文档库 最新最全的文档下载
当前位置:文档库 › 放射性焚烧灰稳定固化技术进展

放射性焚烧灰稳定固化技术进展

放射性焚烧灰稳定固化技术进展
放射性焚烧灰稳定固化技术进展

我国垃圾焚烧发电飞灰处理现状及技术选择 (1)

我国垃圾焚烧发电飞灰处理现状及技术选择 张 海 元 【中国光大国际环保能源(济南)有限公司,济南 251402】 摘 要:分析了我国城市生活垃圾焚烧飞灰的现状,在分析了中国城市生活垃圾焚烧飞灰特性的基础上,提出了不同的飞灰处理技术,对发展适合我国城市生活垃圾焚烧飞灰处理技术的选用提出了建议。 关键词:城市生活垃圾焚烧;焚烧飞灰;处理技术;建议 Our country garbage incineration power fly ash processing status and technical options Zhang hai yuan 【China everbright international environmental protection energy (jinan) Co., LTD, jinan 251402】 Pick to: Analysis of our city life of MSW fly ash, on the analysis of the present situation of Chinese urban life of MSW fly ash characteristics, the author puts forward different fly ash processing technology, suitable to China's development of city life of MSW fly ash the selection of treatment technology are proposed. Keywords: City life waste incineration; The fly ash burned; Processing technology; suggest 一、概述:垃圾焚烧飞灰 垃圾焚烧发电技术作为垃圾减量化处理的有效方法之一,是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收可供热或发电。烟气净化后排出,少量剩余残渣排出填埋或作其他用途。焚烧处理技术特点是处理量大、减容性好、无害化彻底,且有热能回收作用。因此,对生活垃圾实行焚烧处理是无害化、减量化和资源化的有效处理方式。世界各国普遍采用这种垃圾处理技术。随着我国垃圾焚烧处理的迅猛发展,焚烧飞灰产量巨大,开发焚烧飞灰处理技术将成为近年来环保领域研究的热点之一。但由于垃圾焚烧飞灰中含有较高浓度的二恶英和重金属,属于危险固体废弃物,直接填埋会对周边环境造成严重二次污染,因此,需要对垃圾焚烧飞灰进行无害化处理处置。 目前飞灰处理处置方法主要有:固化/稳定化,包括水泥固化、沥青固化、熔融固化、化学药剂固化/稳定化,固化体达到浸出标准后填埋或资源化利用;将重金属提

放射性同位素C

放射性同位素C 自然界中碳元素有三种同位素,即稳定同位素12C、13C 和放射性同位素14C,14C的半衰期为5730年,14C的应用主要有两个方面:一是在考古学中测定生物死亡年代,即放射性测年法;二是以14C标记化合物为示踪剂,探索化学和生命科学中的微观运动。一、14C测年法自然界中的14C 是宇宙射线与大气中的氮通过核反应产生的。碳-14不仅存在于大气中,随着生物体的吸收代谢,经过食物链进入活的动物或人体等一切生物体中。由于碳-14一面在生成,一面又以一定的速率在衰变,致使碳-14在自然界中(包括一切生物体内)的含量与稳定同位素碳-12的含量的相对比值基本保持不变。当生物体死亡后,新陈代谢停止,由于碳-14的不断衰变减少,因此体内碳-14和碳-12含量的相对比值相应不断减少。通过对生物体出土化石中碳-14和碳-12含量的测定,就可以准确算出生物体死亡(即生存)的年代。例如某一生物体出土化石,经测定含碳量为M克(或碳-12的质量),按自然界碳的各种同位素含量的相对比值可计算出,生物体活着时,体内碳-14的质量应为 m克。但实际测得体内碳-14的质量内只有m克的八分之一,根据半衰期可知生物死亡已有了3个5730年了,即已死亡了一万七千二百九十年了。美国放射化学家W.F.利比因发明了放射性测年代的方法,为考古学做出了杰出贡献而荣获1960年诺贝

尔化学奖。由于碳-14含量极低,而且半衰期很长,所以用碳-14只能准确测出5~6万年以内的出土文物,对于年代更久远的出土文物,如生活在五十万年以前的周口店北京猿人,利用碳-14测年法是无法测定出来的。二、碳-14标记化合物的应用碳-14标记化合物是指用放射性14C取代化合物中它的稳定同位素碳-12,并以碳-14作为标记的放射性标记化合物。它与未标记的相应化合物具有相同的化学与生物学性质,不同的只是它们带有放射性,可以利用放射性探测技术来追踪。自 20世纪 40年代,就开始了碳-14标记化合物的研制、生产和应用。由于碳是构成有机物三大重要元素之一,碳-14半衰期长,β期线能量较低,空气中最大射程 22cm,属于低毒核素,所以碳-14标记化合物产品应用范围广。至80年代,国际上以商品形式出售的碳-14标记化合物,包括了氨基酸、多肽、蛋白质、糖类、核酸类、类脂类、类固醇类及医学研究用的神经药物、受体、维生素和其他药物等,品种已达近千种,约占所有放射性标记化合物的一半。以碳-14为主的标记化合物在医学上还广泛用于体内、体外的诊断和病理研究。用于体外诊断的竞争放射性分析是本世纪60年代发展起来的微量分析技术。应用这种技术只要取很少量的体液(血液或尿液)在化验室分析后,即可进行疾病诊断。由于竞争放射性分析体外诊断的特异性强,灵敏度高,准确性和精密性好,许多疾病就可能在早期发现,为有

