文档库 最新最全的文档下载
当前位置:文档库 › 流体力学理论与F1赛车的空气动力学(全文完)

流体力学理论与F1赛车的空气动力学(全文完)

流体力学理论与F1赛车的空气动力学(全文完)
流体力学理论与F1赛车的空气动力学(全文完)

引言

空气动力学在F1领域中扮演着重要的角色。在引擎的研发相对稳定的下,空气动力学几乎主宰着一辆赛车的全部性能。从上纪六十年代F1赛车第一次使用尾翼,到七十年代地面效应的引进,再到近些年双层扩散器、废气驱动扩散器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头,在下面的篇幅中,笔者就将用通俗易懂的语言,为读者朋友们介绍流体力学的主要理论并解读F1赛车的空气动力学。

内容介绍与摘要

本文将从流体力学的理论入手,为读者介绍流体力学中的必要基础性常识和几种常见的效应,以及流体力学中的理论定律,并将结合理论知识解决F1赛车上的实际问题,主要涉及的理论有流体的粘滞性、流体流动状态的判断(包括层流、湍流以及雷诺数对流体流动状态的判定)、气动阻力、边界层理论、地面效应、康达效应、文丘里效应以及失速现象和伯努利定律,并通过这些理论解决F1领域的诸多问题,包括下压力的产生、前翼、尾翼、扩散器的工作原理,以及如何提高气动部件的工作效益和提高气流的传输效率等问题,相信阅读完全文后,能够帮助读者朋友建立起对空气动力学的清晰、透彻的认识。

笔者注:由于本文具有极强的学术性,因此笔者在撰文时需要参考大量的资料,在全文的结尾部分笔者将会列出参考和引用的文献出处。

第一部分理论基础

1.概况与发展历程

流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力

的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间,流体与其他运动形态之间的相互作用的力学分支。它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁有相对运动时的相互作用和流动的规律。按照研究对象的运动方式可将其分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。描述流体运动的基本方程是纳斯-斯托克斯方程,简称N-S方程。

笔者注:N-S方程基于牛顿第二定律,表示流体运动与作用于流体上力的相互关系,N-S 方程是非线性微分方程,其中包含流体的运动速度、压强、密度、粘度、温度等变量,而这些都是空间位置和时间的函数。一般来说,对于一般的流体学问题,需要将N-S方程结合质量守恒,能量守恒、势力学方程以及介质的材料性质,一同求解。由于其复杂性,通常只有通过给定边界条件下,通过计算机才可求解。

空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。

根据空气与物体的相对速度,可将空气动力学分为低速空气动力学(相对速度小于100m/s,即360km/h)和高速空气动力学,也有学说将界限划定为400km/h。前者属于不可压缩流动的空气动力学,后者属于可压缩流动的空气动力学。一般来说,空气流速小于0.3马赫时,气体是不可压缩流动的,大于这个数值则被理解为可压缩流动。F1所研究的空气动力学属于低速范畴。此外,还根据是否忽略气流的粘性,将空气动力学分为理想空气动力学和粘性空气动力学。

20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,需要揭示飞行器周围的压力分布、飞行器受力状况和阻力等问题,这就促进了流体力学在实验和分析方面的发展。20世纪初,以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样受到举力,从而将很重的飞机托上天空,机翼理论的正确性,使人们重新认识到无粘理论,肯定了其指导工程设计的重大意义。

机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的发展和飞机的飞行速度提高到每秒50米以上,又迅速扩展了对空气密度变化的效应和理论研究,这高速飞行提供了理论指导。

从50年代起,数学的发展,电子计算机的不断完善,以及流体力学各种计算方法的发明,使得许多原本无法用理论分析求解的复杂流体力学问题有了求得数值的可能性,并以此形成了计算流体力学,此后,模型法、CFD技术、风洞测试等新兴手段的介入使得该学科取得了飞跃性的进步。

运用到F1领域的CFD技术。

法拉利位于总部马拉内罗的风洞。

F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯中表

现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。确切地说,就是研究由路况差异而导致的气动翼片与底盘间距的变化对赛车性能的干预强弱。以上三大课题,决定着一辆F1赛车的整体气动性能。

2.基本概念

(1)流体

流体,顾名思义,就是可以流动的物体,是液体和气体的总称,是由大量的、不断地作热运动而且无固定平衡位置的分子构成的,其基本特征是没有一定的形状和具有流动性。流体都有一定的压缩性,液体的可压缩性很小,而气体的可压缩性较大,在流体形状发生改变时,流体各层间也存在一定的运动阻力(即粘滞性)。当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动状态而引入的一个理想模型。

流体与固体在某些方面有着非常明显的差别:Ⅰ在静止的状态下固体的作用面上能够同时承受剪切应力和法向应力,而流体则只有在运动的状态下才能够同时受到这两种力的作用(在静止状态下其作用面上仅能够承受法向应力,即为静压强)。Ⅱ固体在力的作用下发生变形,在弹性限度内形变和作用力之间服从胡克定律,即固体的形变量和作用力的大小成正比。而流体则是角变形速度与剪切应力有关,层流和紊流状态使它们之间的关系有所不同。在层流状态下,二者之间服从牛顿内摩擦定律。Ⅲ当外力停止作用时,固体可以恢复为原来的形状,而流体由于其形变所需的剪切应力非常小,所以很容易使自身的形状适应容器的形状,并可在一定的条件下维持下来。

(2)流体的粘滞性

前文中提到过,当流体的粘滞性与可压缩性很小时,可以称之为理想流体。然而,对于一般的流体来说,粘滞性是一种重要而且普遍的性质。

流体力学中这样给粘滞性定义:流体在受到外部剪切力作用时发生变形(流动),内部相应要产生对变形的抵抗,并以内摩擦的形式表现出来。所有流体在相对运动时都要产生内摩擦力,这是流体的一种固有的物理属性。

牛顿内摩擦定律或牛顿剪切定律对流体的粘性作了理论的描述,即流体层之间单位面积的内摩擦力或剪切应力与速度梯度或剪切速率成正比,可用公式表示为

τ=μ(dvx/dy)= μγ具有黏性的流体在发生形变时将产生阻力。一般情况下,半径为R的小球以速度v运动时,所受到的流体阻力可用公式f=6πηRv表示(η表示黏性系数)

从本质上讲,流体的粘滞性其实就是一种摩擦现象,日常生活中,我们走路,坐定和工作都离不开摩擦,摩擦是普遍存在的。我们特定地将流体的这种摩擦现象称为粘滞性。物理学上用粘滞系数η来表示流体粘滞性的大小(单位为泊)。例如,水的粘滞系数为8.01×10-3泊,空气则要小得多。对于大多数液体,η随温度升高而下降,气体的η则随温度升高而上升。1957年12月1日,美国加州理工学院宣布:在液氦Ⅱ里,粘滞系数小得测量不到。它是没有粘滞系数的理想流体。

运动液体中的摩擦力是液体分子间的动量交换和内聚力作用的结果。液体温度升高时粘性减小,这是因为液体分子间的内聚力随温度的升高而减小,而动量交换对液体的粘滞作用不大。气体的粘性主要是由于分子间的动量交换引起的,温度升高则动量交换加剧,因此气体的粘

性随温度的升高而增大。

(3)层流、湍流与雷诺数对流动状态的判定

当流体的流速很小时,流体分层流动,互不混合,称为层流,也称为稳流或片流,逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线已不再清晰可辨,流场中形成许多小旋涡,层流被破坏,相邻层间不但有滑动,还有混合。这时的流体做不规则流动,并且有垂直于流管轴线方向的分速度产生,这种运动称为湍流,又称为紊流、乱流。

日常生活中,流速较慢,或黏性系数较大的流体的流动一般为层流,例如油,人体内静脉血液的流动,等等。而流速较大、黏性系数较小的流体流动通常是作湍流,如江河急流,空气流动、烟囱排烟等都是湍流。

由于湍流的流动具有杂乱性、无规律性和不确定性,因此如何准确地描述湍流至今仍是物理学界的一大难题。

我们通常用雷诺数来判定流体是在做层流还是湍流。

雷诺数是一种可以用来表示流体流动情况的无量纲数,用Re表示。Re=ρvd/η

其中,v, ρ, η分别表示流体的流速,密度与黏性系数,d为一种特征长度。例如流体流过圆形管道,则d表示管道直径,对于外流问题,v,d一般到远前方来流速度和物体主要尺寸(如机翼弦长或圆球直径),内流问题则取通道内平均流速和通道直径。雷诺数表示作用于流体微团的惯性力与粘滞力之比,如果两个几何相似流场的雷诺数相等,则对应微团的惯性力与粘性力之比相等。

雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,此时流体的流动为层流,且流动稳定。当雷诺数较大时,惯性力的影响大于黏滞力,流体的流动较不稳定,流速的微小变化容易发展、增强、形成紊乱、不规则的紊乱流场,即湍流。由雷诺数的公式可知,当流体的流速较小,或黏性系数较大时,比如油液、润滑膜内的流动,其粘性影响遍及全流场,雷诺数较小,反之,当流体的流速很大时,比如一般飞行器的绕流,其雷诺数则要大得多,此时,粘性的影响仅在物面附近的边界层或尾迹中才是重要的。对于F1赛车而言,流过车身的气流的雷诺数相当可观,因此流过F1赛车的气流一定是湍流。

笔者注:在很多涉及粘性影响的流体力学实验中,雷诺数是主要的相似准数。但很多模型实验的雷诺数远远小于实物的雷诺数,因此研究修正方法和发展高雷诺数实验设备是流体力学研究的重要课题。

一般来说,Re <2300为层流状态,Re> 4000为湍流状态,Re= 2300 -4000为过渡状态。在不同的流动状态下,流体的运动规律、流速分布等都是不同的。因而管道内流体的平均流速v与最大流速Vmax的比值也是不同的,因此流体流动的特性由雷诺数决定。

典型的雷诺数:

普通航空飞机:5 000 000

小型无人机:400 000

海鸥:100 000

滑翔蝴蝶:7 000

圆形光滑管道:2 320

橡胶管道:1 600-2 100

主动脉中的血流:1 000

大脑中的血液流:100

精子:0.0001

(4)、气动阻力

阻力,又称后曳力,空气阻力或流体阻力,是物体在流场中相对运动所产生与运动方向相反的力。阻力方向和其所在流场的速度方向相反。一般摩擦力不随速度的变化而变化,但阻力会随速度而变化。

对于一个在流体中移动的物体,阻力为周围流体对物体的施力在移动方向的反方向上分量的总和。而施力和移动方向垂直的分量一般则视为升力。因此阻力和物体移动方向相反。

阻力与摩擦力不同,因为摩擦力有时可以是动力。

车辆在行驶时,所要克服的阻力有机件损耗阻力、轮胎产生的滚动阻力(路阻)及空气阻力。随着车速的增加,空气了阻力也逐渐成为最主要的行车阻力,在时速200km/h以上时,空气阻力几乎占有所有行车阻力的85%。

空气阻力系数,又称风阻系数,是计算汽车空气阻力的一个重要参数。它是通过风洞实验和下滑实验所确定的一个重要参数,用它可以计算出汽车在行驶时的空气阻力。风阻系数的大小取决于汽车的外形。风阻系数越大,则空气阻力越大,现代汽车的风阻系数在0.3-0.5之间,赛车可以达到0.15,目前雨滴的风阻系数最小,为0.05左右。

“雨滴”外形对F1赛车的设计具有借鉴意义。由于雨滴形风阻系数最小,所以F1赛车的底盘也可以制作成类似的形状以减小阻力。例如,红牛RB7赛车就使用了水滴形状的底盘,这使得RB7拥有了同赛季所有赛车中最小的气动阻力,维特尔在斯帕、蒙扎的胜利与其是分不开的。再搭配上功效强劲的废驱扩散器,使RB7能够适应各种赛道,成为名副其实的“火星赛车”。

对于车辆行驶时的空气阻力,一般有三种形式:

一是气流撞击车辆正面所产生的阻力,就像拿一块木板顶风而行,所受到的阻力几乎都是气流撞击所产生的阻力。

二是摩擦阻力,空气划过车身一样会产生摩擦力,然而以一般车辆行驶的最快速度来说,摩擦阻力小到可以忽略。

三是外形阻力。一般来说,车辆调整行驶时,外形阻力是最主要的空气阻力来源。外形阻力来自车后方的真空区,真空区越大,阻力就越大。一般来说,三厢式的房车外形阻力会比掀背休旅车小。

风阻系数可通过风洞测得。当车辆在风洞中测试时,借由风速来模拟汽车行驶的车速,使车

不至于被风吹得后退。在测得所需力后,扣除摩擦,剩下的就是风阻力。结合公式进行计算Cd=正面风阻力×2/(空气密度×车头正面投影面积×车速的平方)

一辆车的风阻系数是固定的,根据风阻系数即可算出车辆在各种速度下所受的阻力。

(5)、边界层理论(这个理论非常重要,以后的分析里面经常用得到)

当流体在大雷诺数条件下运动时,可把流体的粘性和导热看成集中作用在流体表面的薄层即边界层内。根据边界层的这一特点,简化纳维-斯托克斯方程,并加以求解,即可得到阻力和传热规律。这一理论是德国物理学家L.普朗特于1904年提出的,它为粘性不可压缩流体动力学的发展创造了条件。

流体在大雷诺数下作绕流流动时,在离固体壁面较远处,粘性力比惯性力小得多,可以忽略;但在固体壁面附近的薄层中,粘性力的影响则不能忽略,沿壁面法线方向存在相当大的速度梯度,这一薄层叫做边界层。流体的雷诺数越大,边界层越薄。从边界层内的流动过渡到外部流动是渐变的,所以边界层的厚度δ通常定义为从物面到约等于99%的外部流动速度处的垂直距离,它随着离物体前缘的距离增加而增大。根据雷诺数的大小,边界层内的流动有层流与湍流两种形态。一般上游为层流边界层,下游从某处以后转变为湍流,且边界层急剧增厚。层流和湍流之间有一过渡区。当所绕流的物体被加热(或冷却)或高速气流掠过物体时,在邻近物面的薄层区域有很大的温度梯度,这一薄层称为热边界层。

分析方法

大雷诺数的绕流流动可分为两个区,即很薄的一层边界层区和边界层以外的无粘性流动区。因此,处理粘性流体的方法是:略去粘性和热传导,把流场计算出来,然后用这样的初次近似求得的物体表面上的压力、速度和温度分布作为边界层外边界条件去解这一物体的边界层问题。算出边界层就可算出物面上的阻力和传热量。如此的迭代程序使问题求解大为简化,这就是经典的普朗特边界层理论的基本方法。

边界层脱离物面并在物面附近出现回流的现象。当边界层外流压力沿流动方向增加得足够快时,与流动方向相反的压差作用力和壁面粘性阻力使边界层内流体的动量减少,从而在物面

某处开始产生分离,形成回流区或漩涡,导致很大的能量耗散。绕流过圆柱、圆球等钝头物体后的流动,角度大的锥形扩散管内的流动是这种分离的典型例子。分离区沿物面的压力分布与按无粘性流体计算的结果有很大出入,常由实验决定。边界层分离区域大的绕流物体,由于物面压力发生大的变化,物体前后压力明显不平衡,一般存在着比粘性摩擦阻力大得多的压差阻力(又称形阻)。当层流边界层在到达分离点前已转变为湍流时,由于湍流的强烈混合效应,分离点会后移。这样,虽然增大了摩擦阻力,但压差阻力大为降低,从而减少能量损失。

边界层理论指导着F1赛车的发展,对流体力学的研究作出了重要贡献。

?回复

?1楼

?2013-09-10 13:16

?举报 |

?

