯含量、瓦斯压力及梯度等;煤层自然发火倾向,发火周期;煤尘爆炸危险性及爆炸指数;矿井设计生产能力及服务年限;矿井开拓方式及采区巷道分布,回采顺序、开采方法;

通风课程设计

第一节设计技术资料 1.1矿井概况 某矿地处平原,地面标高+150m,井田走向长度5km,倾斜方向长度3.5km。井田上界以-165m为界,下界以标高-1020为界,井田内煤层赋存稳定,井田可采储量约1.08亿吨。根据开采条件,煤炭供求状况及“规程”规定,确定此矿为年产150万吨的大型矿井,服务年限为72年。 1.2矿井开采技术条件 井田内有两个开采煤层,为k 1、k 2 。在井田范围内,煤层赋存稳定,煤层15°,各 煤层厚度、间距及顶底板岩性参见综合柱状图。矿井相对瓦斯涌出量为6.5m3/T,煤层有自然发火危险,发火期为16-18个月,煤尘有爆炸性,爆炸指数为36%。 根据开拓开采设计确定,采用立井多水平上下山开拓(见图1-2-1、图1-2-2),第一水平标高-380m,斜长为825×2m,服务年限为27年,因走向较短,两翼各布置一个采区。每个采区上山部分和下上部分各分为五个区段回采。每采区各布置一个综采工作面和一个高档普采工作面,工作面长度150m,区段平巷及区段煤柱15m。综采工作面产 量在k 1煤层时为1620吨/日,在k 2 煤层时1935吨/日,日进6刀,截深0.6m,高档普 采工作面产量在k 1煤层时为1080吨/日,k 2 煤层时1290吨/日,日进4刀,截深0.6m; 东翼还另布置一备用的高档普采工作面。综采工作面装备的部分机电设备如表2所示,采区巷道采用集中联合布置(图1-2-1、图1-2-2)。 采区轨道上山均布置在k 2 煤层的底板板稳定细沙石中,区段回风平巷与运输上山,区段运输平巷与轨道上山采用石门连接。为了保证生产正常接替,前期东西两翼各安排两个独立通风的煤层平巷掘进头,后期东西两翼各安排两个独立通风的煤层平巷掘进头和一个岩石下山掘进头。东西两翼各有一个绞车房、变电所、火药库,亦需独立通风。主井为箕斗井提煤用,副井为罐笼井升降人员、材料、矸石,也作为进风井用,并设有梯子间。 部分巷道名称、长度、支护形式,断面几何特征参数列入表1-2-1。 井内的气象参数按表1-2-3所列的平均值选取,除综采工作面采用4-6工作制外,其它均采用三八工作制。 井下同时作业的最多人数为700人,综采工作面同时作业最多人数40人,高档普采工作面同时作业最多人数60人。 综合柱状图 柱状厚度(米)岩性描述 240.00 表土,无流砂 8.60 砂质页岩 8.40 泥质细砂岩,沙质泥岩互层,稳定 0.20 沙质泥岩,松软 2.40 K1煤层,块状r=1.25 4.20 灰色砂质泥岩,细砂岩互层,坚硬 7.80 灰色砂质泥岩 4.80 泥岩细砂岩互层

矿井通风设计及风量计算方法

矿井通风设计施工时的基本原则和要求

通风系统合理可靠的含义?

通风网络图的绘制 矿井风量计算办法 按照《煤矿安全规程》第一百零三条:“煤矿企业应根据具体条件制定风量计算方法,至少每5年修订1次”,要求,根据《煤矿井工开采通风技术条件》(AQ1028-2006)、《煤矿通风能力核定标准》(AQ1056-2008),结合本矿开采的实际情况,制定本办法。 一、全矿井需要风量的计算 全矿井总进风量按以下两种方式分别计算,并且必须取其最大值: 1、按井下同时工作的最多人数计算矿井风量: Q 矿进=4×N×K 矿通 (m3/min) 式中:Q 矿进 ——矿井总进风量,m3/min; 4——每人每分钟供给风量,m3/min.人; N——井下同时工作的最多人数,人; K 矿通——矿井通风需风系数(抽出式取K 矿通 =1.15~1.20)。 2、按各个用风地点总和计算矿井风量: 按采煤、掘进、硐室及其他巷道等用风地点需风量的总和计算: Q 矿进=(∑Q 采 +∑Q 掘 +∑Q 硐 +∑Q 其他 )×K 矿通 (m3/min) 式中:∑Q 采 ——采煤工作面实际需要风量的总和,m3/min; ∑Q 掘 ——掘进工作面实际需要风量的总和,m3/min; ∑Q 硐 ——硐室实际需要风量的总和,m3/min; ∑Q 其他 ——矿井除了采、掘、硐室地点以外的其他巷道需风量的总和,m3/min。 K 矿通——矿井通风需风系数(抽出式K 矿通 取1.15~1.20)。 二、采煤工作面需要风量 按矿井各个采煤工作面实际需要风量的总和计算: ∑Q 采=∑Q 采i +∑Q 采备i (m3/min) 式中:∑Q 采 ——各个采煤工作面实际需要风量的总和,m3/min; Q 采i ——第i个采煤工作面实际需要的风量,m3/min; Q 采备i ——第i个备用采煤工作面实际需要的风量,m3/min。 每个采煤工作面实际需要风量,按工作面气象条件、瓦斯涌出量、二氧化碳涌出量、人员和爆破后的有害气体产生量等规定分别进行计算,然后取其中最大值。有符合规定的串联通风时,按其中一个采煤工作面实际需要的最大风量计算。 1、按气象条件计算: Q 采=Q 基本 ×K 采高 ×K 采面长 ×K 温 (m3/min)