垃圾焚烧飞灰固化处理设备

垃圾焚烧飞灰固化处理设备 产品介绍 国家环保总局颁发的《危险废物污染防治政策》中,将生活垃圾焚烧飞灰列为“不宜用危险废物的通用方法进行管理和处理,而需特别注意的危险废物”并要求生活垃圾焚烧的飞灰必须单独收集,焚烧飞灰在产生地必须进行必要的固化和稳定化处理后方可运输,进行安全填埋处置。 目前尚可实行的稳定化处理有以下三种方法: 1、水泥固化技术:水泥固化是将飞灰、水泥按一定比例混合加入适量的水,使之固化的一种方法,其固化机理是在水泥水化的过程中,通过吸附、化学吸收、沉降、离子交换、钝化等多种方式,重金属最终以氢氧化物或络合物的形式停留在水泥固化形成的水化硅酸盐胶体C-S-H表面,同时水泥的加入也为重金属提供了碱性环境,抑制了飞灰中重金属的渗滤。水泥固化飞灰技术是一种比较成熟的危险废弃物处理技术,在经济性和可操作方面具有明显的优势,但水泥的用量高,导致固化体增容率高,随着时间推移,固化体部分有毒物质可能会逐渐溶出,对环境存在长期的、潜在的威胁。 2、熔融固化技术:熔融固化技术主要是将飞灰和细小的玻璃质混合,经混合造粒成型后,在1000-1400℃高温下熔融,通常30min左右(熔融时间视飞灰性质的不同而定),待飞灰的物理和化学状态改变后,降温使其固化,形成玻璃固化体,借助玻璃体的致密结晶结构,确保重金属的稳定。熔融固化技术对残渣的减容率高,固化效果好,但是致命缺点是部分有毒物质会挥发出来,必须采取尾气处理措施。所以其系统较复杂,运行成本高。 3、化学药剂+水泥稳定技术:将飞灰、水泥按一定比例混合加入适量的化学药剂进行固化稳定,常用的稳定剂为无机物和有机物。无机物主要有Na2、S及磷酸类药剂,有机药剂主要是螯合高分子物质,将飞灰与带有络合基的不溶性药剂进行混合,加上水泥凝固。飞灰中易溶性金属(Cd、Pb等)同药剂中的络合基反应后,形成稳定性络合物,进而固定在飞灰和水泥中,以此达到降低飞灰中有害成分浸出的可能性。用上述这些药剂处理飞灰,一般都可达到较好的效果,此方法具有处理过程简单,设备投资少等优点。 综上所述,采用水泥固化+化学药剂稳定化组合工艺处理,焚烧飞灰是目前最切实可行的一种有效方法,我公司在此基础上经过多年潜心实验与实践,成功研制出了以下处理工艺方案,所做出的产品浸出液化验均符合国家排放标准。 4,固化稳定化产物的污染物毒性浸出浓度应满足《生活垃圾填埋污染控制标准》(GB16889-2008)的要求:毒性浸出试验方法依照HJ/T 300,浸出液中危害成分浓度低于表1 规定的限值。 表1 浸出液污染物浓度限值

垃圾焚烧飞灰污染

垃圾焚烧飞灰污染 随着社会经济的发展,城市化过程加剧,我国很多大中城市遭遇“垃圾围城”的困扰。垃圾处理有3种方式:填埋、焚烧和堆肥,目前我国的垃圾处理采用以填埋为主,堆肥和焚烧为辅的措施,这将占用大量的土地资源。随着地价的上升,城市环境要求的不断提高,垃圾填埋变得不再经济和安全,越来越多的城市开始考虑垃圾焚烧处理。“焚烧处理可以使城市垃圾的体积减少80—90%,而且其产生的废渣可作资源化利用。”垃圾焚烧发电处理技术具有处理速度快、占地面积小、减量化和无害化效率高,并可回收能源等优点,在一些经济水平较高、垃圾热值高、土地资源有限的城市,将得到推广应用。 然而,垃圾焚烧发电厂的飞灰中含有大量的重金属和二噁英,被称为双料污染物。研究发现,飞灰中重金属含量约占1%-9%,各种重金属的浸出水平达到危险废物的鉴别标准,可能对环境产生严重毒害作用,因此,世界各国都将飞灰列为危险废物,在填埋前必须进行处理、处置。我国环保总局2001年颁布的《危险废物污染防治技术政策》中,把生活垃圾焚烧飞灰定为危险废物,规定:“生活垃圾焚烧产生的飞灰必须单独收集”“生活垃圾焚烧飞灰在生产地必须进行必要的固化和稳定化处理之后方可运输”“生活垃圾焚烧飞灰须进行安全填埋处置”。因此,生活垃圾焚烧飞灰填埋或资源化利用前,对重金属的处理是必不可少的。 飞灰的主要污染物是重金属和二噁英,但是飞灰的高氯特点会对飞灰中两种主要污染物的处置带来很大的影响,因此,飞灰中氯的危害也不容忽视。 1 重金属 重金属是指密度(比重)大于6 g/cm3的金属元素,而垃圾焚烧过程中所排放的有毒的微量金属元素基本上都属于此范围。当垃圾进行焚烧处理时,其所含的重金属则会发生迁移和转化,一般富集于直径小于1 mm的灰渣颗粒,但也可能受垃圾中所含的氯化物的影响而改变其在灰渣中的分布和种类。现阶段通常认为垃圾焚烧过程中产生的重金属主要来自于电池、电器、温度计、颜料、塑料、报纸、杂志、半导体、橡胶、镀金材料、彩色胶卷、纺织品、杂草等。在燃烧的过程中,具有高沸点的重金属在燃烧过程中易均匀凝结,从而形成飞灰的核心,而在高温下易挥发的重金属会随着温度的下降凝结在飞灰的表面。 垃圾焚烧飞灰中有大量的重金属,飞灰中重金属的浸出毒性与飞灰的粒径、表面积、pH 值有关,主要依赖飞灰中重金属的存在形态。目前,阻碍飞灰重金属元素释放主要有4种方法:固化、高温熔融处理、化学稳定化法、酸及其溶解剂的提取法。 2 二噁英 垃圾在焚烧过程中会不可避免地产生二次污染,包括对环境危害极大的剧毒有机污染物二噁英(PCDD/Fs)。垃圾焚烧中产生的有毒有机化合物——二噁英,已成为制约垃圾焚烧技术在我国发展的关键性问题。 根据PCDD/Fs在垃圾焚烧过程中形成的机理,其防治措施可分为控制二噁英的形成源、切断二噁英的形成途径以及采取有效的净化技术三类。在垃圾焚烧过程中,形成二噁英的必要条件归纳为:(1)氯源的存在;(2)燃烧过程以及低温烟气段中催化介质(如:Cu及其金属氧化物)的存在;(3)不良的燃烧工况组织;(4)未采取严格有效的尾气净化措施。因此,控制二噁英的形成与排放必须从合理有效的解决上述问题入手。 为了在燃烧前尽可能降低PCDD/Fs的生成几率,需要对原生垃圾进行分类、加工处理,尽可能减少垃圾中含氯有机物和重金属含量,将原生垃圾制成RDF成品供垃圾焚烧厂使用。同时,选择合适的炉膛和炉排结构,改善垃圾焚烧炉内燃烧条件,提高垃圾焚烧厂锅炉的燃