?turismo1

?TS020

8

(6)、伯努利方程

伯努利方程是理想流体定常流动的状态方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。

理想正流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程表示为:

P+ρgh+1/2ρv2=c

p、ρ 、v分别表示流体的压强、密度和速度,h为铅垂高度,g为重力加速度,c为常量。上式各项分别表示单位体积流体的压力能p重力势能ρgh和动能1/2ρv2,在沿流线运动的过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。补充:

p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2

p+ρgh+1/2ρv2=常量

均为伯努利方程,其中1/2ρv2 与流速有关,称为动压强,p和ρgh称为静压强。伯努利方程揭示流体在重力场中流动时的能量守恒。

如果研究的是气体,那么重力的影响就可以忽略不计,公式化简为P+1/2ρv2=常量(p0)各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小,速度减小,压强就增大,速度降为零,压强就达到最大(理论上应等于总压)。F1翼片产生下压力,就在于下翼而速度高而压强小,上翼面速度低而压强大,因而合力向下。

据此方程,测量流体的总压、静压却可求得速度,成为皮托管的测速原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果,但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应该加入机械能损失项。

由伯努利方程可以看出,流速大处压力低,流速小处压力高,需要强调的是,伯努利方程的推导假设是固体静止不动,因此在应用伯努利方程时,需要变换参照系,结果是伯努利方程中的v不是物体的实际运动速度,而是物体与流体相对运动的速度,比如,飞机在逆风起飞

时会获得比顺风更好的起飞效果,而F1赛车在制动点的选择上也受到类似的影响,逆风时可以产生更多的下压力(特别是前部),制动距离缩短,车手可以更晚地踩下刹车,而顺风时气动效应被削弱,制远距离延长,车手不得不更早地放开油门制动,这一点在马来西亚雪邦赛道的9号弯和15号弯最为明显,进两个弯之前赛车的行进方向刚好相反,通常一个弯之前的制动距离被缩短,就意味着另一个弯前的制动距离被延长。

(7)、文丘里效应

文丘里效应,又称文氏效应。这种现象以其发现者,意大利物理学家文丘里命名。这种效应可以制作出文丘里管。

当气体或液体在文丘理管里面流动,在管道的最窄处,动态压力(速度)达到最大值,静态压力(静息压力)达到最小值。气体(液体)的速度因为涌流横截面积变化的关系而上升。整个涌流都要在同一时间能经历缩小的过程,因而压力也在同一时间减小。进而产生压力差,这个压力差用于测量或者给流体提供外在吸引力。

对于理想流体(液体或气体,其不可压缩和不具有摩擦),其压力差通过伯努利方程获得。文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文丘里管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。

压缩空气从文丘里管的入口进入,少部分通过截面很小的喷管排出。随之截面逐渐减小,压缩空气的压强减小,流速变大,这时就在吸附腔的进口内产生一个真空度,致使因周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内减小气体的流速,之后通过消音装置减小气流震荡。

文丘里效应对于F1赛车的扩散器具有借鉴意义。

(8)、康达效应

康达效应(Coanda Effect)亦称附壁作用或柯恩达效应。流体(水流或气流)有离开本来的运动方向,改为随着凸出的物体表面摩擦时,流体的流速会减慢。只要物体表面的曲率不是很大,依据流体力学中的伯努利原理,流速的减缓会导致流体被吸附在物体的表面上流动。这中作用是以罗马尼亚发明家亨利-康达命名。

Coanda效应指出,如果平顺地流动的流体经过具有弯度的凸表面的时候,有向凸表面吸附的趋向。打开自来水的时候,如果用筷子去触碰水柱(只要部分水柱即可,这样现象更明显),水会随着筷子向下淌,而不是按重力的方向从水龙头直接往下流。

康达效应被广泛地应用到了2012年规则框架下的F1赛车上,康达效应排气管使得废气由底盘吹出重新成为了可能,(具体的问题,我们会在之后的文章中专题分析)

(9)、地面效应

严格来讲,地面效应的概念只适用于在高速空气动力学。飞机的翼尖涡流是这一理念被引入的主要原因。当飞机机翼进入高速状态时,其下表面的高压气流往往会越界翻滚到机翼上表面扰乱低压气流,从而形成诱导阻力。降低机翼的升阻比,导致机翼效率大降。而当飞机近地飞行时,由于与地面之前的空间更为有限,机翼下部的气流层便会更加的平稳,从而扰乱翼尖涡流。在没有翼尖涡流的情况下,机翼的攻角能变得更为接近理论水平,因此便使飞机

更有效率。这就是地面效应真正的作用。同时很多只在地效区域飞行的地效飞行器,也是利用这种原理来获得更优质的升力,来提升机翼的效率。

但是在F1领域中,地面效应被赋予了截然不同的概念。F1工程师通过特别设计的底盘(莲花78,79)或风扇(布拉汉姆车队创造的BT46B型风扇底盘赛车),人为地制造真空以获取强大的吸地效应。

离地间隙(赛车底部和赛道表面之间的距离)对提高底盘和扩散器之间的联系的效用有大的帮助,赛车的底板是最重要的空气动力附加装置。底盘和赛道之间的离地间隙越小,该区域气流运动的速度也就越大,根据伯努利方程,此区域的静压力也就减小,赛车所受的气动负升力也就越大,使得赛车被强烈地“吸附”在赛道上,产生所谓的“地面效应”。地面效应曾被F1车队用来提高车速,但为防止追求更高的转弯速度而引发事故,FIA规定赛车前轮后后缘到后轮前缘部必须平直,限制了地面效应的充分应用。由此FIA规则规定赛车底盘上必须要安装一志10mm厚的木板,若此木板低于9mm,该车会被取消参赛资格。

独立的底板是安装在每辆赛车底部的中间位置(从前到后)的硬木板,通过螺栓与承载式车身下侧相连接,通过赛的对木板的磨损程度的检查可判断车辆底盘是否过低。

最早运用地面效应于赛车运动中的时间是20世纪70年代,当时考林-查普曼在莲花赛车底部安装一个空气通道,通过前面的部分相对狭窄,但在向车尾延伸的同时不断扩大。由于赛车的底部离地间隙很小,所以通道和地面形成了一个封闭管道。当赛车飞驰时,空气从车头进入,在底盘和地面之间加速,产生非常低的压强,从而产生向下的压力。

时下赛车底部的设计多趋于部分或完全覆盖——从理论上分析,对于完全由光滑底板覆盖的车底而言,离地高度越低,进入赛车底部前段的气流速度越快,在车底形成的负压区就越可观。现在F1赛车的底盘的形式多采用阶梯型,已经不会产生太多的地面效应,扩散器就变得更加重要。

当今也存在F1设计师将车底设计成从前向后升高或设置纵向凹槽的形式,地面与车底部的凹槽构成拉伐尔管,亚声速气流在该管收缩段被加速,车身底部与车身上表面的压力差增加,即增加了下压力,拉伐尔管道的横截面形状、管道截面面积沿注射的变化等都影响车身底部的流态。

为了更好地提高F1赛车的下压力,空气动力学工程师运用拉伐尔管效应在赛车底部的两侧装上整流裙,整流裙刚好接触路面以密封底部气流,使得车身降至20mm,仍然取得了很好的气动效果。

滑动裙(sliding skirts)是安装在赛车两侧散热箱侧面底部的风翼,它阻止侧面气流通过赛车底部而使赛车底部形成真空,以此将赛车吸附在赛道上并增加赛车在变产中的侧身附着力,成功地运用了地面效应。

另一辆应用地面效应创造下压力的赛车就是戈登-穆雷开发的布拉汉姆BT46B赛车。然而与前者不同的是,由于BT46使用的阿尔法罗米欧引擎宽度大,并没有足够的空间赛车采用莲花79那样的扩散器设计。穆雷决定,他要通过另外一套工作原理建立起赛车底部的真空效果——在赛车尾部增设一个巨大的风扇装置。在赛车尾部安装了一个由引擎自主驱动的风扇装置。引擎转速越快,这个装置吸引赛车底部传来的空气就越多,由此建立起上述效果。像查普曼的莲花赛车一样,BT46B也安装了侧裙用以维持车下的低压区,但并未对赛车外形造成改变。然而同年内,围场中的众多车队都谴责这一争议涉及,称其违反了“不可移动空气动力装置”调理。因此布拉汉姆车队的所有者伯尼-埃克莱斯顿决定从赛车系列中拿掉BT4 6B,避免引起其他车队的争议。国际汽联随后将这款赛车的风扇装置视作“可移动空气动力装置”,对它施行了永久性禁令。

回复

?2楼

?2013-09-10 13:19

?举报 |

?