矿井通风与安全课程设计

矿井通风与安全课程设计 设计人:周桐 学号:3 指导老师:郭金明

前言 《矿井通风》设计就是学完《矿井通风》课程后进行,就是学生理论联系实际的重要实践教学环节,就是对学生进行的一次综合性专业设计训练。通过课程设计使学生获得以下几个方面能力,为毕业设计打下基础。 1、进一步巩固与加深我们所学矿井通风理论知识,培养我们设计计算、工程绘图、计算机应用、文献查阅、运用标准与规范、报告撰写等基本技能。 2、培养学生实践动手能力及独立分析与解决工程实际的能力。 3、培养学生创新意识、严肃认真的治学态度与理论联系实际的工作作风。 依照老师精心设计的题目,按照大纲的要求进行,要求我们在规定的时间内独立完成计算,绘图及编写说明书等全部工作。 设计中要求严格遵守与认真贯彻《煤炭工业设计政策》、《煤矿安全规程》、《煤矿工业矿井设计规范》以及国家制定的其它有关煤炭工业的方针政策,设计力争做到分析论证清楚,论据确凿,并积极采用切实可行的先进技术,力争使自己的设计达到较高水平,但由于本人水平有限,难免有疏漏与错误之处,敬请老师指正。 (一)矿井基本概况 1、煤层地质概况单一煤层,倾角25°,煤层厚4m,相对瓦斯涌出量为13m3/t,煤尘有爆炸危险。 2、井田范围设计第一水平深度240m,走向长度7200m,双翼开采,每翼长3600m。 3、矿井生产任务设计年产量为0、6Mt,矿井第一水平服务年限为23a。 4、矿井开拓与开采用竖井主要石门开拓,在底板开围岩平巷,其开拓系统如图1-1所示。拟采用两翼对角式通风,在7、8两采区中央上部边界开回风井,其采区划分见图1-2。采区巷道布置见图1-3。全矿井有2个采区同时生产,分上、下分层开采,共有4个采煤工作面,1个备用工作面。为准备采煤有4条煤巷掘进,采用4台局部通风机通风,不与采煤工作面串联。井下同时工作的最多人数为380人。回采工作面最多人数为38人,温度t=20℃,瓦斯绝对涌出量为3、2m3/min,放炮破煤,一次爆破最大炸药量为2、4kg。有1个大型火药库,独立回风。 附表1-1 井巷尺寸及其支护情况 区段井巷名称井巷特征及支护情况 巷长 m 断面积m2 1~2 副井两个罐笼,有梯子间,风井直径D=5m 240

安全通风课程设计范文

摘要 本次课程设首先是将车间划分成两个区域。然后计算出各设备排风罩的排风量,计算系统的排风量及阻力,进行除尘器和风机的选择,绘制通风系统布置图。 考虑到车间粉尘污染的特点以及进出空间的限制,比较各种类型的除尘器,选择了最合理的通风除尘方案,进行了通风除尘系统的设计。 关键词:风量;风压;排风罩;除尘

某综合车间局部通风除尘系统设计 目录 1前言 (1) 2排风量计算 (3) 2.1设备参数 (3) 2.2各设备排风量计算 (4) 2.3各管路排风量计算 (7) 3各通风系统的排风量和阻力计算 (9) 3.1第一工作区排风量和阻力计算 (9) 3.1.1绘制轴测图 (9) 3.1.2确定管径和单位长度的摩擦阻力 (9) 3.1.3确定各管段的局部阻力系数 (10) 3.1.4计算各管段的沿程摩擦阻力和局部阻力 (12) 3.1.5对并联管路进行阻力平衡计算 (13) 3.1.6除尘器及风机的选择 (15) 3.1.7管道计算汇总 (16) 3.2第二工作区排风量和阻力计算 (17) 3.2.1绘制轴测图 (17) 3.2.2确定管径和单位长度摩擦力 (17) 3.2.3确定各管段的局部阻力系数 (18) 3.2.4计算各管段的延程摩擦阻力和局部阻力 (19) 3.2.5对并联管路进行阻力平衡计算 (19) 3.2.6除尘器及风机的选择 (19) 3.2.7管道计算汇总 (20) 4总结 (21) 附录I (22) 附录II (23) 参考文献 (24)