放射性同位素应用与发展

放射性同位素应用与发展 一百年前天然放射性的发现,引起了人类对宇宙认识和知识更新的一场伟大变革。正是由于这场科学思想上的革命,在经历了半个世纪的探索和奋斗后,终于打开了核能的巨大宝库。当今全世界有437座核电站在运行,另有30座核电站在建造,核电已占世界总发电量的17%。 放射性元素及放射性同位素的应用业已遍及医学、工业、农业和科学研究等各个领域。在很多应用场合,放射性同位素至今尚无代用品;在很多其它应用场合,它要比现有可替代的技术或流程更有效、更便宜。目前,世界上总共有32个国家拥有核电。与此相比,放射性同位素几乎已在全球所有国家使用。其中有50个国家拥有进行同位素生产或分离的设施。其中一些国家的同位素生产部门已成为经济活动中一个相当重要的组成部分。 放射性同位素(以下简称同位素)主要由研究反应堆和回旋加速器生产。同位素生产设施还包括了核动力厂、同位素分离装置和非专门从事同位素生产的普通加速器。 全球有将近300台放射性同位素生产装置或设备。重要的同位素生产设施大约只有50个国家拥有。大量共享的生产设施属于经济合作和发展组织(OECD)。此外,主要的同位素生产国家还有中国、印度、俄罗斯和南非。 正在运行的研究堆在全世界有300个,但只有将近100个堆用作同位素生产(占运行时间的5%或更多一些)。其中包括6个高通量堆,主要生产60Co和252Cf。俄罗斯的2个快中子堆生产89Sr。大多数同位素由研究堆生产,主要有99Mo、60Co、192Ir和131I等。亚洲正在建造或计划建造新的研究堆,同位素生产能力期望会迅速增加。而欧洲和北美,现有的反应堆在老化,一旦关闭,还没有计划用新的装置来取代他们。目前有几个核电厂,如加拿大、阿根廷的压管式重水堆和俄国的RBMKS堆正在生产60Co。另一些国家包括法国、俄国、英国和美国在用一些研究堆生产民用氚。 全世界有180多台加速器在生产放射性同位素。其中约有50台回旋加速器致力于放射性药物生产。他们生产的主要同位素是201Tl以及少量的123I、67Ga和111In。还有大约125台回旋加速器致力于PET工作。由于这类应用正在扩展,全球估计每年要建造25台。由PET回旋加速器生产的主要同位素有18F、11C、13N和15O。此外,还有一些非专门从事同位素生产的普通加速器。 同位素分离设施包括工厂,车间和热室。在这里放射性同位素从裂变产物或放射性废料中提取出来。4家具有工业规模的设施(在比利时、加拿大、荷兰和南非运行)和几个小的车间(在阿根廷、澳大利亚、挪威、俄罗斯和中国运行)正在从事由裂变产物中提取99Mo。 另一些设施(包括热室)正在生产137Cs和85Kr。这些设施的大多数在印度、俄罗斯和美国运行。大约10个热室(在法国、德国、俄罗斯、英国和美国)采用很成熟的流程,从乏燃料中分离出超铀元素和α发射体。 在科学研究中,同位素的应用已深入到了生物医学、遗传工程、材料科学和地球科学。医学应用在同位素诸多有益应用领域里最为活跃。广泛而又多样的工业应用覆盖了众多的工业部门。辐射育种、昆虫不育和食品保藏等技术促进了农业的可持续发展。另一些应用还包括环境污染的监测与去除以及正在扩大的安全检查体系等。

2020年08月27日起实施的生活垃圾焚烧飞灰污染控制技术规范

2020年08月27日起实施的生活垃圾焚烧飞灰污染控 制技术规范 1适用范围 本标准规定了生活垃圾焚烧飞灰污染控制的总体要求,收集、贮存、运输、处理和处置过程的污染控制技术要求,以及监测和环境管理要求。本标准适用于生活垃圾焚烧飞灰收集、贮存、运输、处理和处置过程的污染控制,可作为与生活垃圾焚烧飞灰处理和处置有关建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可管理、清洁生产审核等的技术依据。 2规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB8978污水综合排放标准 GB/T16157固定污染源排气中颗粒物测定和气态污染物采样方法GB16297大气污染物综合排放标准 GB16889生活垃圾填埋场污染控制标准 GB18484危险废物焚烧污染控制标准 GB18597危险废物贮存污染控制标准 GB18598危险废物填埋污染控制标准