?turismo1

?TS020

8

(10)、失速现象

在流体动力学中,失速是指翼型气动攻角增加到一定程度(达到临界值)时,翼型所产生的升力突然减小的一种状态。翼型气动迎角超过该临界值之前,翼型的升力是随迎角增加而递增的;但是迎角超过该临界值后,翼型的升力将递减。

简单来说,飞机失速意味着机翼上产生的升力突然减少,从而导致飞机的飞行高度快速降低。注意失速并不意味著引擎停止了工作或是飞机失去了前进的速度。

0°迎角绕流5°迎角绕流

通过以上三幅图,我们可以看到,当翼片的气动迎角超过某个值时,附着在翼片上的气流就

会和翼片本身分离,在区域内形成分离涡,这样一来,下压力或升力也就要相对减小。

在F1领域,失速现象被广泛地运用到减阻设计中,但是与航空领域不同的是,F1的翼片不能随意地更改气动攻角,因此,在F1领域创造失速现象的理论出发点就确立了:通过某种手段,阻碍翼片上下气流的会合。即将翼片下方的气流破坏,而最常见的手段就是吹气:通过一股突然介入的气流破坏翼片下方原有的环境,进而影响翼下气流的运动路径,创造失速。

迈凯伦在其2010年的MP4-25赛车上使用一种以失速现象为基础原理的尾翼,这款尾翼在该赛季取得了巨大的成功,并立即被法拉利、红牛、奔驰、雷诺等队效仿,成为了2010赛季的“争冠必备武器”。

上图展示了失速尾翼的工作原理,迈凯伦的工程师们将气流送到了尾翼的下部,这股额外的“不速之客”在尾翼的后方制造了涡流,这样一来便破坏了尾翼下表面的气流,使之无法与上

表面的气流汇合。失速现象便由此制造出来。这样一来尾翼所制造的下压力就可以忽略不计,赛车在直道上的阻力就被大幅度降低,这种情况下引擎就可以为为赛车提供更大限度的动力输出,赛车就可以获得显著的尾速优势,赛季初期,迈凯伦的两辆赛车在尾速方面连续几站包揽前二,更恐怖的是,MP4-25的极速比排在第二名的车队快了6-10公里,这也是为何各队纷纷效仿迈凯伦的原因了。

在此之后,运用失速现象的奔驰,红牛DDRS又使这项技术在F1领域中进入了更加成熟的新阶段。

回复

?3楼

?2013-09-10 13:21

?举报 |

?

?turismo1

?TS020

8

第二部分空气动力学在F1领域中的实际应用以及F1赛车的气动特性浅析

一辆F1赛车可以在5秒内加速到200km/h以上,极速更是高达350km/h,但是如果在弯道中轮胎没有足够的抓地力,那么引擎即使有足够强劲的动力,也没有机会充分发挥。因此过弯稳定性可以极大程度地影响一辆F1赛车的综合性能。为了提高过弯速度,除了要设置合适的悬架保证轮胎能最大限度地与路面接触之外,还利用空气提供额外的气动负升力,即气动下压力。

对于轮胎来说,施加在轮胎上的载荷有三类:车身自重、车手体重和行驶过程中空气提供的下压力。其中,气动下压力可以在不增加额外质量的前提下,提高轮胎的附着力,有效地提升赛车的过弯性能,甚至直接影响到车手的单圈成绩。在引擎研发相对稳定的框架下,对于

下压力的压榨的开发被放在了新车研发的首要位置。

F1方程式赛车的空气动力学课件.doc

F1方程式赛车的空气 动力学 班级: 学号: 姓名: 年月号 引言 空气动力学在F1 领域中扮演着重要的角色。在引擎的研发相对稳定的下,空气动力学 几乎主宰着一辆赛车的全部性能。从上纪六十年代F1 赛车第一次使用尾翼,到七十年代地 面效应的引进,再到近些年双层扩散器、废气驱动扩散器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头。

空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。 F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯 中表现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。确切地说,就是研究由路况差异而导致的气 动翼片与底盘间距的变化对赛车性能的干预强弱。 前翼 前翼是安装在车体最前端的气动附加装置,它不仅负责制造赛车前部的下压力,还影响向后流动的气流的走向。F1赛车的前翼的工作受到多种因素的影响,首先,作用在翼面上 的气流并不是理想状态的,风速,风向都时刻变化,且不确定,此外,赛车在弯道中行驶时,作用在翼面上的气流会发生横向的偏转和移动,形成不稳定的流场,这不仅降低了前翼产生的气动负升力的效率,还影响到了前翼后部的气流环境,不利于气流的正常传输。 人类在流体力学的研究过程中一直在发展,进步,在可以产生气动负升力的翼形的研究 中更是如此,先后出现了伯努利,牛顿等不同时期的翼形,这些翼形在气动性能上也不断提升,今天F1赛车所采用的主襟翼结合的翼形就是人类经过长期探索换来的智慧结晶,这种 翼形不仅成熟,而且有效。 F1赛车在高速行驶时,流过前翼所在区域的气流被前前翼分割为两部分:一部分从翼 片的上表面流过,另一部分则流过翼片的下表面,这两股气流依附在翼片上流动,最后在前

1第一章 空气动力学基础知识复习过程

1第一章空气动力学 基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组 成成分保持不变。 仅供学习与交流,如有侵权请联系网站删除谢谢1

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 仅供学习与交流,如有侵权请联系网站删除谢谢2

揭秘F1赛车科技(三):空气动力学及TC系统

【知识贴】揭秘F1赛车科技(三):空气动力学及TC系统 1楼 一、空气动力学 现代F1赛车就像是一架贴地飞行的战斗机,只不过它的“机翼”产生的力是向下的。随着技术的完善,空气动力学已经成为车队最后可 以竞争的领域之一,这也是为什么各支车队每年要花费几百万到数千 万美元在空气动力学套件的研发上,所以空气动力学可谓是赛事制胜 的法宝。 简单的空气动力模型 虽然空气动力学是非常复杂的工程,但是工程师们考虑的问题其 实只有两个:一、增加下压力,让赛车紧抓地面,这样可以以更高的 速度过弯;二、减小阻力,通过减小气流扰动产生的阻力以提高赛车 在直道的速度。因为增加下压力的同时会产生风阻,所以两个看似矛 盾方向的平衡点,正是制胜的关键。 F1车队开始研究空气动力学始于上世纪60年代末期,但是它的原理早在莱特兄弟的飞机上天之前就已经由伯努利发现了。当气流以不 同的速度通过一个机翼的上下表面,就会产生压强差,为了平衡这种 压强差,机翼就会向压强小的一面运动。我们只要让气流通过的两个 翼面的长度不一样,就可以产生速度差,进而产生我们需要的升力, 或者对于F1来说的下压力。F1就像是倒过来的机翼,现代F1赛车 可以产生3.5倍于自身重量的下压力,简单的说,就是只要达到一定 的速度,这些赛车都可以贴在天花板上开而不掉下来。 理论上说合适的设计可以产生非常高的下压力,但是过高的下压 力所带来的高速会让车手的身体无法承受,而导致一些事故的发生, 从七十年代开始,定风翼的位置、大小、角度等逐步被限制,从而限

制车速的提高。但是F1车队的工程师很快找到了产生下压力的新方法,那就是七十年代莲花车队曾在Brabham BT46B赛车上使用的地效应底盘,这种底盘就是在车后安装一个巨大的风扇,然后把车底部的空气全部抽走产生几乎真空的环境,让大气压把赛车紧紧压在地面上。这辆赛车只参加过一站比赛,它的巨大优势让国际汽联马上禁止了这种设计。 地效应底盘的莲花F1赛车 现在的F1赛车底盘主要靠车底的侧裙和后部的扩散器来达到相似的效果:底盘周围的侧裙对空气扰流可以产生气坝,气坝阻止了周围的空气进入底盘下部,而扩散器可以加速车底的空气离开,等于抽走了车底的空气而在底盘与地面之间生成了一个超低压区,由此可以产生巨大的下压力。 标注的地方就是扩散器,平整的底盘利于气流高速通过,纵贯车身的突起是底盘龙骨,也是整个赛车最坚固的部分