1前言 人类在生产和生活的过程中,需要有一个清洁的空气环境(包括大气环境和室空气环境)。因此,就要在生产和生活的过程采用通风和除尘技术。 通风工程在我国实现四个现代化的进程中,一方面起着改善居住建筑和生产车间的空气条件,保护人民健康、提高劳动生产率的重要作用;另一方面在许多工业部门又是保证生产正常进行,提高产品质量所不可缺少的一个组成部分。 工业通风是控制车间粉尘、有害气体或蒸气和改善车间微小气候的重要卫生技术措施之一。其主要作用在于排出作业地带污染的或潮湿、过热或过冷的空气,送入外界清洁空气,以改善作业场所空气环境。 工业通风按其动力来源分为自然通风和机械通风。自然通风依靠室外空气温度差所形成的热压和室外风力所形成的风压而使空气流动;机械通风则依靠通风机所形成的通风系统外压力差而使空气沿一定方向流动。 净化工业生产过程中排放出的含尘气体称为工业除尘。 风机生产行业引进国外技术,改变了以往风机全压偏小、不适用于除尘系统的状况。新产品不但全压满足除尘工程的需求,而且噪声低、机械效率高、振动小,并有较好的防磨措施。 除尘系统风量调节技术的应用越来越普遍。以往仅靠液力耦合器使风机变速,现在已有多种变频调速器,适用于不同规格的电机,因而风量调节更易实现。除尘系统风量调节,离不开流量监测,已开发出含尘气体流量连续监测装置,具有不堵、阻力小、应用方便等特点,在除尘系统运行中发挥了很好的作用。 有些生产过程如原材料加工、食品生产、水泥等排出的粉尘都是生产的原料或成品,回收这些有用原料,具有很大的经济意义。在这些部门,除尘设备既是环保设备又是生产设备。 工业防尘技术的前景是广大的:1、工业防尘法规更完善,执法更强化。进入21

矿井通风系统设计范本

目录 前言3 第一章矿井基本简况5 第一节矿井简况4 一、井田简况4 二、煤层地质简况4 三、瓦斯简况5 四、水文简况5 五、煤尘、煤炭自燃简况5 六、通风简况5 第二章通风系统设计可行性论证8 第一节矿井通风系统优化背景8 一、矿井目前通风及生产能力情况8 二、矿井生产能力发展前景8 第二节通风系统改造的必要性分析、论证9 第三节通风系统改造的主要手段10

第四节通风系统改造总体技术方案的选择10 第三章矿井通风参数计算14 第一节通风系统改造后矿井需要风量的计算14 一、矿井风量计算原则14 二、矿井需风量的计算14 第二节通风系统改造后矿井通风阻力的计算19 一、矿井通风总阻力计算原则19 二、矿井通风总阻力计算19 第三节通风系统改造技术方案比较33 第四章矿井通风设备的选择35 第一节主要通风机选型35 一、设计依据35 二、通风设备选型35 第二节矿井主要通风设备的配置要求38 第五章通风费用概算40 第六章矿井安全技术措施43

第一节粉尘灾害防治43 一、防尘措施43 二、防爆措施43 三、隔爆措施43 第二节瓦斯灾害防治44 第三节防灭火44 一、煤的自燃预防措施44 二、外因火灾防治44 第四节矿井防治水45 第五节井下其它灾害预防45 一、顶板灾害防治45 二、机电运输事故防治45 前言 矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员

的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。 剖析历次煤矿重大灾害事故发生及扩大的原因,无不与矿井通风系统有着密切的关系。因此,建立一个既能满足日常生产需风,保证风向稳定、风质合格,在灾害时期又能保持通风设备运行可靠、稳定、能快速实现风流控制的通风系统是至关重要的。 本设计基于郑兴义兴(新密)煤矿的现状,本着为矿井的长期发展,提高矿井生产能力进行的矿井通风系统改造。总设计技术方案:维修扩大矿井东回风巷的断面,回收矿井西回风巷,对皮带巷进行扩修增大通风断面减小阻力,并经过矿井通风设施改造。通过风量、风阻等计算,选择出主要通风机以及配套的电机型号。通过各种论证,本设计可靠可行,提高矿井的抗灾能力,提高了矿井的经济效益。