GB30485水泥窑协同处置固体废物污染控制标准 GB30760水泥窑协同处置固体废物技术规范 GB/T30810水泥胶砂中可浸出重金属的测定方法 GB34330固体废物鉴别标准通则 HJ77.3固体废物二噁英类的测定同位素稀释高分辨气相色谱-高分辨质谱法 HJ/T397固定源废气监测技术规范 HJ557固体废物浸出毒性浸出方法水平振荡法 HJ662水泥窑协同处置固体废物环境保护技术规范 HJ1091固体废物再生利用污染防治技术导则 HJ2025危险废物收集、贮存、运输技术规范 3术语和定义 下列术语和定义适用于本标准。 3.1生活垃圾焚烧飞灰 fly-ashfrommunicipalsolidwasteincineration 生活垃圾焚烧设施的烟气净化系统捕集物和烟道及烟囱底部沉降的底灰。本标准中简称“飞灰”。 3.2处理treatment 通过物理或化学反应,对飞灰中的重金属、二噁英类、氯盐等一种或几种物质进行一定程度的去除,或者抑制其可浸出性,使处

放射性同位素

示踪技术 示踪方法是引入少量放射性同位素,并随时观察其行踪的方法。例如在肥料中掺入少量的放射性磷-32(半衰期为14.28天,发射1.7兆电子伏的β粒子),可以找到给植物施磷肥的最好方法。用探测或照相胶片测量辐射随时间的变化及其在植物中的位置,就能得到磷的摄入率和累积率的准确资料。同样,给人体注射无害的放射性钠-24(半衰期15.03小时)溶液,可以进行人体血液循环的示踪实验。为了医学诊断的目的,希望引入足够的放射性物质以便提供所需要的数据,但是放射性物质不能达到有害于人体的程度。 再如,监视掺合了放射性同位素流体的行踪可以确定许多种物质的流速,如人体中的血液,输油管中的石油或排入江河中的污水等。利用示踪技术还可以对生物体内的农药形式进行分析,研究农药施用后发生的变化及其在生态系统中运动的规律。 有关光合作用的基本产物的知识,也是在利用二氧化碳-14(14CO2)作为示踪剂之后才被人们所了解的。二氧化碳-14中的碳-14是碳的一个放射性同位素。此外,有些植物具有非常巧妙的机能--在夜间,不断地吸收二氧化碳,到了白昼,就在叶子中进行光合作用。这一现象也是利用二氧化碳-14进行研究后才发现的。 利用示踪剂二氧化碳-14还可以研究有关植物呼吸的详细情况。例如,由于昼夜之间的差别,植物的呼吸情况有什么不同?呼吸对光合作用有什么影响?不同植物之间,呼吸有什么差异等此外,由光合作用产生的淀粉、蛋白质、脂肪等各种物质,在植物体内是怎么样运动、转移的?又是怎么样积累并贮存到各种不同的“仓库”里去的?这些“仓库”包括果实(像稻米、小麦)、茎(像土豆)、根块(像甘薯)等。所有这些自然界的巧妙安排和行为,也都是在利用示踪剂--二氧化碳-14进行研究之后才得以解释清楚。目前,除了碳-14以外,还可配合使用其它的放射性同位素,如磷-32、氢-3等作示踪剂,从而使一些研究工作能够做得更加细致周密。 还有一些工作,如除草剂的研究、家畜或鸡饲料中养分的传送方式的研究以及各种昆虫的生态方面的研究等等,都离不开使用示踪剂的方法。正是因为有了示踪剂技术,才为各种精密的研究开辟了新的道路,促进了各方面研究工作的开展。 中子活化分析 活化分析是一种揭示微量杂质的存在及其数量的分析方法。用中子(如反应堆中子)辐照可能含有某种痕量元素的材料样品,不同的原子核吃掉慢中子后产生的放射性同位素会进行完全不同的核衰变,通过测量其发射的β或γ射线的特有能量和强度,就能得到有关杂质的含量。即使是肉眼看不见的像尘埃那么大小的物料,只要放到反应堆里照射一下,就能定量地测定出其中所包含的许多种微量元素。 这种测定方法用途广泛。例如,调查直升飞机喷洒农药的分散效果。农药散布到稻田以后,从各个不同部位采集稻秧,放到反应堆中照射,经过活化分析,便可测出微量农药的放射性。从而可以知道每颗稻秧上粘附的农药量。根据这些测定数据可以绘制出农药散布量的分布图。 为了调查由工厂排出的煤烟或废水引起的公害,也常常离不开使用活化分析。例如,对大气中的微量尘埃取样,进行活化分析,就能获得很多有关大气的情报。如尘埃中含有哪些元素?每种元素的含量是多少。也可以查清城市废物焚烧炉、各种锅炉、钢铁厂的冶炼电炉等不同污染源与环境污染的关系等等。另外,活化分析也可以研究煤烟或废水是如何扩散的? 活化分析技术应用于侦破化学,也是很有成效的。通常,刚打过手枪的罪犯,在衣服袖口和前胸等部位总是附着一些硝烟痕迹。从嫌疑犯的衣服上剪下一小片,放到反应堆中接受照射,进行活化分析。于是,硝烟中的各种微量元素,比如锑、钡等等便可以清清楚楚地显示出来。然后,把这些数据与被害者身上测到的数据进行对照,就能弄清两者是否相同。从而可以拿出罪犯料想不到的铁证。 此外,对于罪犯留在作案现场的毛发,也常常要透过活化分析来进行调查研究。比如,某小汽车后面的行李箱内所发现的头发是不是被害者的,便可透过活化分析来判断。在这里不必