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

大学生方程式赛车队员培养规划

锐狮电动方程式赛车队人员培养规划 2018.5.04 一、指导思想 社会是人才需求的提出方和最终的决定者,并长期处于市场主导地位。为了缩短毕业生的磨合期,提高学生能力,高校通过修正培养目标及培养计划、提供实践平台等方式以满足社会的需求;学生为了以后能尽快适应工作岗位,可以在在校期间,通过丰富理论知识、增加实践过程来完善自己。 大学生方程式赛车项目,是学生理论与实践相结合的平台,为培养学生的专业技能和团队协作能力奠定了基础。上海工程技术大学锐狮电动方程式赛车队提供了该项目的岗位培训与实践平台,该项目要求大学生团队在一年内完成一辆方程式赛车的设计、加工、组装、调试,并通过营销报告、设计报告、成本报告全方位锻炼学生能力,同时通过团队的管理、财务的运营、车队宣传交流及商业赞助协恰提高了学生管理、财务、交流、商务等方面能力,符合上海工程技术大学面向生产一线培养优秀人才的办学宗旨和建设现代化特色大学的办学理念,适应了我国社会、经济和工程技术发展对高等工程技术人才的需求。 二、培养目标 上海工程技术大学锐狮电动方程式车队面向全校各专业,培养具有扎实的理论基础,掌握工业设计、工程制图、工业制造、电子电工、商务营销、项目管理、财务会计等理论知识和实践能力的专才和全才。培养能够担任车队运营、发展任务的战略人才。培养具有零部件设计、生产工艺、成本控制、产品试验及质量控制等工程实践能力,具有良好的团队合作精神、创新意识和创业精神,具备适应现代行业快速发展的优良专业素养,能够在企业从事管理、财务、商务、设计、制造、研发、测试、质量控制等工作的工程应用型人才。 三、培养方案 1.各组根据各组培养规划进行组内培训,车队按期举办全体培训。 2.队员以各组培养规划为纲领,结合个人分工,自学为主,车队培训为辅。 3.通过学习完成知识体系构建,形成自主学习意识,并能够将理论与实践相结合。 四、能力要求 1. 工程知识:能够利用工程基础理论和专业知识解决一般工程问题。 2. 问题分析:能够应用自然科学和工程科学的基本原理,识别、表达、并通过文献分析复杂工 程问题,并获得有效结论。 3. 设计/开发解决方案:能够设计针对优化问题的解决方案,设计满足方程式赛车需求的系统、 零部件,熟悉项目整套运营方案,并能够在设计环节中体现创新意识。 4. 研究:能够基于科学原理并采用科学方法对复杂工程问题进行研究,包括设计实验、分析与 解释数据、并通过信息综合得到合理有效的结论。 5. 使用现代工具:能够针对复杂工程问题,选择与使用恰当的技术、资源、工具和软件,包括 对复杂工程问题的预测与模拟,并能够理解其局限性。 6. 个人和团队:能够在多学科背景下的团队中承担个体、团队成员以及负责人的角色。 7. 沟通:能够就复杂工程问题与相关负责人进行有效沟通,包括撰写设计报告和成本报告、陈 述发言或回应指令。并具备一定的国际视野,能够在跨文化背景下进行沟通和交流。 8. 项目管理:理解并掌握工程管理原理与经济决策方法,并能在多学科环境中应用。 9. 文件处理:能够按照规范编写各种文件,能够与正规公司进行邮件的接洽交流。 10.自主学习:大学不是填鸭式教育,也不可能靠督促来学习,但人与人之间的差距往往就在自 主学习中拉开,所以要具有自主学习的意识,能够根据目标快速学习并应用。

空气动力学

图示前翼两侧的竖直导流板,主要目的是阻止上下表面气流由于压差而导致的互动,避免尾翼产生的气动下压力的减小。另外,竖直导流板还可延迟和消弱前翼两端后部的尾涡,从而减小尾翼的诱导阻力。 水滴在其易变形性、表面张力、重力和气动阻力作用下,在自由降落的过程中,形成气动阻力系数小至0.04的“水滴型”,被看作为在空气中运动的具有最小气动阻力系数的物体外形。企鹅形体经海水千万年的精雕细琢,虽然并不具有像水滴那样显著地对称性,甚至还有一对无法完全隐藏起来的“翅膀”,但在海水中游动时,阻力系数可小至0.03,比水滴还小。 柏林工业大学仿生学研究所的一份研究报告指出:企鹅的阻力系数比水滴小,主要是由于企鹅横向截面的形状及其沿轴向的特殊的变化规律,能让海水在其前段表面流动时得到加速,而且边界层从层流转捩为湍流边界层的位置非常朝后。而水滴表面的气流边界层的分离位置也非常朝后,但边界层从层流转捩为湍流的位置相对比较靠前。而湍流边界层消耗的能量比较大,因此水滴的阻力系数会比企鹅的大。 为什么水滴外表面的气流边界层从层流转捩为湍流的位置会相对靠前呢?因为均极易变形的空气与水的粘附非常紧密,而企鹅的外表面有层薄薄的油脂,这会减小海水与企鹅外表面之间的摩擦,从而延迟海水边界层从层流转捩为湍流的部位,使得湍流边界层的长度占总的边界层的比例相对比较小。 将废气引入气流扩散器,利于提高其效能,也利于减小气动阻力,但会因发动机转速的变化而会导致车后部“抽搐”,增加发生过度转向的风险。 发动机舱盖前低后高,从其上表面流过的气流的流速会比车速快,压力比较小;从进气格栅进入发动舱的气流,不易从舱内流出,流速比车速低,压力比较大。开设了那个“散热口”,由于舱内气流压力比舱外大,舱内气流就会从发动机舱内快速流出,舱内压力也会因此变小。这将利于减小前轮的气动升力,同时由于舱内迎风表面承受的气流压力有所减小,这也利于减小车的气动阻力。 四驱越野车车轮原地打滑,新手长时间深踩油门,也没开出来。期间挂抵挡,齿轮高速运转,车不动,没有气流吹过变速箱、分动器和差速器壳体,壳体内的油液得不到有效散热,因此当车救援出来后,专家建议应更换这些(品质变差的)油液。 德国一份研究报告指出,把轿车气动阻力系数从0.29降低到0.2,省油的效果,相当于将车的重量减轻100kg,而且成本比较低。但上述结论,是针对高速行驶的情形,而且车速越高,“减重”省油的效果更明显。低速行驶时,特别是像北京上下班高峰时段,减轻车重的省油效果则更明显,而低气动阻力系数的省油效果就不明显。这也就是很多品牌车都愿意花费很高成本,努力减轻车重的原因之一。

走近F1——空气动力学基础

空气动力学 与公路上普通汽车相比,现代一级方程式赛车和喷气式战斗机有更多的相似之处。空气动力学是赛车运动中致胜的关键,每年车队们都会投入几千万美元用于这方面的研发。 气动设计师有两个首要关注点:第一,制造下压力使赛车轮胎更贴近赛道地面,同时提升回旋力;第二,将由空气涡流引起、使车速减慢的空气阻力降低至最小。 20世纪60年代,一些车队开始尝试现在我们熟知的车侧翼实验。赛车侧翼与飞机机翼的运转法则完全相同,只不过方向刚好相反。根据伯努利定律,飞机所在等高线的飞行距离不同,机翼上下的气流速度也不同,导致压强不同。因为上下压力要保持平衡,机翼就会向压力小的方向运动。飞机就是利用机翼起飞,赛车用它的侧翼产生下压力。正因为空气动力的下压力存在,一部现代一级方程式赛车在侧面可以产生3.5g的回旋力,这个大小是其车身重量的3.5倍。即为,理论上讲,这个压力可以让赛车高速时挨着地面行驶。 早期试验中使用的可移动的车翼和单点悬挂造成过几起极为严重的事故,因此1970年赛季引入了车翼大小和位置的限制规定。随着时间推移,这些规定直到今天仍然大面积适用。

20世纪70年代中期,人们发现了“地面效应”下压力。莲花公司的工程师发现,通过在赛车的底面安装巨大的车翼可以使车子像翅膀一样运动同时又紧贴地面。源于这一想法最典型的例子是戈登?墨里设计的布拉汉姆BT46B,这部车加装冷却风扇抽取车身裙角处的空气以增加巨大的下压力。在其它车队技术革新后,这部车仅在赛场上出现一次之后便销声匿迹了。根据“地面效应”的成效,规则也跟着不断改变。起先,禁止在车身裙角处控制低压区域。之后,对阶形地板提出要求标准。