矿井通风设计说明书参考样本

矿井通风设计说明书 1、设计依据概述 1.1、矿段地质、开拓生产情况 矿区本次深部开采设计对象主要为-530m标高以下的I号矿体和V号矿体群。 本次深部开拓设计开采的-530m标高以下的矿体赋存地质条件与上部矿体单一、品位高、厚度大、且相对稳定、完整的赋存条件,有明显的差异。这将会增加深部开采的难度,需要采取必要的应对措施。 1.11、-530m以下深部开釆范围内的地质储量及岩石性质: ①I号矿体,表内矿体重2. 85t/m3,表外矿体重2. 79 t/m3。矿石量12万吨,平均品位4. 13g/t,金金属量495. 53Kg。矿体硬度系数f二7~&顶底板f二11~12.; ②V号矿体群体重2.74 t/m3,矿石量261万吨,平均品位6. 38g/t,金金属量16708. 82KgoV号矿体及顶底板硬度系数与I号矿体大致相似。顶板平均抗压强度110. 99Mpa,矿体107. 42Mpa, 底板101. 05Mpa o -530m标高以下至-730m深部开采范围内全部设计地质储量, 矿石量273万吨,平均品位6. 29g/t,金金属量17204. 35Kgo ③围岩体重:2. 70 t/m3o ④矿岩松散系数:1.6o

⑤自燃性:无 本次设计生产规模为80万t/ao根据计算并结合矿山实际情 况,确定V号矿体开采范围内的服务年限为6年。 1.12、矿区地形及矿区气候概况 矿区地处望儿山北麓,西临莱州湾,处于低山丘陵向海湾平原过度地带,地势平坦开阔。地面标高23. 42-26. 65m o 地表水体主要为万深河,其发源于金华山-望儿山之间,流经 矿区东侧,向北注入渤海,全长8km。该河上游汇水面积3. 90km2, 源近流短,属季节性河流。 矿区属北温带东亚季风区大陆性气候,四季分明,光照充分,依山傍海,气候宜人,冬无严寒,夏无酷暑,属于暖温带季风气候,全年平均气温12摄氏度左右,是中国北方著名的旅游避暑和休闲度假胜地。 年降水量约610mm,属于半湿润地区。年平均降水量为651.9毫米,年平均气温11.8°C,年平均相对湿度68%,年平均日照时数2698. 4小时,太阳辐射总量年平均值5224. 4兆焦耳/ 平方米,年平均风速内陆地区3-4米/秒,沿海地区4-6米/秒, 全市平均无霜期210天。 1.13、现在的开拓方式 自建矿以來,为适应生产发展的需要,新城金矿进行了三次开拓工程建设,形成主斜井、主竖井一辅助斜坡道、主斜坡道等多种开拓方式共存的局面。

煤矿矿井通风课程设计

《矿井通风》课程设计 院系:能源科学与工程学院

前言 矿井通风是煤矿建设中的重要一个环节。通风系统的优劣不仅直接影响着煤炭企业的经济效益,安全生产还直接关系到井下工作人员的生命安全。近些年因通风原因造成的事故频发,矿井通风已成为影响安全生产,事关企业发展的重要因素。矿井通风不仅影响到矿井的产量,同时还影响安全生产,风量风速的合理化至关重要,风量风速过小矿井机电设备放出的热量和人员呼吸,煤炭放出的污染气体无法排出,易引起瓦斯爆炸,风量风速过大又会扬起煤尘不仅污染新鲜风,更有引起煤尘爆炸的危险。所以做好矿井通风至关重要。 本报课程设计完成共用时3周。因以前从未做过,开始确实不知如何下手,通过反复阅读任务书、仔细研究有关书籍、资料,逐渐有了思路。按思路逐渐往下做,虽然也遇到了不少问题,但通过与老师、同学交流,查阅相关资料,问题得到的一一解决,最终完成了本课程设计所要求的所有内容。 通过本次课程设计的完成,掌握了通风设计的一般顺序、内容、思路和方法,巩固了课堂所学知识,提升了自己的实践能力,。在这里向辛勤培育我们的老师表示衷心的感谢。 2012年6月1日

目录 第一章矿井概况 一、地质概况 二、开拓方式及开采方法 第二章矿井通风系统 一、矿井通风系统的要求 二、确定矿井通风系统 第三章采取通风方式 一、确定采区通风方式 第四章采煤工作面通风方式 一、确定采煤工作面通风方式 第五章主要通风机工作方式 一、确定主要通风机的工作方式 第六章矿井需风量计算与分配 一、矿井风量计算原则 二、矿井风量计算与分配 第七章通风系统示意图和网络图 一、确定通风困难和容易时期的开采位置 二、通风系统示意图和网络图 第八章矿井通风阻力 一、计算原则 二、计算方法 三、计算矿井总风阻及总等积孔 四、矿井通风阻力计算 第九章通风机选型 一、通风机选型 二、电动机选择 三、概算通风费用 第十章矿井灾害防治措施 参考文献

相关文档