飞灰处置技术

飞灰处置技术 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

“十二五”期间,我国城镇生活垃圾焚烧能力已有大幅度提升,飞灰处置行业却缓步前行。中国城市建设研究院董事长徐文龙曾指出,“目前我国垃圾焚烧产生的飞灰处理量与产生量不符,约有50%的飞灰没有得到妥善处理”。处理成本高昂外,飞灰处理技术路线也一直备受争议。 清华大学教授聂永丰认为,基于中国城市垃圾焚烧飞灰的性质和处理特性,焚烧飞灰的处理与利用技术必须从资源化利用和环境影响两方面加以考虑,既要考虑焚烧飞灰资源化利用的可行性,在经济成本与环境保护中找到最佳平衡点,又要使焚烧飞灰处理产物的环境特性达到所限定的标准。 “就环境影响而言,不但必须提高重金属的有效固定,需要破坏或去除飞灰中的二恶英。”聂永丰说。 聂永丰介绍,垃圾焚烧飞灰处理技术主要有五种: 一是水泥固化-危废填埋场。该工艺的优点是水泥固化技术工艺成熟、系统简单、易于操作,固化处理费用较低。“但固化体的安全填埋处置费用高,重金属在长期稳定性也较差,处理后固化体的强度偏低。”聂永丰说。 二是飞灰螯合稳定化—卫生填埋。该技术要求焚烧飞灰含水率小于30%;二恶英含量低于3 μg TEQ/kg等。聂永丰认为在实际操作中,可能会存在一些问题,如满足要求配比随飞灰而变、成本未降低、部分地区无足够土地资源。 三是飞灰熔融处理技术。该技术优点是减容率高,一般可减至1/2~1/3(体积);熔渣品质稳定,无重金属溶出,可再生利用;可完全分解二恶英及其它有机污染物。但也存在一些缺点,如高温条件下会产生含有Pb、Zn、Cd等易挥发重金属的废气,需设置后续烟气处理装置;工艺复杂;能源消耗大、处理成本高。 聂永丰介绍,该技术日本应用较多,欧洲也有应用,但昂贵的处理费用和复杂的处理系统大大制约了熔融固化技术在中国的推广和应用。 四是飞灰烧结轻骨料处理技术,它可同时实现垃圾焚烧飞灰的无害化处理与资源化利用,不仅重金属污染物实现了有效的固定,二恶英类污染物得到彻底的分解破坏,煅烧产品具备了高强型轻骨料的特点,可应用于浇注普通混凝土和铺设路基垫层。该技术处理成本远低于进入安全填埋场的处置费用,据悉在天津已有应用。 五是飞灰水泥窑共处置技术。由于焚烧飞灰可替代原料,以及水泥窑回转窑适宜处理此类的危险废物,操作工艺易于控制,污染物处理彻底,并能实现资源化利用。国外已有实例,国内技术研究进展快。但飞灰必须进行适当的预处理,降低可溶盐的含量,以满足水泥生产的要求和避免重金属挥发。

生活垃圾焚烧飞灰固化处理的工程实践

第15卷第3期2007年6月 环境卫生工程 Envi阳n腓ntalS蚰itati哪En百ne耐ng V01.15No.3 June2007·15·‘ 生活垃圾焚烧飞灰固化处理的工程实践 卢欢亮1,黄晓文2 (1.广州市环境卫生研究所,广东广州5lol70;2.广州市广佳环保有限公司,广东广州510375)摘要:以广州市李坑生活垃圾焚烧发电厂采用水泥固化工艺处理飞灰的工程实例,对固化前后的飞灰进行浸出毒性实验,同时采用不同配比的水泥进行固化工艺的条件实验。结果表明:飞灰原灰中的重金属浸出浓度超过我国危险废物鉴别标准,属于危险废物;当水泥的掺入比例为O.33时,飞灰的固化效果最佳。并结合飞灰的成分,建议对飞灰水泥固化体的长期安全性进行进一步研究。 .关键词:垃圾焚烧飞灰;重金属;水泥固化;工程实践 中图分类号:x705文献标识码:A文章编号:1005—8206(2007)03一0015一03 Eng.m∞ringPmcticeofMSWI川yAsh SoH咖∞ti蛐Tr翰锄ent LuHu粕lian91,H、langXiaowen2 (1.Gu蚰铲h伽En“ronmentalS彻itationInstitute,Gu明gd∞gGu蚰gzhou510170; 2GuangzhouGuan西iaEnvim砌entalProtecti∞Co.,Ltd,GuangdongGuarIgzll伽510375)Abstract:-nleceInentsolidmcationtech舯log)rw鹊appliedto骶atingnya8hproduced如mGu蚰gzllounkengW姻te—to—EnergyPla眦,leachingtoxici哆testBofny耶h蚰dits∞lidificationb10ckwe孢carTiedout,meanwhile,conditionalte8tw酗 c删edout byValyingtlle锄。圳眦ofcement.The他sult8showmatt}leconcen湘tionofthe heavymetalsf南mtlleleachingliq. uidoftllenya8hexeeedsthe“nlitvalueintheNati叩alldentific8tionSt蛐dardforHaza—ousW酗te8一Extracti∞胁cedu阳1-ox.ici眵,the耐.ore母ashshouldbetreated舾h犯adousw鲢te。皿eoptimizedsolidificatione&ct啪sachieved姗ilecememratio tony∞hiBO.33.11Iestudy0floIlg—te珊s出yimpactoftheny勰hblocksis g廿Dndy陀co蚴endedaccordingtotllecompo. n∞拓of ny鹪h. Key words:MswInya8h;hea呵n圯tal;ceⅡ圯nt80lidification;engine矗ngpmctice 焚烧因其良好的减容效果和能源回收利用等优点逐渐成为上海、广州等经济发达城市处理垃圾的首选技术,伴随而来的焚烧飞灰的安全处置也成为热点问题。焚烧飞灰因其含有较高浸出浓度的铅、镉等重金属,在进入最终处置之前必须经过稳定化/固化处理【11。近年来,国内许多高校如清华大学、‘同济大学等‘2圳对飞灰特性及其处理技术展开了深入的研究,但这些研究大多数只局限于实验室和中试规模,而对于工程规模的相关报道则很少D】。 我们以广州市李坑生活垃圾焚烧发电厂采用水泥固化工艺处理飞灰的工程实例,研究了水泥和飞灰的最佳配比、飞灰固化块的重金属浸出浓度及其长期安全性问题。 l工程概况 广州市李坑生活垃圾焚烧发电厂是国内惟一采用中温次高压参数的垃圾焚烧厂,位于白云区太和镇永兴村,自2006年年初投入使用以来,日处理能力1040t。焚烧尾气采用半干法+布袋除尘器的处理工艺,飞灰日产生量约45t,相当于 收稿日期:期7_01.12垃圾焚烧量的4%一5%。 2处理工艺 飞灰处理工艺流程见图1。首先将焚烧飞灰转移到固化站的飞灰塔中,通过螺旋给料机将其定量卸入搅拌机中,然后加入一定比例的水泥、固化剂,物料充分搅拌后,倒入定型模具中,料浆在干化区中固化48h后,用叉车将其吊进专用运输车,最后运往符合环保要求的处置场地暂存。 _1l卸车到飞灰塔f,一 飞灰装车卜-—.|水泥进水泥塔r—_1搅拌生产 一l固体剂进罐I—■—一下料到固化模具 处置场·一l自吊车装车I·——一拆模养护H转移至干化 图l飞灰水泥固化工艺流程 3材料及方法 工程所用水泥为市售32.5级硅酸盐水泥。进行条件实验时,向一定量的飞灰中加入不同比例的水泥和辅助材料,得到一系列的飞灰固化体样品,分别进行编号No.1一No.12,如表l所示。固化体被送往某分析测试中心,按照GB