空气动力学的公式SAE

大学生方程式赛车的空气动力学:初步设计和性能预测 斯科特Wordley和杰夫·桑德斯 莫纳什风洞,机械工程 莫纳什大学 版权所有?2005 SAE国际 摘要 一个空气动力学套件的初始设计描述了SAE方程式赛车。式SAE审查关于空气动力学的规则是用来开发对前、后规范的实际参数倒置的机翼,―翅膀‖。这种翼包为了在产生最大的下压力规定的可接受的范围内增加阻力和减少最高速度。这些翅膀上公式的净效应SAE汽车的性能在动态事件之后预测。一个配套文件[ 1 ]详细介绍,CFD,风洞和赛道上的测试这的空气动力学套件的开发。 简介 SAE方程式是一个大学生设计竞赛,学生设计组,建立自己的开放的比赛轮赛车。自1981开始在美国[ 2 ],这个公式已经蔓延到欧洲,亚洲,南美国和澳大利亚,几百国际团队,每年都有许多赛车比赛举行的世界。不同于传统的赛车比赛,球队获得八分不同的事件,和最高的球队累积总获胜。有三的静态事件(成本,演示,设计)在球队是判断他们设计的理由,介绍和成本技术,五动态事件(加速,刹车盘,越野,燃油经济性,耐久性)测试的汽车和赛道上的[ 3 ]学生驾驶性能。这个加权分系统决定,成功是一种仔细平衡赛车的各个方面的事过程设计和开发。 SAE方程式:设计收敛? 不同于其他形式的长期稳定的比赛规则,大学生方程式赛车已经收敛于一个单一的,好的定义,设计模式。有几种理论这是为什么:规则的权重可以更仔细通过对竞争对手在其他车辆性能的一个方面的性能提升地区。例如涡轮增压器可用于在潜在费用增加发动机功率燃油经济性和成本的评分贫困和知识信息管理保持团队内由于高翻身成员可以破坏长期设计验证周期,造成重复错误经常回广场的人。大多数的团队在一个只有竞争竞争每年,意味着实际的时间在驱动开发这些车是有限的,与周的顺序。缺乏定期比赛和与其他球队的比较因此限制了接触,并通过,最佳实践。竞争仍然集中在学习,这样的团队将继续技术感兴趣的人以及那些看到提供一个整体的性能优势。过去的SAE方程式比赛的结果[ 4 ]分析表明,迄今为止,最简单的方法往往是最成功的十强,绝大多数完成团队的运行空间钢框架的汽车自然吸气发动机600cc。虽然这是假设这种趋势还会持续一段时间,四在设计理念的重大转变,已经出现在最近的年。碳纤维硬壳式底盘使用的增加,为球队尽力降低底盘重量同时保持或提高抗扭刚度。宽传播对涡轮增压也浮出水面随着康奈尔的不断成功,伍伦贡大学。新一代单缸摩托车的发动机提供的性能增益在相反的方向,像RMIT和代尔夫特理工队使用减小的重量和燃料使用的大学抵消减少的功率。几支球队,包括在阿灵顿,密苏里罗拉德克萨斯大学,加州—聚和莫纳什都使用了机翼和其它气动装置产生压力的提高过弯速度的主要目的。一些球队采用一个以上的这些方法。主要的设计变化以上,性能气动设备可能是最困难的学生小组预测和量化。像这样的,相当多的争论仍在继续的SAE方程式社区的利益(或其他)的使用倒翼型的―翅膀‖,这种竞争。莫纳什大学队(墨尔本,澳大利亚)用他们的SAE方程式空气动力装置汽车运行近四年来。这个团队也在有定期的访问有些独特的位置一个全面的汽车风洞空气动力学测试。本文中,第二由同一作者【1】,总结了四年之久的气动设计和发展过程中所进行的这个团队,和提出了在公共领域的第一个数据气动性能的SAE方程式赛车。这是希望的信息和方法,包含这里将作为一个指导和基准其他球队考虑气动使用在SAE方程式装置。SAE方程式规则的思考与大多数其他赛车类相比,目前的SAE方程式规则[ 2 ]提供了一些独特的气动使用的机遇和挑战设备。这些规则将简要探讨在这里,从那些对通用汽车的设计和性能,并移动到更多的有关对气动助手的使用。广阔的这些规则对设计的影响一个SAE方程式赛车性能也将讨论了在适当的地方越野/耐力轨道设计而轨道布局为滑锅加速事件是固定的几何形状,参加比赛/耐力轨道设计每年都在变化按规则,个人描述参数通过不同的比赛场地的限制全世界。

空气动力学套件的设计要点

空气动力学套件的设计要点 在近几年的FASE的比赛中,空气动力学套件在国内车队中得到越来越多的应用,从我个人的观察来看,14年中国赛使用空气动力学套件的车队至少达到70%以上。那么,空气动力学套件的设计要考虑那几点呢?我就以我两年在HRT车队做空套的经验,简单地和大家交流一下。 空气动力学套件的设计重点应放在三个方面:升阻比、导流、风压中心。 首先从升阻比来讲吧,我把这一部分分为三个方面来讲,如何选择翼型,如何进行翼型的组合,以及整车下压力及阻力的取舍。 第一点,如何选择翼型。这对一个刚开始做空套的车队来说花较多的时间选择一个好的翼型是非常有必要的。那么如何才能算是一个好的翼型呢?第一,好的翼型需要一个较大的升阻比;第二,要保证翼型在大攻角下不失速;第三,翼型要有足够的厚度,以保证可加工性及刚度。 我们车队目前所用的翼型是13年选的,我们使用的翼型是NACA四位数字翼型,我们从3系列到9系列中选出大概10几种翼型,分析他们在不同攻角下的下压力、阻力及升阻比。但如果只关注这些数据就大错特错了,最重要的是找到从3系列到9系列的这几个数据的变化趋势。通过变化趋势,分析变化趋势的原因,并进而指导下一组更小范围的对比实验。总之选翼型是个重复再重复的过程,但选出了一个好的翼型之后,会对以后的设计来了极大的方便,也可以一直沿用下去。 第二点,如何进行翼型的组合。众所周知,主翼加襟翼的组合式翼型可以保证翼型在大攻角下不失速,极大地提高升力系数。但是,主翼和襟翼的不同相对位置自然也会有不同的升阻比,所以,主翼与襟翼的相对位置的确定又成为了一个繁琐但不得不进行的工作。翼型组合的确定的最大问题是要找到变量是什么。如图所示,我们车队使用的是三片式组合翼型,如果从翼型的侧面看的话,三片翼都有极大的活动空间。因此,三片翼是位置应该怎么调,调的梯度是什么,这一系列的问题都需要考虑。影响翼型的升阻比的一个重要因素就是总攻角,但同一总攻角下,不同翼型的组合又会带来不同的升阻比,而调节翼型相对位置的时候又很难保证总攻角不变。类似这样棘手的问题,我就不多说了。我选攻角的原则就是保证变量统一,在大梯度下做多组对比实验,找清规律后,再做小梯度实验。15赛季我们主要研究了襟翼前缘与主翼后缘形成的流管长度和宽度对总体升阻比的影响。

F1方程式赛车的空气动力学资料

F1方程式赛车的空气 动力学

F1方程式赛车的空气 动力学 班级: 学号: 姓名: 年月号 引言 空气动力学在F1领域中扮演着重要的角色。在引擎的研发相对稳定的下,空气动力学几乎主宰着一辆赛车的全部性能。从上纪六十年代F1赛车第一次使用尾翼,到七十年代地面效应的引进,再到近些年双层扩散器、废气驱动扩散

器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头。 空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。 F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯中表现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。确切地说,就是研究由路况差异而导致的气动翼片与底盘间距的变化对赛车性能的干预强弱。 前翼 前翼是安装在车体最前端的气动附加装置,它不仅负责制造赛车前部的下压力,还影响向后流动的气流的走向。F1赛车的前翼的工作受到多种因素的影响,首先,作用在翼面上的气流并不是理想状态的,风速,风向都时刻变化,且不确定,此外,赛车在弯道中行驶时,作用在翼面上的气流会发生横向的偏转和移动,形成不稳定的流场,这不仅降低了前翼产生的气动负升力的效率,还影响到了前翼后部的气流环境,不利于气流的正常传输。 人类在流体力学的研究过程中一直在发展,进步,在可以产生气动负升力的翼形的研究中更是如此,先后出现了伯努利,牛顿等不同时期的翼形,这些翼形在气动性能上也不断提升,今天F1赛车所采用的主襟翼结合的翼形就是人类经过长期探索换来的智慧结晶,这种翼形不仅成熟,而且有效。