铬污染土壤固化/稳定化技术工程应用研究

铬污染土壤固化/稳定化技术工程应用研究 [摘要]我国是世界铬盐生产大国,每年产生大量的铬渣,铬渣堆放对土壤环境造成严重污染。国家”十二五”规划明确提出了重点地区铬污染土壤的治理目标,铬污染土壤的治理工作正迅速展开。固化/稳定化技术工艺操作简单、处理时间短、固化剂易得,目前在我国70%以上铬污染土壤治理工程中得到应用。本文通过铬污染土壤固化/稳定化技术工程应用环节的研究探讨,分析总结实施过程中的存在问题,并对该技术的工程应用提出展望。 [关键字]铬污染土壤固化稳定化技术工程应用问题与展望 1铬污染土壤固化/稳定化技术工程应用背景 我国是世界铬盐生产大国,年产量超过60万吨,在其生产过程中产生大量铬渣。铬渣中含有0.3-1.5%可溶性Cr(VI),经降雨和地表水的冲刷,Cr(VI)进入周围土壤和地下水,对环境造成严重污染。国家环境保护”十二五”规划中,将铬渣堆场列为我国土壤重金属污染重点治理对象。 铬在土壤中一般以两种价态存在,Cr(VI)和Cr(III)。Cr(VI)以易溶于水的铬酸根(CrO42-)和重铬酸根(Cr2O72-)存在,在土壤和地下水系统中迁移性很强。Cr(VI)对于细胞具有较强的穿透能力,还有较高的氧化能力,对生物体有较强的毒性和致癌作用。Cr(III)是高等动物必须的微量元素之一,高浓度下也有一定的毒性,在一般地下水环境中不易移动。 铬污染土壤治理有堆肥技术、电动修复技术、生物修复技术、热解还原技术、淋洗技术、固化/稳定化技术[1]。综合这些技术的可靠性、可操作性、治理时间和成本,目前工程中应用最多的是固化/稳定化技术。美国环保署将固化/稳定化技术称为处理有毒有害废物的最佳技术,1982-2005年间,美国超级基金共对977个场地进行修复或拟修复,其中217个场地修复使用固化/稳定化技术[2]。在我国,固化稳定化技术是工程中常用的修复技术,铬污染土壤治理中应用达70%以上。 2.铬污染土壤固化/稳定化系统设计 2.1铬污染土壤的固化/稳定化系统 铬污染土壤的固化/稳定化包括两个过程:稳定化和固化。稳定化是将六价铬还原为三价铬,降低铬在环境中的迁移性和生物可利用性,从而降低铬污染的危害。固化是将被铬污染的土壤与某种粘合剂混合通过粘合剂固定其中的铬,使铬不再向周围环境迁移。 在铬污染土壤固化/稳定化技术系统设计中,需要综合考虑氧化还原、胶凝固化、吸附三方面因素,铬污染土壤固化稳定化系统设计中常用的药剂有:

垃圾焚烧飞灰

本期目录 垃圾焚烧飞灰 ?特性 ------------------------------------------------------------------ 2?处理处置技术 ---------------------------------------------------------- 3?意见建议 -------------------------------------------------------------- 5?政策法规 -------------------------------------------------------------- 5?产业化发展 ------------------------------------------------------------ 7 行业动态 ? ---------------------------------------------------------------------- 8 市场动态 ?国 ------------------------------------------------------------------- 11?国外 ----------------------------------------------------------------- 17 院新闻 ?标准管理 ------------------------------------------------------------- 18