“香蕉球”空气动力学原理

编号2010212347 毕业论文 (2015届本科) 题目:“香蕉球”的空气动力学原理 学院:物理与机电工程学院_________ 专业: _______________ 物理学_______________ 作者姓名: ____________ 李根旺_______________ 指导教师:王飞职称: 助教 完成日期:2015 年_5 ____________ 月30 日 二O —五年五月

“香蕉球”的空气动力学原理 (1) 摘要 (1) Abstract (1) 1绪论 (2) 1.1课题研究的意义 (2) 1.2目前“香蕉球”原理研究状况 (2) 1.3研究的主要内容及目的 (2) 2马格努斯效应 (2) 2.1马格努斯效应 (2) 2.2马格努斯效应产生的必要条件分析 (3) 2.2.1必要条件一 (3) 2.2.2 必要条件二 (3) 2.2.3 必要条件三 (3) 2.2.4必要条件四 (3) 2.3马格努斯效应在球类运动中的应用 (3) 3 “香蕉球”的运动分析 (3) 4 CFD 和Flue nt 介绍 (5) 4.1 CFD 介绍 (5) 4.2 Flue nt 介绍 (6) 4.2.1FLUENT 的组成 (7) 4.2.2FLUENT 软件优点 (8) 5 “香蕉球”流场数值模拟 (8) 5.1足球的模型与网格划分 (8) 5.1.1 足球几何模型 (8) 5.1.2网格的生成 (9) 5.2边界条件处理 (9) 6计算模拟结果及其分析 (10) 7结论 (12) 参考文献 (14) 致谢 (15)

河西学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文(设计)作者签名: 二O—五年五月三十

大学生方程式赛车的空气动力学套件的建模与流场分析

大学生方程式赛车的空气动力学套件的建模与流场分析 摘要:汽车的空气动力学特性被越来越多的人所重视,对汽车的操控性与稳定性都产生影响。该文利用Catia 软件对设计的空气动力学套件进行三维模型的建立,并与赛车装配,利用有限元分析软件ANSYS进行流场分析,得出赛车的流场特性,为其改进设计提供依据。空气动力学在赛车领域的应用是非常广泛的,我们将此应用于大学生方程式赛车上面,给赛车加装空气动力学套件,使其的操纵性能得以提升。 关键词:Catia ANSYS 流场分析 中图分类号:U461.1 文献标识码:A 文章编号:1672-3791(2015)03(a)-0025-01 1 赛车空气动力学研究意义 在赛车运动中运用负升力原理而改善赛车性能措施被证明是极其有效的,气动负升力在不增加赛车质量的情况下改善了轮胎与路面的附着情况,提高了赛车在平直赛道高速行驶时的动力性及紧急刹车时的制动性能,也改善了赛车的操纵稳定性能[1]。该文中空气动力学套件由前翼、尾翼、底部扩散器组成,通过对加装空气动力学套件和不加装空气动力学套件的三维模型分别进行流场分析,得出赛车的流场特

性。 2 赛车空气动力学套件的三维建模 中国大学生方程式赛车的比赛中,赛车由在校学生按照赛事规则和赛事标准,进行独立设计制造,赛事组委会因考虑赛事安全,在比赛中会在赛道上人为设置一些绕桩区,人为限制赛车在赛道中的最高车速,并且赛道以弯道为主,提升过弯速度与加速性能变得尤为重要。考虑到这些原因,空气动力学套件设计的目标就是在较低速度下20 m/s的情况下获得较大的下压力,并尽可能减少空气阻力。 在赛车的行驶过程中,由前翼、尾翼和底部扩散器产生下压力,其中前翼和尾翼产生下压力的来源是升力翼片,升力翼片的不同结构会影响不同的空气动力学性能,而底部扩散器的负升力来源是利用地面效应。鉴于负升力翼片结构在航天发展中已经较为成熟,并且NACA翼型库(National Advisory Committee for Aeronautics,美国国家航空咨询委员会)中有较为全面的翼型结构,在建模中从NACA翼型库选取低速翼型,在Catia中建立多组三维模型,并且在Ansys 中进行流场分析,经过对比分析结果选取最终翼片规格。 在前翼设计中,由于前翼是气流首先到达的地方,它的结构影响着气流在赛车其他结构处的流动,并且要求前翼能使气流尽量绕开前轮,减少阻力。结合以上因素,选取两片半的设计形式,使第三层襟翼对气流进行引导,避免对前轮

大学生方程式赛车车身外流场ANSYS分析报告

大学生方程式赛车 车身外流场ANSYS分析报告 指导老师:詹振飞 小组序号:第五小组 小组成员:刘宇航黄志宇 谢智龙陈治安 重庆大学方程式赛车创新实践班 二〇一六年十月

摘要 大学生方程式赛车起源于国外,近几年才在国内兴起并得以迅速发展,成为各个高校研发实力的侧影,因此得到了各个高校的重视,赛车外形设计更是赛车很重要的一部分,它不仅是赛车的外壳,更可以利用空气动力学来为赛车减少阻力,提高赛车的性能。因此外形设计时赛车总体设计中很重要的一部分,通过有限元法对赛车外壳进行风洞模拟测试对赛车外形的改进及优化分析有重要的意义。 利用ANSYS中的fluent进行有限元模拟风洞试验试验,能够准确反映汽车行驶状态时的空气动力学特性数据,其研究对象主要有汽车空气动力特性和汽车各部位的流场。ANSYS在此过程中起到极其重要的作用。 对于一辆优秀的赛车而言,它的性能不仅取决于优秀的结构设计和强劲的发动机性能,还在一定程度上取决于它的外形。赛车的外形不仅能够影响赛车的美观度,更重要的是能够影响车身所受的阻力。因此,如果赛车有一个好的外观设计,利用好空气动力学的原理,则能够在一定程度上减小车身的阻力,从而提高整车的性能。 本小组利用CATIA等建模软件建立了适当的赛车外观模型。在此基础上,利用ANSYS中的Fluent进行有限元的模拟风洞试验,并得出了一定的结论,整理成报告。 关键字:CATIA三维设计,车身外流场,ANSYS,风洞模拟,有限元

1.利用三维建模软件建立车身模型 在2016年发布的大赛规则限定的范围内,本小组利用CATIA等相关的建模软件建立了合适的赛车车身模型,以用于后续分析。 2.2016年大赛关于车身的部分规则要求 1)赛车的轴距至少为 1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧 两车轮的接地面中心点之间的距离。 2)赛车较小的轮距(前轮或后轮)必须不小于较大轮距的 75%。 3)在正常乘坐并系好安全带的情况下,车的尺寸需适合男性第 95 百分位模板 的乘坐尺寸相关要求。 3.车身模型方案 赛车轴距越大,车身内部纵向空间大。但相应的车身越大,相应的质量越大。出于轻量化的原则,且要求赛车的灵活性及降低成本。综合考虑,车身外形建模轴距定为1620mm。 赛车轮距越大,赛车横向稳定性越好,车内部横向空间更大。但同样轮距大,质量大,并影响转弯直径。此外设计前轮距大于后轮距,使赛车具有更好地转向能力。于是综合考虑,前轮距定为1240mm,后轮距为1190mm。 4.小组作品

汽车空气动力学仿真

汽车空气动力学仿真
Vehicle Aerodynamics Simulation
张扬军
Zhang Yang-Jun
清华大学汽车工程系应用空气动力学组 汽车安全与节能国家重点实验室
Applied Aerodynamics Group, Dept of Auto Eng., Tsinghua Univ. State Key Lab of Automotive Safety and Energy

Vehicle Aerodynamics Simulation
汽车空气动力学仿真
1 2 3 4 5 6
汽车空气动力学概述 汽车空气动力学仿真特点 汽车空气动力学仿真难点 汽车空气动力学仿真平台 仿真平台(VASS)应用 总结与展望
1 2 3 4 5 6
Introduction to Road Vehicle Aerodynamics Some Salient Features of Road Vehicle Flow Simulation Main Difficulties of Road Vehicle Flow Simulation Vehicle Aerodynamics Simulation System (VASS) VASS Applications Conclusions and Open Features