垃圾焚烧飞灰 飞灰是垃圾焚烧的必然产物,大约占焚烧垃圾量的3~5%。《“十二五”全国城镇生活垃圾无害化处理设施建设规划》(国办发〔2012〕23号),规划到2015年新增垃圾焚烧设施262座,处理能力达21.9万吨/日。将建老港焚烧厂二期及崇明、嘉定、松江等5座郊区垃圾焚烧厂,新增设施能力达8000吨/日以上。按此计算,全国和分别产生飞灰6570~10950吨/天和240~400吨。如何安全有效地处置焚烧飞灰成为急需解决的环境和社会问题。 目前,我国经济发达地区飞灰主要通过简易处理后运往安全填埋场填埋,不仅大量占用了安全填埋场的库容,且成本高,一般为2000~3000元/吨。而一些经济欠发达、没有条件建设安全填埋场的地区,一般采用堆存或简单水泥固化后运往垃圾填埋场填埋的方式,存在着二次污染的隐患。 2008年7月,《生活垃圾填埋场污染控制标准》(GB16889-2008)开始实施,规定飞灰应经稳定化处理,满足含水率小于30%、二噁英含量低于3 μg TEQ/Kg、按照HJ/T 300方法制备的浸出液中危害成分浓度低于规定的限值,方可送往生活垃圾卫生填埋场分区填埋。该标为飞灰进入卫生填埋场进行最终处置提供了规依据,但对飞灰稳定化处理提出了严格的要求。 现正在运行的江桥、御桥两个焚烧厂的飞灰均运至嘉定危废中心经预处理后安全填埋。现有嘉定安全填埋场库容已难以满足现有和将建焚烧厂的飞灰处置需要。因此,通过强化预处理使飞灰达到《生活垃圾填埋场污染控制标准》后进入老港卫生填埋场进行分区填埋,可解决或其他城市飞灰处置的尴尬局面。在此背景下,进一步研制开发稳定高效的飞灰处理药剂和工艺并产业化推广意义重大且势在必行。 特性 在《国家危险废物名录》中编号HW18的危险废物。 物理特性 飞灰是在烟气净化系统收集而得的细颗粒物质,包括用化学药剂处理烟气时产生的飞灰,在灰渣中约占10%~20%。飞灰一般呈灰白色或深灰色,粒径小于300μm,大部分为1.0μm~30μm,含水率10%~23%,热灼减率34%~51%,易冻胀,难压实,颗粒形态多呈棒状、多角质状、棉絮状、球状等不规则形状。 化学特性 飞灰中的主要成分为CaO,SiO2,Na2O,SO3,K2O,Fe2O3,Al2O3,MgO,其中CaO的质

放射性同位素安全操作规程(通用版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 放射性同位素安全操作规程(通 用版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

放射性同位素安全操作规程(通用版) 2.1、放射源在工作时,工作人员与放射源应保持规定的安全距离避免不必要的接近放射源,在保证安全的前提下操作放射源。 2.2、禁止非工作人员进入放射源工作区域。 2.3、未经有关部门批准,严禁移动放射源及照射方位,对擅自移动放射源造成放射事故,依法从严惩处。 2.4、放射源及设备发生故障时,操作人员应立即报告,由专业维修人员来处理,未经许可操作人员不准乱动放射源及设备。 2.5、操作人员必须接受业务和防护技术知识培训,必须持证上岗。 2.6、操作人员上岗必须穿戴工作服、工作帽、口罩、手套等个人防护用品,否则禁止工作。 2.7、放射性操作的场地范围,每天必须清扫卫生,保持设备整

洁,减少粉尘污染。 2.8严格交接班制度,做好工作记录,做好保卫安全工作,发生事故应立即上报,坚守工作岗位,认真操作,杜绝绝事故发生。 云博创意设计 MzYunBo Creative Design Co., Ltd.

城市垃圾焚烧飞灰处理方法水泥固化

城市垃圾焚烧飞灰处理方 法水泥固化 Last revision on 21 December 2020

城市垃圾焚烧飞灰处理方法——水泥固化 摘要:垃圾焚烧处理的广泛应用使得飞灰引起的污染问题成为焦点,水泥固化是一种行之有效的稳定化方法。介绍了近年来国内外水泥固化垃圾焚烧飞灰的研究进展,并总结了固化过程中需要注意的重金属和安定性等问题,最后指出了水泥固化技术的发展方向。 关键词:垃圾焚烧;飞灰;水泥;固化 焚烧是一种高温热处理技术,由于焚烧处理可以实现城市垃圾热能回收、减容、减重等目的,因而得到较快发展。焚烧处理后产生的灰渣分为飞灰和底渣,后者已经被广泛应用于筑路、制砖、玻璃制造以及混凝土生产等方面。然而产生的飞灰由于含有Zn、Pb、Cu、Cr等重金属和二恶英等剧毒有机污染物,对人体健康和生态环境具有极大的危害性。故对于垃圾焚烧飞灰要求经过固化/稳定化之后进行安全填埋。Masashi[5]研究将飞灰和水泥混合,经水化作用形成坚硬的水泥固化体;Katsuno-ri采用高温熔融工艺固化垃圾焚烧飞灰;宋立杰还采用硫化钠和硫脉对垃圾焚烧飞灰进行了化学药剂稳定化处理。 水泥固化与其他固化/稳定化方法相比,在技术和经济上更具可行性,具有操作管理简单、安全可靠、运行费用低廉等特点,国内外同行对此做出了许多卓有成效的工作。本文对国内外水泥固化垃圾焚烧飞灰的研究进展进行了综述。 1垃圾焚烧飞灰的物理化学性质 物理性质 飞灰是由烟器净化系统(Air pollution control system,APC)收集的细颗粒物质,大约占灰渣总质量的1000~20%。刚捕集下来的飞灰通常是含水率较低的细小尘粒,颜色从白色到灰色和黑色不等,其形状有扁平和圆形的,也有球形的。