1 汽车空气动力学概述
1.1 空气动力学对汽车性能的影响 1.2 汽车空气动力学性能 1.3 汽车空气动力学特点 1.4 空气动力学研究方法
Introduction to Vehicle Aerodynamics
1.1 1.2 1.3 1.4
Vehicle Attributes Affected by Aerodynamics Vehicle Aerodynamics Characteristics Peculiarities of Road Vehicle Aerodynamics Methods for Vehicle Aerodynamic

FSC赛车空气动力学套件的建模与流场分析

Equipment Manufacturing Technology No.06,2018 大学生方程式赛车(FSC )是由在校大学生根据大赛相关规则,自主设计的一辆单座赛车。赛事的举办丰富了学生的理论知识,锻炼了学生的工程实践能力,提高了学生创新意识和团队协作能力。安装空气动力学套件,目的是在赛车高速行驶 时,能够造成一定的下压力,用以消除大部分上升力的影响,并能够有效地降低风阻系数,增强操纵稳定性,使得赛车在高速运动中保持良好的性能。 1空气动力学套件翼型特性及参数分析 在设计中所用的翼型是从伊利诺伊州大学翼型库选的,翼型是经过分析它们在不同攻角下的下压 力、阻力及升阻比后筛选的,但不应该仅仅只关注这些数据,最重要的是找到这几个数据的变化趋势, 通过变化趋势,分析其变化原因,并进而指导下一组更小范围的对比实验。选翼型是个重复再重复的过程,选出了一个好的翼型之后,会对后续设计带来极大 的便利,也可以一直沿用下去。主翼加襟翼的组合式翼型可以保证翼型在大攻角下不失速,极大地提高升力系数。但是升阻比是根据主翼和襟翼相对位置的改变而发生变化,因此主翼和襟翼的位置必须要先确定好。翼型组合的确定关键是要找到变量。本次选择的是两式组合翼型, 从翼型的侧面看,两片翼都有极大的活动空间。总攻角是影响翼型升阻比的另一个重要的因素,但是由于升阻比会随着翼型组合的变化而变化,所以很难保证翼型变动的同时总攻角不变。因此, 选择攻角的原则就是保证变量统一,在大梯度下做多组对比实验, 找到规律后,再做小梯度实验。升阻比对于整车来说越大越好,在其他变量不变的情况下以阻力系数和 升力系数为变量, 如图1所示,用不同的颜色色区分圈速区间,如果升阻比范围已经基本确定,权衡条件就需要适当改变。如果赛车的升力系数为2.45,阻力系数是1.1,则升阻比为2.23,其在图中对应的是下面圈位置;如果赛车的升力系数为3.3,阻力系数是1.6,则升阻比为2.19,其在图中对应的是上面圈位 置。实际的选择需要与动力、 轮胎、底盘进行合理的匹配,直接从圈速上体现出来。总之, 下压力和阻力的取舍最终取决于圈速,在设计阶段可以借助圈速仿真来指导升力阻力的趋势选择,而在实车测试阶段也需要做大量的调试工作。 针对FSC 赛车而言,它的平均速度在20m/s 左右,在这种较低速度下较容易实现导流措施。在惯性下高速气流会增强,因为气流有粘性,所以墙壁走势的变化会使靠近壁面的气流贴合着墙壁流动并随之 改变其流向,一般简化称为气流贴壁效应,如图2所示。 FSC 赛车空气动力学套件的建模与流场分析 郑燕丽,张兴,顾迪,巴炳权, 倪彰(江苏理工学院汽车与交通工程学院, 江苏常州213000)摘要:针对FSC 赛车车身,用整体优化的方法对空气动力学套件进行CFD 流场仿真,分析加装前翼、尾翼、扩散器等对赛车性能提升效果,仿真与分析结果表明,设计的空气动力学套件对赛车高速行驶及操纵稳定性等方面均有明显提升。关键词:FSC 赛车;空气动力学套件;CFD 仿真;操纵稳定性中图分类号:TP319 文献标识码:A 文章编号:1672-545X (2018)06-0236-04 收稿日期:2018-03-11 作者简介:郑燕丽(1997-),女,浙江金华人,本科,研究方向:流体分析;张兴(1996-),男,江苏扬州人,本科,学生, 研究方向:流体分析。 图1升阻比示意图 1.71.61.41.31.2 1.1 7983 82 81 80Downforce Coefficient[-] 236

空气动力学

空气动力学 崔尔杰* (中国航天科技集团第701研究所) 本文简要回顾空气动力学发展的历史及其在航空航天飞行器研制中的作用,对现代空气动力学新的发展趋势和新一代航天飞行器研制中可能遇到的关键气动力问题进行探讨和分析,并对今后发展提出看法。 一、空气动力学与航空航天飞行器发展 空气动力学是研究空气和其他气体的运动规律以及运动物体与空气相互作用的科学,它是航空航天最重要的科学技术基础之一。 1.空气动力学推动20世纪航空航天事业的发展 1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.01m2的小型风洞。正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。 20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。 1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音速空气动力学和空气热力学的研究。航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。航空方面的研究重点则放在了发展高性能作战飞机、超音速客机、垂直短距起落飞机和变后掠翼飞机。这一时期,空气动力研究方面的另一项重要成就是“超临界机殿”新概念的提出,它可以显著提高机翼的临界马赫数。20世纪70年代后,脱体涡流型和非线性涡升力的发现和利用,是空气动力学的又一重要成果。它直接导致了第三代高机动性战斗机的产生,如美国的F-15、F-16,苏联苏-27、米格-29和法国的“幻影2000”。

基于FSEC方程式赛车的整车压力分布测定及尾翼优化设计

基于FSEC方程式赛车的尾翼优化设计及整车压力分布测定1.实验目标: (1)通过CFD模拟不同尾翼在流场的性能进行对比优化。 (2)通过Fluent进行整车计算,得到压力云图与迹线图进行分析。 2.实验原理: FSEC是中国大学生电动方程式大赛的简称,是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛;各参赛车队按照赛事规则和赛车制造标准,在一年的时间内自行设计和制造出一辆在加速、制动、操纵性等方面具有优异表现的小型单人座休闲赛车。本实验基于2017年上海工程技术大学锐狮电动方程式赛车,在攻角优化完成的情况下对于其尾翼进行对比再优化和整车流体分析。 一般而言,方程式赛车的气动阻力系数在0.7-1.0之间,是目前乘用车的二至四倍。其中一方面因为赛规限制(车轮外露),另一方面是因为方程式赛车的下压力通常比阻力重要。因此在方程式赛车空气动力学方面则需要良好的处理压力与阻力的关系和气流的流动方向,进而使赛车更有竞争力。通常在方程式赛车行驶过程中,气流最先达到前翼,前翼控制着空气在赛车其余部位的流动,同时起到提供下压力和减小前轮气动阻力及引流的的作用;侧翼则控制着侧车身气流方向,使整车在结构上更加紧凑,同时减小了后轮的气动阻力,增加了重心处的下压力,使赛车操纵更加平稳;尾翼为赛车后部提供下压力,它占全部下压力的20%-25%。 相对于前翼与侧翼的各种要求,尾翼的用途只有一个,即在尽可能减小气动阻力的情况下提供下压力。对于尾翼来说,想要获得较高气动压力的途径有:增加升力翼表面积;增加升力翼弧度;通过翼型开缝延迟气流分离。对于方程式赛车,通常采用组合翼的形式。通过翼型叠加能够获得更大的翼型攻角,升力系数也随之增加,这是因为气流经过两翼间缝隙时,通过前方翼型尾部的导流作用,使气流方向能够更加贴合后方翼型,因此后方翼型可以获得比前方翼型更大的攻角而不产生气流分离。 在尾翼设计中除了攻角的确定,其次便是翼片的组合与端板的设计;本实验在攻角确定的基础上,分别在CATIA中完成三翼板、双翼板、百叶三翼板的建模,对比不同翼数的性能比与同翼数下是否添加百叶结构的性能比,得到尾翼最终设计方案。 由于赛车车速一般在100km/h,空气密度变化不大,可以近似看成是常数,因此尾翼周围空气为不可压缩流体,根据雷诺理论,流动属于湍流。因而赛车空气动力学套件气动力的模拟属于求解湍流流动问题,采用的控制方程为三维不可压缩的雷诺平均连续方程和雷诺平均N-S方程,即 其中表示略去平均符号的雷诺平均速度分量,为密度,p为压强,为 脉动速度,为应力张量分量。[

相关文档
相关文档 最新文档