浅论放射性同位素示踪技术的应用

浅论放射性同位素示踪技术的应用-----《原子物理》课程论文 这学期通过学习XX老师的《原子物理》课程,我对原子物理其中一个领域—放射性同位素产生了很大的兴趣,这兴趣源于我在高中时期对生物学科中同位素示踪法的学习经历,当时我就感觉这一技术十分奇妙,但不明原理,《原子物理》课程让我认识并理解了物理和生物两大学科之间的这一联系。课堂上老师简明扼要地介绍了一些有关的应用,但是我仍不满足。老师只能作为课程的引路人,为学生指明入门方向,要想横向更加广泛地,纵向更加深入地了解这一课程的某个领域还是要学生在课外多方搜集资料,筛选整合有价值的信息,通过比较和研究,最终形成自己对这一领域的独特而深刻的认识,放射性同位素的应用浩瀚广博,即使仅仅只谈它的示踪技术应用,也远非我这篇小论文可以概述详尽的,所以我也只能用“浅论”这两个字。下面我就对放射性同位素示踪技术的应用进行浅显的介绍和论述。 具体论述前我们首先要明确相关的基本概念,无论结构多么复杂的物理学大厦,它的地基都是由一块块叫做“基本概念”的砖石筑成的。基本概念不明晰,我们就无法理解为什么放射性同位素具有如此广泛而丰富的应用。那么什么是“放射性同位素”呢?科学家发现,元素周期表中同一位元素的原子并不完全一样,有的原子重些,有的原子轻些;有的原子很稳定,不会变,有的原子有放射性,会变化,衰变后成了另一种元素的原子。我们把这些处于同一位的元素但有不同性质(质子数相同,但中子数不同)的原子称为同位素。同位素中有的会放出射线,因此称放射性同位素。 放射性同位素不断发出射线,它到哪里,人们就可以追踪到哪里,可作为示踪剂使用。示踪剂可以是示踪原子,也可以做成示踪化合物。因为加入示踪剂之后,就像贴上标记一样,所以又称之为标记化合物。人们已经用氚、碳-14、磷-32、硫-35、碘-125等许多核素合成了许许多多标记化合物。用放射性同位素示踪技术(以下简称示踪技术)作检测,具有灵敏度高、方法简便、干扰少、准确性好等优点,因此,在工农业生产、医疗、环保、国防和科学研究等许多领域有着十分广泛的应用,并且这种应用还在迅速扩展。 (一)示踪技术在生物学领域的应用 高中时期我们就曾经学过同位素示踪法在生物学科的应用,即用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。它可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。有关光合作用的基本产物的知识,也是在利用二氧化碳-14(14CO2)作为示踪剂之后才被人们所了解的。二氧化碳-14中的碳-14是碳的一个放射性同位素。此外,有些植物具有非常巧妙的机能——在夜间,不断地吸收二氧化碳,到了白昼,就在叶子中进行光合作用。这一现象也是利用二氧化碳-14进行研究后才发现的。利用示踪剂二氧化碳-14还可以研究有关植物呼吸的详细情况。例如,由于昼夜之间的差别,植物的呼吸情况有什么不同?呼吸对光合作用有什么影响?不同植物之间,呼吸有什么差异等等。 (二)示踪技术在工业生产领域的应用 放射性示踪剂在工业生产中有着广泛的应用。石油蕴藏在地下,油层非均匀性质很严重,油水分布复杂。搞清地下油水分布的情况,对提高采油率有着十分重要的意义。如果用氚或碘-125、硫-35作示踪剂,注入油井中,打一些监测井进行监测,就可以知道地下油水的分布情况。再如,不同公司生产的石油往往共用一条输油管道,要想把哪个公司输送过来的石油分辨得一清二楚,也可找示踪剂来帮忙。例如在甲公司的石油中加入放射性碘做示踪剂,在乙公司的石油中加入放射性硫做示踪剂,当接收站测到放射性碘示踪剂信号时,就知道甲公司的石油过来了,就会自动打开甲公司的贮油槽。当测到放射性硫示踪剂信号时,就知道是乙公司的石油过来了,就会打开乙公司的贮油槽,保证不会认错货。 (三)示踪技术在科学研究领域的应用 用氚标记示踪剂可以帮助水利学家们研究江河中泥沙是怎么淤积的。利用氯-36示踪剂可以帮助人们了解地下水运动走向和渗透率的大小。利用碳-14示踪剂可以研究大洋水流的循环模式和全球气候变暖的原因,等等。磷-32、硫-35、碘-125、碳-14或氚作示踪剂,可以帮助医生从分子水平研究神经系统、内分泌系统疾病的机制,进行药物代谢,基因工程等研究。用磷-32或硫-35标记的核苷酸,可用于DNA(脱氧核糖核酸)和RNA(核糖核酸)分子序的测定。 (四)示踪技术在医学领域的应用 通过查阅相关医学文献,我发现在医学研究中,经常需要了解某种物质在机体内的分布情况和代谢规律,包括药物、抗体、细胞膜受体,基因片段以及蛋白质等各种分子。如何能够较为方便地在活体动物或人体条件下了解这些情况呢?示踪技术是一种较为常用的方法。随着放射性标记药物的品种不断增加,在体外探测体内放射性分布的设备不断进步,示踪技术应用越来越广泛。最早,我们为了解甲状腺的功能,给病人口服放射性碘,然后测定甲状腺部位的放射性高低,定量显示甲状腺的摄碘功能,这一方法沿用至今,对于甲状腺整体和甲状腺肿块局部功能的评价,用数字或图像的方式很容易获得。还可以用于

相关文档
相关文档 最新文档